Stress Assessment of Wild Boar (Sus scrofa) in Corral-Style Traps Using Serum Cortisol Levels
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Trapping
2.3. Sampling
2.4. Laboratory Analysis—SPE
2.5. Laboratory Analysis—RIA
2.6. Statistical Analysis
3. Results
3.1. Pre-Study
3.2. Differences between Hunting Methods and Group Size
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef]
- Da Rosa, C.A.; Wallau, M.O.; Pedrosa, F. Hunting as the main technique used to control wild pigs in Brazil. Wildl. Soc. Bull. 2018, 42, 111–118. [Google Scholar] [CrossRef]
- Keuling, O.; Strauß, E.; Siebert, U. How Do Hunters Hunt Wild Boar? Survey on Wild Boar Hunting Methods in the Federal State of Lower Saxony. Animals 2021, 11, 2658. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, T.; Kamerov, P.; Stefanov, D.; Depner, K. Trapping as an alternative method of eradicating classical swine fever in a wild boar population in Bulgaria. Rev. Sci. Tech. Off. Int. Epiz. 2011, 30, 911–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zani, L.; Dietze, K.; Dimova, Z.; Forth, J.H.; Denev, D.; Depner, K.; Alexandrov, T. African Swine Fever in a Bulgarian Backyard Farm—A Case Report. Vet. Sci. 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Śmietanka, K.; Woźniakowski, G.; Kozak, E.; Niemczuk, K.; Frączyk, M.; Bocian, Ł.; Kowalczyk, A.; Pejsak, Z. African Swine Fever Epidemic, Poland, 2014–2015. Emerg. Infect. Dis. 2016, 22, 1201–1207. [Google Scholar] [CrossRef] [Green Version]
- More, S.; Miranda, M.A.; Bicout, D.; Bøtner, A.; Butterworth, A.; Calistri, P.; Edwards, S.; Garin-Bastuji, B.; Good, M.; Michel, V.; et al. African swine fever in wild boar. EFS2 2018, 16, e05344. [Google Scholar] [CrossRef] [Green Version]
- Iossa, G.; Soulsbury, C.D.; Harris, S. Mammal trapping: A review of animal welfare standards of killing and restraining traps. Anim. Welf. 2007, 16, 335–352. [Google Scholar]
- Littin, K.E.; Mellor, D. Strategic animal welfare issues: Ethical and animal welfare issues arising from the killing of wildlife for disease control and environmental reasons. Rev. Sci. Tech. Off. Int. Epiz. 2005, 24, 767–782. [Google Scholar] [CrossRef]
- Anonymous. Agreement on International Humane Trapping Standards between the European Community, Canada and the Russian Federation. Off. J. Eur. Communities 1998, 42, 43–57. [Google Scholar]
- International Organization for Standardization. Animal (Mammal) Traps—Part 5: Methods for Testing Restraining Traps (ISO 10990-5); International Organization for Standardization: Geneva, Switzerland, 1999. [Google Scholar]
- Proulx, G.; Cattet, M.; Serfass, T.L.; Baker, S.E. Updating the AIHTS Trapping Standards to Improve Animal Welfare and Capture Efficiency and Selectivity. Animals 2020, 10, 1262. [Google Scholar] [CrossRef]
- Fahlman, Å.; Lindsjö, J.; Norling, T.A.; Kjellander, P.; Ågren, E.O.; Bergvall, U.A. Wild boar behaviour during live-trap capture in a corral-style trap: Implications for animal welfare. Acta Vet. Scand. 2020, 62, 59. [Google Scholar] [CrossRef]
- Conejero, C.; López-Olvera, J.R.; González-Crespo, C.; Ráez-Bravo, A.; Castillo-Contreras, R.; Tampach, S.; Velarde, R.; Mentaberre, G. Assessing mammal trapping standards in wild boar drop-net capture. Sci. Rep. 2022, 12, 15090. [Google Scholar] [CrossRef]
- Fraser, D.; Fraser, A.F.; Ritchie, J. The Term “Stress” in a Veterinary Context. Br. Vet. J. 1975, 131, 653–662. [Google Scholar] [CrossRef]
- Fried, T.H. Stress: What Is It and How Can It Be Quantified? Int. J. Study Anim. Probl. 1980, 1, 366–374. [Google Scholar]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef]
- Hattingh, J.; Pitts, N.I.; Ganhao, M.F. Immediate response to repeated capture and handling of wild impala. J. Exp. Zool. 1988, 248, 109–112. [Google Scholar] [CrossRef]
- Casas-Díaz, E.; Closa-Sebastià, F.; Marco, I.; Lavín, S.; Bach-Raich, E.; Cuenca, R. Hematologic and biochemical reference intervals for Wild Boar (Sus scrofa) captured by cage trap. Vet. Clin. Pathol. 2015, 44, 215–222. [Google Scholar] [CrossRef]
- Gentsch, R.P.; Kjellander, P.; Röken, B.O. Cortisol response of wild ungulates to trauma situations: Hunting is not necessarily the worst stressor. Eur. J. Wildl. Res. 2018, 64, 11. [Google Scholar] [CrossRef] [Green Version]
- Güldenpfennig, J.; Schmicke, M.; Hoedemaker, M.; Siebert, U.; Keuling, O. An approach to assess stress in response to drive hunts using cortisol levels of wild boar (Sus scrofa). Sci. Rep. 2021, 11, 16381. [Google Scholar] [CrossRef]
- Hamilton, G.D.; Weeks, H.P. Cortisol and aldosterone comparisons of cottontail rabbits collected by shooting, trapping, and falconry. J. Wildl. Dis. 1985, 21, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.J.D.; Anderson, E.; Foggin, C.; Kock, M.; Tiran, E. Plasma cortisol as an indicator of stress due to capture and translocation in wildlife species. Vet. Rec. 1995, 136, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.E.; Ågren, E.; Amundin, M.; Röken, B.; Palme, R.; Mörner, T. Behavioral and Physiological Responses of Trap-Induced Stress in European Badgers. J. Wildl. Manag. 2006, 70, 884–891. [Google Scholar] [CrossRef]
- Torres-Blas, I.; Mentaberre, G.; Castillo-Contreras, R.; Fernández-Aguilar, X.; Conejero, C.; Valldeperes, M.; González-Crespo, C.; Colom-Cadena, A.; Lavín, S.; López-Olvera, J.R. Assessing methods to live-capture wild boars (Sus scrofa) in urban and peri-urban environments. Vet. Rec. 2020, 187, e85. [Google Scholar] [CrossRef]
- Romero, M.L. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 2002, 128, 1–24. [Google Scholar] [CrossRef]
- Spencer, G.S. Circadian variation of somatomedin and cortisol in pigs. Horm. Metab. Res. 1979, 11, 586–587. [Google Scholar] [CrossRef]
- Hay, M.; Meunier-Salaün, M.C.; Brulaud, F.; Monnier, M.; Mormède, P. Assessment of hypothalamic-pituitary-adrenal axis and sympathetic nervous system activity in pregnant sows through the measurement of glucocorticoids and catecholamines in urine. J. Anim. Sci. 2000, 78, 420–428. [Google Scholar] [CrossRef]
- Marple, D.N.; Aberle, E.D.; Forrest, J.C.; Blake, W.H.; Judge, M.D. Effects of humidity and temperature on porcine plasma adrenal corticoids, ACTH and growth hormone levels. J. Anim. Sci. 1972, 34, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Ruis, M. The Circadian Rhythm of Salivary Cortisol in Growing Pigs: Effects of Age, Gender, and Stress. Physiol. Behav. 1997, 62, 623–630. [Google Scholar] [CrossRef]
- Hennessy, D.P.; Stelmasiak, T.; Johnston, N.E.; Jackson, P.N.; Outch, K.H. Consistent capacity for adrenocortical response to ACTH administration in pigs. Am. J. Vet. Res. 1988, 49, 1276–1283. [Google Scholar]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Sibug, R.M.; Helmerhorst, F.M.; Schmidt, M.V.; Schmidt, M. Stress, genes and the mechanism of programming the brain for later life. Neurosci. Biobehav. Rev. 2005, 29, 271–281. [Google Scholar] [CrossRef]
- Romano, M.C.; Rodas, A.Z.; Valdez, R.A.; Hernández, S.E.; Galindo, F.; Canales, D.; Brousset, D.M. Stress in wildlife species: Noninvasive monitoring of glucocorticoids. Neuroimmunomodulation 2010, 17, 209–212. [Google Scholar] [CrossRef]
- Bateson, P.; Bradshaw, E.L. The effects of wound site and blood collection method on biochemical measures obtained from wild, free-ranging red deer (Cervus elaphus) shot by rifle. J. Zool. 2000, 252, 285–292. [Google Scholar] [CrossRef]
- Muñoz, P.M.; Boadella, M.; Arnal, M.; de Miguel, M.J.; Revilla, M.; Martínez, D.; Vicente, J.; Acevedo, P.; Oleaga, A.; Ruiz-Fons, F.; et al. Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates. BMC Infec. Dis. 2010, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Boadella, M.; Gortázar, C. Effect of haemolysis and repeated freeze-thawing cycles on wild boar serum antibody testing by ELISA. BMC Res. Notes 2011, 4, 498. [Google Scholar] [CrossRef] [Green Version]
- Bateson, P.; Bradshaw, E.L. Physiological effects of hunting red deer (Cervus elaphus). Proc. Biol. Sci. 1997, 264, 1707–1714. [Google Scholar] [CrossRef]
- Wudy, S.A.; Schuler, G.; Sánchez-Guijo, A.; Hartmann, M.F. The art of measuring steroids: Principles and practice of current hormonal steroid analysis. J. Steroid Biochem. Mol. Biol. 2018, 179, 88–103. [Google Scholar] [CrossRef]
- Newman, A.E.M.; Chin, E.H.; Schmidt, K.L.; Bond, L.; Wynne-Edwards, K.E.; Soma, K.K. Analysis of steroids in songbird plasma and brain by coupling solid phase extraction to radioimmunoassay. Gen. Comp. Endocrinol. 2008, 155, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Koren, L.; Ng, E.S.M.; Soma, K.K.; Wynne-Edwards, K.E. Sample preparation and liquid chromatography-tandem mass spectrometry for multiple steroids in mammalian and avian circulation. PLoS ONE 2012, 7, e32496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroud, L.R.; Solomon, C.; Shenassa, E.; Papandonatos, G.; Niaura, R.; Lipsitt, L.P.; Lewinn, K.; Buka, S.L. Long-term stability of maternal prenatal steroid hormones from the National Collaborative Perinatal Project: Still valid after all these years. Psychoneuroendocrinology 2007, 32, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Reimers, T.J.; McCann, J.P.; Cowan, R.G. Effects of storage times and temperatures on T3, T4, LH, prolactin, insulin, cortisol and progesterone concentrations in blood samples from cows. J. Anim. Sci. 1983, 57, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiser, G.; Krüger, S.; Martin, I.; Thelke, F. Status und Entwicklung Ausgewählter Wildtierarten in Deutschland: Jahresbericht 2018; Wildtier-Informationssystem der Länder Deutschlands (WILD); Deutscher Jagdverband: Berlin, Germany, 2020. [Google Scholar]
- World Health Organisation. Use of Anticoagulants in Diagnostic Laboratory Investigations: Stability of Blood, Plasma and Serum Samples; WHO: Geneva, Switzerland, 2002.
- Schuler, G.; Dezhkam, Y.; Bingsohn, L.; Hoffmann, B.; Failing, K.; Galuska, C.E.; Hartmann, M.F.; Sánchez-Guijo, A.; Wudy, S.A. Free and sulfated steroids secretion in postpubertal boars (Sus scrofa domestica). Reproduction 2014, 148, 303–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richert-Hanauer, U.; Failing, K.; Hoffmann, B.; Moellmann, U. Untersuchungen zum Verlauf der Cortisolwerte im Blut beim Schaf während des Zyklus und der Trachtigkeit. Dtsch. Tierärztliche Wochenschau 1988, 95, 374–376. [Google Scholar]
- Statistical Analysis System Institute Inc. SAS® Statistical Analysis System (Base SAS® 9.4); Statistical Analysis System Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Marks, C.A. Haematological and biochemical responses of red foxes (Vulpes vulpes) to different capture methods and shooting. Anim. Welf. 2010, 19, 223–234. [Google Scholar]
- Huber, N.; Vetter, S.G.; Evans, A.L.; Kjellander, P.; Küker, S.; Bergvall, U.A.; Arnemo, J.M. Quantifying capture stress in free ranging European roe deer (Capreolus capreolus). BMC Vet. Res. 2017, 13, 127. [Google Scholar] [CrossRef]
- Moberg, G.P.; Mench, J.A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI Pub: Wallingford, UK; New York, NY, USA, 2000. [Google Scholar]
- Rash, J.M.; Jerkunica, I.; Sgoutas, D.S. Lipid interference in steroid radioimmunoassay. Clin. Chem. 1980, 26, 84–88. [Google Scholar] [CrossRef]
- Sweitzer, R.A.; Gonzales, B.J.; Gardner, I.; Van Vuren, D.; Waithman, J.D.; Boyce, W.M. A modified panel trap and immobilization technique for capturing multiple wild pig. Wildl. Soc. Bull. 1997, 25, 699–705. [Google Scholar]
- Ruis, M.A.; te Brake, J.H.; Engel, B.; Buist, W.G.; Blokhuis, H.J.; Koolhaas, J.M. Adaptation to social isolation. Physiol. Behav. 2001, 73, 541–551. [Google Scholar] [CrossRef]
Storage Temperature | Time Point of Centrifugation (Storage Time) | Mean | |||
---|---|---|---|---|---|
t0 < 15 min | t1 = 33 h | t2 = 57 h | t3 = 87 h | ||
Cooled (4–7 °C) | 406.4 ± 141.3 | 387.5 ± 141.6 | 370.7 ± 176.9 | 384.6 ± 160.4 | 380.9 ± 154.8 |
Room temperature (18–25 °C) | 346.2 ± 115.9 | 341.4 ± 161.7 | 340.1 ± 158.8 | 342.6 ± 141.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westhoff, K.M.; Fetzer, A.; Büttner, K.; Schuler, G.; Lang, J.; Lierz, M. Stress Assessment of Wild Boar (Sus scrofa) in Corral-Style Traps Using Serum Cortisol Levels. Animals 2022, 12, 3008. https://doi.org/10.3390/ani12213008
Westhoff KM, Fetzer A, Büttner K, Schuler G, Lang J, Lierz M. Stress Assessment of Wild Boar (Sus scrofa) in Corral-Style Traps Using Serum Cortisol Levels. Animals. 2022; 12(21):3008. https://doi.org/10.3390/ani12213008
Chicago/Turabian StyleWesthoff, Katharina M., André Fetzer, Kathrin Büttner, Gerhard Schuler, Johannes Lang, and Michael Lierz. 2022. "Stress Assessment of Wild Boar (Sus scrofa) in Corral-Style Traps Using Serum Cortisol Levels" Animals 12, no. 21: 3008. https://doi.org/10.3390/ani12213008
APA StyleWesthoff, K. M., Fetzer, A., Büttner, K., Schuler, G., Lang, J., & Lierz, M. (2022). Stress Assessment of Wild Boar (Sus scrofa) in Corral-Style Traps Using Serum Cortisol Levels. Animals, 12(21), 3008. https://doi.org/10.3390/ani12213008