Diversity and Relative Abundance of Ungulates and Other Medium and Large Mammals in Flooded Forests in the Dahomey Gap (Togo)
Abstract
:Simple Summary
Abstract
1. Introduction
- (1)
- What are the most abundant species in the area? We hypothesize that species that are habitat generalists, and thus able to exploit both forest and savannah habitats, should be the most abundant ones.
- (2)
- Does relative forest size and position affect the mammal populations? We hypothesize that, (a) there is a clear forest size–mammal species richness effect; (b) mammal species richness will increase with the distance from the human settlements due to reduced hunting pressure and less habitat disturbance by humans; and (c) closer to rivers, the presence of gallery forests is likely to provide suitable corridors for fauna, which are also less disturbed by humans.
2. Materials and Methods
2.1. Study Area
2.2. Protocol
2.3. Statistical Analyses
3. Results
3.1. General Data
3.2. Species Directly Recorded
3.3. Species Confirmed by Evidence during Interviews
4. Discussion
4.1. Is the Species Richness of Each Forest Patch Low Compared to the Overall Species Richness of the Whole Region?
4.2. Is There Any Effect of Relative Size and Position of the Various Forest Patches on the Mammal Populations?
4.3. What Are the Most Abundant Species in the Area?
4.4. Conservation Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adepoju, K.A.; Salami, A.T. Geospatial assessment of forest fragmentation and its implications for ecological processes in tropical forests. J. Landsc. Ecol. 2017, 10, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Wang, L.; Song, X.P.; Tyukavina, A.; Turubanova, S.; Potapov, P.V.; Stehman, S.V. The fate of tropical forest fragments. Sci. Adv. 2020, 6, eaax8574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeiro, N.J.; Howe, H.F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl. Acad. Sci. USA 2003, 100, 14052–14056. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.I.; Campbell, M.J.; Sloan, S.; Alamgir, M.; Laurance, W.F. Land-cover change threatens tropical forests and biodiversity in the Littoral Region, Cameroon. Oryx 2020, 54, 882–891. [Google Scholar] [CrossRef]
- Newmark, W.D. Species-area relationship and its determinants for mammals in western North American national parks. Biol. J. Linn. Soc. 1986, 28, 83–98. [Google Scholar] [CrossRef]
- Demenou, B.B.; Doucet, J.L.; Hardy, O.J. History of the fragmentation of the African rain forest in the Dahomey Gap: Insight from the demographic history of Terminalia system. Heredity 2018, 120, 547–561. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, U.; Hoelzmann, P. The Dahomey Gap: An abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 2005, 15, 190–199. [Google Scholar] [CrossRef]
- Segniagbeto, G.H.; Guelly, A.K. Evaluation des potentialités écologiques du complexe chenal de Gbaga, Lac Togo et la forêt Akissa, Projet Réserve de Biosphère Transfrontalière du Delta du Mono. Rapp. Final 2016, 76. [Google Scholar]
- Amori, G.; Segniagbeto, G.H.; Decher, J.; Assou, D.; Gippoliti, S.; Luiselli, L. Non-marine mammals of Togo (West Africa): An annotated checklist. Zoosystema 2016, 38, 201–244. [Google Scholar] [CrossRef]
- Dengler, J. Which function describes the species–area relationship best? A review and empirical evaluation. J. Biogeogr. 2009, 36, 728–744. [Google Scholar] [CrossRef]
- Holt, R.D.; Lawton, J.H.; Polis, G.A.; Martinez, N.D. Trophic rank and the species–area relationship. Ecology 1999, 80, 1495–1504. [Google Scholar]
- Noonan, M.J.; Fleming, C.H.; Tucker, M.A.; Kays, R.; Harrison, A.L.; Crofoot, M.C.; Abrahms, B.; Alberts, S.C.; Ali, A.H. Effects of body size on estimation of mammalian area requirements. Conserv. Biol. 2020, 34, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Prugh, L.R.; Hodges, K.E.; Sinclair, A.R.; Brashares, J.S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl. Acad. Sci. USA 2008, 105, 20770–20775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCain, C.M. Area and mammalian elevational diversity. Ecology 2007, 88, 76–86. [Google Scholar] [CrossRef]
- Minor, E.S.; Lookingbill, T.R. A multiscale network analysis of protected-area connectivity for mammals in the United States. Conserv. Biol. 2010, 24, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- East, R. Species-area curves and populations of large mammals in African savanna reserves. Biol. Conserv. 1981, 21, 111–126. [Google Scholar] [CrossRef]
- Harcourt, A.H.; Doherty, D.A. Species–area relationships of primates in tropical forest fragments: A global analysis. J. Appl. Ecol. 2005, 42, 630–637. [Google Scholar] [CrossRef]
- Riggio, J.; Kija, H.; Masenga, E.; Mbwilo, F.; Van de Perre, F.; Caro, T. Sensitivity of Africa’s larger mammals to humans. J. Nat. Conserv. 2018, 43, 136–145. [Google Scholar] [CrossRef]
- Crooks, K.R.; Burdett, C.L.; Theobald, D.M.; King, S.R.; Di Marco, M.; Rondinini, C.; Boitani, L. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. USA 2017, 114, 7635–7640. [Google Scholar] [CrossRef] [Green Version]
- Andren, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos 1994, 71, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Cunningham, R.B.; Pope, M.L. A large-scale “experiment” to examine the effects of landscape context and habitat fragmentation on mammals. Biol. Conserv. 1999, 88, 387–403. [Google Scholar] [CrossRef]
- Rocha, E.C.; Brito, D.; Silva, J.; Bernardo, P.; Juen, L. Effects of habitat fragmentation on the persistence of medium and large mammal species in the Brazilian Savanna of Goiás State. Biota Neotrop. 2018, 18, e20170483. [Google Scholar] [CrossRef]
- Gardiner, R.; Bain, G.; Hamer, R.; Jones, M.E.; Johnson, C.N. Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landsc. Ecol. 2018, 33, 1837–1849. [Google Scholar] [CrossRef]
- Harkins, K.M.; Keinath, D.; Ben-David, M. It’sa trap: Optimizing detection of rare small mammals. PLoS ONE 2019, 14, e0213201. [Google Scholar] [CrossRef] [Green Version]
- Linkie, M.; Dinata, Y.; Nugroho, A.; Haidir, I.A. Estimating occupancy of a data deficient mammalian species living in tropical rainforests: Sun bears in the Kerinci Seblat region, Sumatra. Biol. Conserv. 2007, 137, 20–27. [Google Scholar] [CrossRef]
- O’Connell, A.F., Jr.; Talancy, N.W.; Bailey, L.L.; Sauer, J.R.; Cook, R.; Gilbert, A.T. Estimating site occupancy and detection probability parameters for meso-and large mammals in a coastal ecosystem. J. Wildl. Manag. 2006, 70, 1625–1633. [Google Scholar] [CrossRef]
- Bonnot, N.; Morellet, N.; Verheyden, H.; Cargnelutti, B.; Lourtet, B.; Klein, F.; Hewison, A.J. Habitat use under predation risk: Hunting, roads and human dwellings influence the spatial behaviour of roe deer. Eur. J. Wildl. Res. 2013, 59, 185–193. [Google Scholar] [CrossRef]
- Alohou, E.C.; Gbemavo, D.S.J.C.; Mensah, S.; Ouinsavi, C. Fragmentation of forest ecosystems and connectivity between sacred groves and forest reserves in southeastern Benin, West Africa. Trop. Conserv. Sci. 2017, 10, 1940082917731730. [Google Scholar] [CrossRef]
- Imorou, I.T.; Arouna, O.; Houessou, L.G.; Sinsin, B. Contribution of sacred forests to biodiversity conservation: Case of Adjahouto and Lokozoun sacred forests in southern Benin, West Africa. Int. J. Biol. Chem. Sci. 2017, 11, 2936–2951. [Google Scholar] [CrossRef] [Green Version]
- Atsri, K.H.; Abotsi, K.E.; Kokou, K.; Dendi, D.; Segniagbeto, G.H.; Fa, J.E.; Luiselli, L. Ecological challenges for the buffer zone management of a West African National Park. J. Environ. Plan. Manag. 2020, 63, 689–709. [Google Scholar] [CrossRef]
Method | Fonta | Mambui | Dougbanavé | Zogbevé | Amévo | Avélébé | |
---|---|---|---|---|---|---|---|
Chlorocebus aethiops tantalus | DO, CT | x | x | x | x | x | x |
Cercopithecus mona | DO, FS | x | x | ||||
Erythrocebus patas | FC, DO | x | x | x | |||
Galagoides demidovii | IN | x | x | x | x | x | x |
Galago senegalensis | VR, IN | x | x | x | x | x | x |
Perodicticus potto juju | IN | x | x | x | |||
Genetta tigrina | FC, IN | x | x | x | x | x | x |
Herpestes ichneumon | CT, DO, FC | x | x | x | x | x | x |
Civettictis civetta | IN | x | x | x | x | x | x |
Mellivora capensis | IN | x | |||||
Leptailurus serval | FP, IN | x | |||||
Atilax paludinosus | FP, DO, VR, FC | x | |||||
Potamochoerus porcus | FS, VR, IN | x | x | ||||
Tragelaphus scriptus | FP, CT, DO, VR, FC, IN | x | x | x | x | x | x |
Tragelaphus spekii | FP, CT, IN | x | x | ||||
Cephalophus rufilatus | FP, VR, IN | x | x | x | x | x | x |
Philantomba walteri | IN | x | |||||
Hippopotamus amphibius | IN | x | |||||
Trichechus senegalensis | FS, VR, IN | x | |||||
TOTAL | 9 | 9 | 8 | 10 | 11 | 19 |
No. Individuals | Travelled Distance | KIA | |
---|---|---|---|
Atilax paludinosus | 10 | 39.3 | 0.25 |
Cephalophus rufilatus | 5 | 39.3 | 0.127 |
Cercopithecus mona | 2 | 39.3 | 0.05 |
Chlorocebus aethiops tantalus | 36 | 39.3 | 0.916 |
Erythrocebus patas | 15 | 39.3 | 0.382 |
Genetta tigrina | 1 | 39.3 | 0.025 |
Herpestes ichneumon | 25 | 39.3 | 0.636 |
Leptailurus serval | 1 | 39.3 | 0.025 |
Potamochoerus porcus | 2 | 39.3 | 0.05 |
Tragelaphus scriptus | 17 | 39.3 | 0.433 |
Tragelaphus spekii | 2 | 39.3 | 0.05 |
Trichechus senegalensis | 2 | 3 | 0.666 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segniagbeto, G.H.; Akpamou, K.G.; Konko, Y.; Gaglo, J.K.T.; Ketoh, G.K.; Dendi, D.; Fa, J.E.; Luiselli, L. Diversity and Relative Abundance of Ungulates and Other Medium and Large Mammals in Flooded Forests in the Dahomey Gap (Togo). Animals 2022, 12, 3041. https://doi.org/10.3390/ani12213041
Segniagbeto GH, Akpamou KG, Konko Y, Gaglo JKT, Ketoh GK, Dendi D, Fa JE, Luiselli L. Diversity and Relative Abundance of Ungulates and Other Medium and Large Mammals in Flooded Forests in the Dahomey Gap (Togo). Animals. 2022; 12(21):3041. https://doi.org/10.3390/ani12213041
Chicago/Turabian StyleSegniagbeto, Gabriel Hoinsoudé, Kokouvi Gbétey Akpamou, Yawo Konko, John Kokou Toviho Gaglo, Guillaume Koffivi Ketoh, Daniele Dendi, Julia Elizabeth Fa, and Luca Luiselli. 2022. "Diversity and Relative Abundance of Ungulates and Other Medium and Large Mammals in Flooded Forests in the Dahomey Gap (Togo)" Animals 12, no. 21: 3041. https://doi.org/10.3390/ani12213041
APA StyleSegniagbeto, G. H., Akpamou, K. G., Konko, Y., Gaglo, J. K. T., Ketoh, G. K., Dendi, D., Fa, J. E., & Luiselli, L. (2022). Diversity and Relative Abundance of Ungulates and Other Medium and Large Mammals in Flooded Forests in the Dahomey Gap (Togo). Animals, 12(21), 3041. https://doi.org/10.3390/ani12213041