Effects of Feeding Regimes and Postmortem Aging on Meat Quality, Fatty Acid Composition, and Volatile Flavor of Longissimus Thoracis Muscle in Sunit Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Diets
2.2. Sample Collection
2.3. Evaluation of Antioxidant Activity
2.4. Meat Quality Measurement
2.5. Fatty Acid Analysis
2.6. Determination of Lipid Peroxidation
2.7. Volatile Organic Compounds
2.8. Statistical Analysis
3. Results
3.1. Variation in Oxidation Stability of the Longissimus Thoracis Muscles under Different Feeding Regimes
3.2. Variation in the Quality Attributes of Meat of during the Postmortem Aging of the Longissimus Thoracis Muscles under Different Feeding Regimes
3.3. Variation in Fatty Acid Content during Postmortem Aging of the Longissimus Thoracis Muscles under Different Feeding Regimes
3.4. Variation in Lipid Peroxidation during Postmortem Aging of the Longissimus Thoracis Muscles under Different Feeding Regimes
3.5. Variation in Volatile Organic Compounds during Postmortem Aging of the Longissimus Thoracis Muscles under Different Feeding Regimes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Luo, Y.; Dou, L.; Yang, Z.; Jin, Y. Effect of Feeding Flaxseed on Meat Flavor Quality of Sunit Lambs. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2019, 35, 304–311. [Google Scholar]
- Luo, Y.; Liu, C.; Wenbo, L.I.; Wang, B.; Dou, L.; Zhao, L.; Rui, D.U.; Wang, Z.; Jin, Y. Effects of Two Different Feeding Patterns on Umami Substances and Expression of Related Genes in Sunit Sheep Meat. Food Sci. 2019, 40, 8–13. [Google Scholar]
- Wang, B.; Luo, Y.; Wang, Y.; Wang, D.; Hou, Y.; Yao, D.; Tian, J.; Jin, Y. Rumen bacteria and meat fatty acid composition of Sunit sheep reared under different feeding regimens in China. J. Sci. Food Agric. 2021, 101, 1100–1110. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liang, C.; Niu, Y.; Jiang, W.; Wang, W.; Wang, L. Moderate grazing promotes genetic diversity of Stipa species in the Inner Mongolian steppe. Landsc. Ecol. 2015, 30, 1783–1794. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Lewandowski, P.A.; Fahri, F.T.; Burnett, V.F.; Dunshea, F.R.; Plozza, T.; Jacobs, J.L. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs. Lipids 2015, 50, 1133–1143. [Google Scholar] [CrossRef]
- Qi, K.; Men, X.; Wu, J.; Xu, Z. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity. BMC Microbiol. 2019, 19, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, B.; Liu, C.; Su, R.; Hou, Y.; Yao, D.; Zhao, L.; Su, L.; Jin, Y. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci. Nutr. 2019, 7, 2796–2805. [Google Scholar] [CrossRef] [Green Version]
- Wenbo, L.I.; Luo, Y.; Liu, C.; Dou, L.; Zhao, L.; Lin, S.U.; Jin, Y. Effects of Feeding Patterns on Volatile Flavor Components and Fatty Acid Composition of Sunit Sheep Meat. Food Sci. 2019, 40, 207–213. [Google Scholar]
- Wang, B.; Wang, Y.; Zuo, S.; Peng, S.; Wang, Z.; Zhang, Y.; Luo, H. Untargeted and Targeted Metabolomics Profiling of Muscle Reveals Enhanced Meat Quality in Artificial Pasture Grazing Tan Lambs via Rescheduling the Rumen Bacterial Community. J. Agric. Food Chem. 2021, 69, 846–858. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, X.; Li, Z.; Luo, H.; Zhang, H.; Guo, Y.; Zhang, C.; Ma, Q. Changes of Metabolites and Gene Expression under Different Feeding Systems Associated with Lipid Metabolism in Lamb Meat. Foods 2021, 10, 2612. [Google Scholar] [CrossRef] [PubMed]
- Gkarane, V.; Brunton, N.P.; Allen, P.; Gravador, R.S.; Claffey, N.A.; Diskin, M.G.; Fahey, A.G.; Farmer, L.J.; Moloney, A.P.; Alcalde, M.J.; et al. Effect of finishing diet and duration on the sensory quality and volatile profile of lamb meat. Food Res. Int. 2019, 115, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Domínguez, R.; Cadavez, V.A.P.; Bermúdez, R.; Purriños, L.; Gonzales-Barron, U.; Hoffman, E.; Lorenzo, J.M. Influence of the Production System (Intensive Vs. Extensive) at Farm Level on Proximate Composition and Volatile Compounds of Portuguese Lamb Meat. Foods 2021, 10, 1450. [Google Scholar] [CrossRef] [PubMed]
- Devincenzi, T.; Prunier, A.; Meteau, K.; Prache, S. How Does Barley Supplementation in Lambs Grazing Alfalfa Affect Meat Sensory Quality and Authentication? Animal 2019, 13, 427–434. [Google Scholar] [CrossRef]
- Rivaroli, D.; Prunier, A.; Meteau, K.; Prado, I.N.D.; Prache, S. Tannin-rich sainfoin pellet supplementation reduces fat volatile indoles content and delays digestive parasitism in lambs grazing alfalfa. Animal 2019, 13, 1883–1890. [Google Scholar] [CrossRef]
- Vermeulen, H.; Schonfeldt, H.; Pretorius, B. A consumer perspective of the South African red meat classification system. S. Afr. J. Anim. Sci. 2015, 45, 339–354. [Google Scholar] [CrossRef]
- Lvarez, S.; Mullen, A.M.; Hamill, R.; O’Neill, E.; Álvarez, C. Dry-Aging of Beef as a Tool to Improve Meat Quality. Impact of Processing Conditions on the Technical and Organoleptic Meat Properties. Adv. Food Nutr. Res. 2021, 95, 97–130. [Google Scholar]
- Shi, X.; Li, J.; Chen, J.; Tian, Z.; Chen, C.; Yu, Q. Concentrations of HSP27 and αβ-crystallin in Oula Tibetan sheep meat and their relationship with meat quality during postmortem aging. J. Food Sci. 2021, 86, 5253–5261. [Google Scholar] [CrossRef]
- Ijaz, M.; Jaspal, M.H.; Hayat, Z.; Yar, M.K.; Badar, I.H.; Ullah, S.; Hussain, Z.; Ali, S.; Farid, M.U.; Farooq, M.Z.; et al. Effect of animal age, postmortem chilling rate, and aging time on meat quality attributes of water buffalo and humped cattle bulls. Anim. Sci. J. 2020, 91, 13354. [Google Scholar] [CrossRef]
- You, L.; Chen, J.I.; Luo, R. Proteomic Analysis Revealed the Mechanism of Changes in Flavor Precursors in Tan Sheep Meat During Post-Mortem Ageing. Food Sci. 2021, 42, 20–27. [Google Scholar]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G.; Dimauro, C.; Röhrle, F.; Priolo, A.; Monahan, F.J.; Moloney, A.P. The volatile profile of longissimus dorsi muscle of heifers fed pasture, pasture silage or cereal concentrate: Implication for dietary discrimination. Meat Sci. 2011, 87, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Liu, C.; Yang, Z.; Su, R.; Chen, X.; Hou, Y.; Hu, G.; Yao, D.; Zhao, L.; Su, L.; et al. Effects of oxidative stability variation on lamb meat quality and flavor during postmortem aging. J. Food Sci. 2022, 87, 2578–2594. [Google Scholar] [CrossRef]
- Luciano, G.; Biondi, L.; Pagano, R.; Scerra, M.; Vasta, V.; López-Andrés, P.; Valenti, B.; Lanza, M.; Priolo, A.; Avondo, M. The restriction of grazing duration does not compromise lamb meat colour and oxidative stability. Meat Sci. 2012, 92, 30–35. [Google Scholar] [CrossRef]
- Rossetti, G.; Macdonald, J.H.; Wylie, L.; Little, S.J.; Newton, V.; Wood, B.; Hawkins, K.A.; Beddoe, R.; Davies, H.E.; Oliver, S.J. Dietary nitrate supplementation increases acute mountain sickness severity and sense of effort during hypoxic exercise. J. Appl. Physiol. 2017, 123, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Warren, H.E.; Scollan, N.D.; Nute, G.R.; Hughes, S.I.; Richardson, R.I. Effects of Breed and a Concentrate or Grass Silage Diet on Beef Quality in Cattle of 3 Ages. Ii: Meat Stability and Flavour. Meat Sci. 2008, 78, 270–278. [Google Scholar] [CrossRef]
- Wyrwisz, J.; Magorzata, M.; Marcin, K.; Adrian, S.; Andrzej, P.; Agnieszka, W. Influence of 21days of Vacuum-Aging on Color, Bloom Development, and Wbsf of Beef Semimembranosus. Meat Sci. 2016, 122, 48–54. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Shao, Y.; Yao, W.; Xia, J.; He, Q.; Huang, F. The Effect of Dietary Garcinol Supplementation on Oxidative Stability, Muscle Postmortem Glycolysis and Meat Quality in Pigs. Meat Sci. 2020, 161, 107998. [Google Scholar] [CrossRef]
- Souza, X.; Faria, P.; Bressan, M.C. Proximate composition and meat quality of broilers reared under different production systems. Braz. J. Poult. Sci. 2011, 13, 15–20. [Google Scholar] [CrossRef]
- Ha, M.; McGilchrist, P.; Polkinghorne, R.; Huynh, L.; Galletly, J.; Kobayashi, K.; Nishimura, T.; Bonney, S.; Kelman, K.R.; Warner, R.D. Effects of different ageing methods on colour, yield, oxidation and sensory qualities of Australian beef loins consumed in Australia and Japan. Food Res. Int. 2019, 125, 108528. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.; Albenzio, M.; della Malva, A.; Caroprese, M.; Santillo, A.; Sevi, A. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Sci. 2014, 98, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Stanišić, N.; Petričević, M.; Živković, D.; Petrović, M.M.; Stajić, S. Changes of Physical-Chemical Properties of Beef During 14 Days of Chilling. Biotechnol. Anim. Husb. 2012, 28, 77–85. [Google Scholar] [CrossRef]
- Tullio, R.R.; Juárez, M.; Larsen, I.L.; Basarab, J.A.; Aalhus, J.L. Short Communication: Influence of some meat quality parameters on beef tenderness. Can. J. Anim. Sci. 2014, 94, 455–458. [Google Scholar] [CrossRef]
- Viana, F.M.; Canto, A.C.V.C.S.; Costa-Lima, B.R.C.; Salim, A.P.A.A.; Conte-Junior, C.A. Color stability and lipid oxidation of broiler breast meat from animals raised on organic versus non-organic production systems. Poult. Sci. 2016, 96, 747–753. [Google Scholar] [CrossRef]
- Carlson, K.B.; Prusa, K.J.; Fedler, C.A.; Steadham, E.M.; Outhouse, A.C.; King, D.A.; Huff-Lonergan, E.; Lonergan, S.M. Postmortem Protein Degradation Is a Key Contributor to Fresh Pork Loin Tenderness. J. Anim. Sci. 2017, 95, 1574–1586. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Shang, Y.; Song, Y.; Dong, Q. Changes in the quality of superchilled rabbit meat stored at different temperatures. Meat Sci. 2016, 117, 173–181. [Google Scholar] [CrossRef]
- Coria, M.S.; Reineri, P.S.; Pighin, D.; Barrionuevo, M.G.; Carranza, P.G.; Grigioni, G.; Palma, G.A. Feeding strategies alter gene expression of the calpain system and meat quality in the longissimus muscle of Braford steers. Asian-Australas. J. Anim. Sci. 2019, 33, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Han, L.; Hou, S.; Raza, S.H.A.; Wang, Z.; Yang, B.; Sun, S.; Ding, B.; Gui, L.; Simal-Gandara, J.; et al. Effects of different feeding regimes on muscle metabolism and its association with meat quality of Tibetan sheep. Food Chem. 2022, 374, 131611. [Google Scholar] [CrossRef]
- Zhihao, Y.; Chang, L.; Lu, D.; Yanru, H.; Xiaoyu, C.; Lin, S.; Lihua, Z.; Ye, J. Analysis of Changes in Adenosine Monophosphate-Activated Protein Kinase Activity, Glycolysis and Meat Quality Indices During Post-Mortem Aging of Longissimus Dorsi Muscle from Sunit Sheep. Food Sci. 2022, 43, 156–162. [Google Scholar]
- Han, G.; Zhang, L.; Li, Q.; Wang, Y.; Chen, Q.; Kong, B. Impacts of Different Altitudes and Natural Drying Times on Lipolysis, Lipid Oxidation and Flavour Profile of Traditional Tibetan Yak Jerky. Meat Sci. 2020, 162, 108030. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, Y.; Pan, D.; Wang, Y.; Cao, J. Effects of high pressure treatment on lipolysis-oxidation and volatiles of marinated pork meat in soy sauce. Meat Sci. 2018, 145, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Scerra, M.; Caparra, P.; Foti, F.; Galofaro, V.; Sinatra, M.C.; Scerra, V. Influence of Ewe Feeding Systems on Fatty Acid Composition of Suckling Lambs. Meat Sci. 2007, 76, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Angelo, A.J.S.; Legendre, M.G.; Dupuy, H.P. Identification of lipoxygenase-linoleate decomposition products by direct gas chromatography-mass spectrometry. Lipids 1980, 15, 45–49. [Google Scholar] [CrossRef]
- Coutron-Gambotti, C.; Gandemer, G. Lipolysis and oxidation in subcutaneous adipose tissue during dry-cured ham processing. Food Chem. 1999, 64, 95–101. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and Health Effects of Ruminant Meat Lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Kitessa, S.; Liu, S.; Briegel, J.; Pethick, D.; Gardner, G.; Ferguson, M.; Allingham, P.; Nattrass, G.; McDonagh, M.; Ponnampalam, E.; et al. Effects of intensive or pasture finishing in spring and linseed supplementation in autumn on the omega-3 content of lamb meat and its carcass distribution. Anim. Prod. Sci. 2010, 50, 130–137. [Google Scholar] [CrossRef]
- Fernández-Segovia, I.; Fuentes, A.; Aliño, M.; Masot, R.; Alcañiz, M.; Barat, J.M. Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. J. Food Eng. 2012, 113, 210–216. [Google Scholar] [CrossRef]
- Turgut, S.S.; Işıkçı, F.; Soyer, A. Antioxidant Activity of Pomegranate Peel Extract on Lipid and Protein Oxidation in Beef Meatballs During Frozen Storage—Sciencedirect. Meat Sci. 2017, 129, 111–719. [Google Scholar] [CrossRef]
- Marušić, N.; Petrović, M.; Vidaček, S.; Petrak, T.; Medić, H. Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds. Meat Sci. 2011, 88, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jin, G.; Zhang, W.; Ahn, D.; Zhang, J. Effect of curing salt content on lipid oxidation and volatile flavour compounds of dry-cured turkey ham. LWT 2012, 48, 102–106. [Google Scholar] [CrossRef]
- Muriel, E.; Antequera, T.; Petrón, M.J.; Andrés, A.I.; Ruiz-Carrascal, J. Volatile compounds in Iberian dry-cured loin. Meat Sci. 2004, 68, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Grabež, V.; Bjelanović, M.; Rohloff, J.; Martinović, A.; Berg, P.; Tomović, V.; Rogić, B.; Egelandsdal, B. The relationship between volatile compounds, metabolites and sensory attributes: A case study using lamb and sheep meat. Small Rumin. Res. 2019, 181, 12–20. [Google Scholar] [CrossRef]
- Bueno, M.; Campo, M.M.; Cacho, J.; Ferreira, V.; Escudero, A. A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins. Meat Sci. 2014, 98, 622–628. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, S.; Ahn, D.U. Protein Oxidation: Basic Principles and Implications for Meat Quality. Crit. Rev. Food Sci. Nutr. 2013, 53, 1191–1201. [Google Scholar] [CrossRef]
- Cano-García, L.; Rivera-Jiménez, S.; Belloch, C.; Flores, M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem. 2014, 151, 364–373. [Google Scholar] [CrossRef]
- Watanabe, A.; Kamada, G.; Imanari, M.; Shiba, N.; Yonai, M.; Muramoto, T. Effect of aging on volatile compounds in cooked beef. Meat Sci. 2015, 107, 12–19. [Google Scholar] [CrossRef]
- Van Ba, H.; Ryu, K.S.; Lan, N.T.K.; Hwang, I. Influence of Particular Breed on Meat Quality Parameters, Sensory Characteristics, and Volatile Components. Food Sci. Biotechnol. 2013, 22, 651–658. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Guzek, D.; Górska-Horczyczak, E.; Głąbska, D.; Brodowska, M.; Sun, D.W.; Wierzbicka, A. Volatile Compounds and Fatty Acids Profile in Longissimus Dorsi Muscle from Pigs Fed with Feed Containing Bioactive Components. Lebensm. Wiss. Technol. 2016, 67, 112–117. [Google Scholar] [CrossRef]
- Ma, Q.; Hamid, N.; Bekhit, A.; Robertson, J.; Law, T. Evaluation of pre-rigor injection of beef with proteases on cooked meat volatile profile after 1day and 21days post-mortem storage. Meat Sci. 2012, 92, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Antequera, T.; Muriel, E.; Perez-Palacios, T.; Ruiz, J. Volatile compounds of fresh and dry-cured loin as affected by dietary conjugated linoleic acid and monounsaturated fatty acids. Meat Sci. 2009, 81, 549–556. [Google Scholar] [CrossRef] [PubMed]
Item | PF | CF |
---|---|---|
Chemical composition | ||
Crude protein | 139.8 | 193.8 |
Crude fat | 30.0 | 47.0 |
Ash | 42.8 | 79.1 |
Neutral detergent fiber | 326.5 | 131.8 |
Fatty acid composition | ||
C14:0 | 2.7 | 5.5 |
C16:0 | 17.6 | 41.0 |
C16:1 | 0.4 | 1.1 |
C18:0 | 1.3 | 16.2 |
C18:1 cis-9 | 3.2 | 15.1 |
C18:2 n-6 | 12.9 | 14.8 |
C18:3 n-3 | 56.3 | 2.5 |
Item | Feeding Regimes | Ageing Time | ||||
---|---|---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | 96 h | ||
pH | CF | 6.04 ± 0.17 Aa | 5.61 ± 0.03 Ab | 5.65 ± 0.14 Ab | 5.67 ± 0.04 Ab | 5.69 ± 0.06 Ab |
PF | 5.92 ± 0.27 Aa | 5.52 ± 0.01 Bb | 5.54 ± 0.09 Ab | 5.57 ± 0.08 Ab | 5.61 ± 0.08 Ab | |
CF | 68.74 ± 1.06 Ab | 77.03 ± 1.14 Aa | 63.24 ± 1.72 A | 61.85 ± 1.62 A | 59.84 ± 1.74 A | |
PF | 59.62 ± 1.43 Bb | 69.76 ± 3.56 Ba | 55.46 ± 1.61 B | 54.71 ± 1.56 Bc | 52.09 ± 1.46 c | |
L* | CF | 34.42 ± 2.74 Ab | 37.21 ± 2.43 Aab | 38.19 ± 1.05 A | 38.56 ± 2.34 a | 40.03 ± 0.45 a |
PF | 32.78 ± 1.15 Bb | 36.49 ± 0.92 Aa | 36.30 ± 0.12 A | 36.23 ± 1.72 A | 35.98 ± 0.68 B | |
a* | CF | 19.22 ± 0.39 Ab | 21.26 ± 0.53 Aa | 20.82 ± 0.58 A | 20.97 ± 0.59 A | 21.05 ± 1.19 A |
PF | 18.88 ± 0.34 Ab | 21.10 ± 0.60 Aa | 20.65 ± 0.61 A | 20.47 ± 1.00 A | 20.02 ± 0.50 A | |
b* | CF | 3.66 ± 0.05 Ab | 6.25 ± 0.50 Aa | 6.93 ± 0.68 Aa | 7.22 ± 0.61 Aa | 7.34 ± 1.05 Aa |
PF | 3.69 ± 0.48 Ab | 6.19 ± 0.45 Aa | 6.21 ± 0.59 Aa | 6.16 ± 0.26 Ba | 7.03 ± 1.10 Aa | |
Cooking loss (%) | CF | 29.58 ± 2.61 Ac | 33.07 ± 2.54 Ab | 36.01 ± 0.49 A | 37.27 ± 1.91 A | 38.22 ± 1.12 a |
PF | 21.69 ± 1.09 Bc | 25.5 ± 1.09 Bb | 31.77 ± 1.40 B | 33.29 ± 1.64 Ba | 34.25 ± 1.03 B |
Fatty Acid (%) | Feeding Regimes | Ageing Time | ||||
---|---|---|---|---|---|---|
2 h | 24 h | 48 h | 72 h | 96 h | ||
C12:0 | PF | 0.63 ± 0.03 Ab | 0.37 ± 0.07 Bd | 0.44 ± 0.05 cd | 0.53 ± 0.04 Abc | 0.87 ± 0.05 Aa |
CF | 0.49 ± 0.02 Bb | 0.63 ± 0.01 Aa | 0.48 ± 0.02 b | 0.39 ± 0.01 Bc | 0.47 ± 0.01 Bb | |
C14:0 | PF | 2.25 ± 0.02 Ac | 2.06 ± 0.02 Ac | 2.10 ± 0.22 Ac | 2.77 ± 0.08 Ab | 3.11 ± 0.05 Aa |
CF | 1.61 ± 0.13 Ba | 1.50 ± 0.03 Bb | 1.28 ± 0.03 Bc | 2.30 ± 0.02 Ba | 2.26 ± 0.04 Ba | |
C14:1 | PF | 0.28 ± 0.17 Aa | 0.35 ± 0.05 Aa | 0.28 ± 0.05 Aa | 0.22 ± 0.02 Ba | 0.23 ± 0.01 Ba |
CF | 0.24 ± 0.04 Ab | 0.36 ± 0.02 Ab | 0.37 ± 0.09 Ab | 0.43 ± 0.02 Ab | 0.42 ± 0.04 Ab | |
C16:0 | PF | 21.11 ± 1.54 Ab | 21.93 ± 0.02 Ab | 24.15 ± 0.01 Aa | 23.81 ± 0.06 Aa | 24.70 ± 0.22 Aa |
CF | 21.34 ± 0.42 Ab | 22.40 ± 0.37 Aa | 22.94 ± 0.70 Aa | 23.27 ± 0.12 Ba | 23.09 ± 0.12 Ba | |
C16:1 | PF | 2.65 ± 0.39 Aa | 2.40 ± 0.12 Aa | 2.89 ± 0.13 Aa | 2.69 ± 0.09 Aa | 2.39 ± 0.22 Aa |
CF | 2.29 ± 0.42 Aa | 1.92 ± 0.03 Bab | 1.15 ± 0.12 Bc | 1.65 ± 0.15 Babc | 1.40 ± 0.16 Bbc | |
C18:0 | PF | 11.02 ± 0.07 Bd | 11.22 ± 0.19 Bd | 12.50 ± 0.05 Bc | 14.68 ± 0.02 Bb | 15.34 ± 0.04 Ba |
CF | 14.76 ± 0.08 Ad | 16.50 ± 0.04 Ac | 17.36 ± 0.76 Ab | 18.39 ± 0.20 Ab | 20.44 ± 0.19 Aa | |
C18:1 | PF | 45.66 ± 1.46 Aa | 45.63 ± 0.12 Aa | 43.91 ± 0.17 Bb | 42.05 ± 0.69 Ac | 41.58 ± 0.29 Ac |
CF | 45.70 ± 0.42 Aa | 44.37 ± 0.06 Bb | 44.51 ± 0.06 Ab | 42.26 ± 0.11 Ac | 42.25 ± 0.31 Ac | |
C18:2(n-6) | PF | 9.09 ± 0.58 Aa | 8.73 ± 0.01 Aa | 7.77 ± 0.03 Ab | 7.55 ± 0.15 Ab | 6.10 ± 0.15 Ad |
CF | 7.77 ± 0.21 Ba | 7.20 ± 0.16 Bb | 6.97 ± 0.33 Ab | 6.39 ± 0.09 Bc | 4.95 ± 0.03 Bd | |
C20:0 | PF | 0.48 ± 0.01 Ab | 0.46 ± 0.02 Ab | 0.47 ± 0.06 Ab | 0.48 ± 0.10 b | 0.76 ± 0.04 Aa |
CF | 0.29 ± 0.01 Bb | 0.29 ± 0.01 Bb | 0.15 ± 0.01 Bc | 0.38 ± 0.03 a | 0.37 ± 0.01 Ba | |
C18:3(n-6) | PF | 0.49 ± 0.10 Ab | 0.85 ± 0.03 Aa | 0.79 ± 0.02 Ab | 0.48 ± 0.02 Aa | 0.55 ± 0.06 Ab |
CF | 0.46 ± 0.01 Ab | 0.26 ± 0.05 Bb | 0.76 ± 0.19 Aa | 0.17 ± 0.02 Bb | 0.16 ± 0.01 Bb | |
C18:3(n-3) | PF | 0.95 ± 0.05 Aa | 0.76 ± 0.05 Ab | 0.50 ± 0.07 Bc | 0.73 ± 0.04 b | 0.51 ± 0.03 Bc |
CF | 0.86 ± 0.07 Aa | 0.77 ± 0.01 Ba | 0.96 ± 0.01 Aa | 0.63 ± 0.06 b | 0.65 ± 0.03 Ab | |
C20:3(n-6) | PF | 0.65 ± 0.04 Aa | 0.41 ± 0.01 Ac | 0.24 ± 0.05 Ad | 0.53 ± 0.02 Ab | 0.59 ± 0.01 Ad |
CF | 0.39 ± 0.10 Ba | 0.33 ± 0.09 Ba | 0.34 ± 0.18 Aa | 0.56 ± 0.03 Aa | 0.48 ± 0.01 Ba | |
C20:4(n-6) | PF | 3.51 ± 0.14 Ab | 3.78 ± 0.01 Aa | 3.17 ± 0.08 Ac | 2.71 ± 0.16 Ad | 2.58 ± 0.09 Ad |
CF | 3.06 ± 0.16 Aa | 2.42 ± 0.43 Bbc | 1.86 ± 0.07 Bc | 2.53 ± 0.01 Ab | 2.37 ± 0.12 Abc | |
C20:5(n-3) | PF | 1.00 ± 0.04 Aa | 0.80 ± 0.07 Ab | 0.61 ± 0.02 Ac | 0.58 ± 0.01 Ac | 0.59 ± 0.02 Ac |
CF | 0.58 ± 0.07 Bb | 0.92 ± 0.04 Aa | 0.73 ± 0.09 Aab | 0.55 ± 0.15 Ab | 0.62 ± 0.01 Ab | |
C22:6(n-3) | PF | 0.24 ± 0.01 Aa | 0.24 ± 0.02 Ac | 0.19 ± 0.01 Ab | 0.19 ± 0.01 Ab | 0.13 ± 0.01 Ac |
CF | 0.14 ± 0.01 Ba | 0.12 ± 0.03 Ba | 0.14 ± 0.01 Ba | 0.08 ± 0.01 Bb | 0.08 ± 0.01 Bb | |
Summary | ||||||
ƩSFA | PF | 35.49 ± 0.66 Ba | 36.04 ± 0.14 Ba | 39.67 ± 0.27 Bb | 42.27 ± 0.19 Bc | 44.78 ± 0.33 Bd |
CF | 38.50 ± 0.65 Ad | 41.33 ± 0.35 Ac | 42.20 ± 0.07 Ac | 44.73 ± 0.31 Ab | 46.63 ± 0.36 Aa | |
ƩMUFA | PF | 48.59 ± 0.90 Aa | 48.39 ± 0.05 Aa | 47.07 ± 0.09 Ab | 44.95 ± 0.58 Ac | 44.39 ± 0.51 Ac |
CF | 48.23 ± 0.27 Aa | 46.64 ± 0.01 Bb | 46.03 ± 0.15 Bb | 44.34 ± 0.28 Ac | 44.07 ± 0.50 Ac | |
ƩPUFA | PF | 15.93 ± 0.77 Aa | 15.57 ± 0.17 Aa | 13.26 ± 0.15 Ab | 12.78 ± 0.36 Ab | 10.84 ± 0.06 Ac |
CF | 13.27 ± 0.28 Ba | 12.02 ± 0.37 Bb | 11.77 ± 0.15 Bb | 10.93 ± 0.05 Bc | 9.30 ± 0.08 Bd |
Furans (ng/g) | Feeding Regimes | Ageing Time | ||||
---|---|---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | 96 h | ||
Aldehydes | PF | 28.09 ± 0.81 Ac | 33.53 ± 1.22 Ab | 34.53 ± 1.22 Ab | 38.53 ± 1.14 Aa | 42.52 ± 3.08 Aa |
CF | 23.43 ± 1.23 Bc | 33.59 ± 2.06 Ab | 35.59 ± 2.06 Ab | 38.51 ± 1.15 Ab | 43.59 ± 0.24 Aa | |
Alcohols | PF | 35.74 ± 2.16 Bc | 37.93 ± 1.14 Bc | 43.24 ± 1.42 Bb | 51.25 ± 3.14 Aa | 49.84 ± 3.71 Aa |
CF | 42.62 ± 1.45 Ac | 47.36 ± 1.56 Ab | 53.46 ± 2.63 Aa | 52.81 ± 1.86 Aa | 53.19 ± 2.44 Aa | |
Ketones | PF | 6.03 ± 0.45 Ad | 8.32 ± 0.34 Ac | 10.19 ± 1.03 Ab | 15.21 ± 2.31 Aa | 16.42 ± 2.54 Aa |
CF | 3.19 ± 0.18 Bc | 6.23 ± 0.62 Bb | 6.33 ± 0.32 Bb | 8.49 ± 0.52 Ba | 10.38 ± 1.15 Ba | |
Hydrocarbons | PF | 2.05 ± 0.19 Ac | 4.97 ± 0.29 Ab | 7.82 ± 0.52 Aa | 5.21 ± 0.52 Ab | 7.32 ± 0.31 Aa |
CF | 2.02 ± 0.10 Bd | 5.27 ± 0.09 Ab | 5.65 ± 0.32 Bb | 4.12 ± 0.60 Ab | 8.83 ± 0.34 Aa | |
Acids | PF | 2.46 ± 0.72 Bc | 4.02 ± 1.65 Ab | 5.69 ± 1.20 Ab | 8.12 ± 1.54 Aa | 8.43 ± 2.11 Aa |
CF | 3.62 ± 1.79 Ad | 5.26 ± 1.49 Ac | 6.12 ± 1.26 Ac | 8.44 ± 0.54 Ab | 10.47 ± 1.13 Aa | |
Furans | PF | 1.56 ± 0.12 Ad | 2.93 ± 0.11 Ac | 5.69 ± 1.20 Aa | 3.38 ± 1.55 Ab | 5.22 ± 0.41 Aa |
CF | 1.01 ± 0.12 Bc | 3.18 ± 0.11 Ab | 2.97 ± 0.11 Bb | 3.46 ± 0.72 Ab | 5.15 ± 1.53 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Liu, C.; Dou, L.; Chen, X.; Zhao, L.; Su, L.; Jin, Y. Effects of Feeding Regimes and Postmortem Aging on Meat Quality, Fatty Acid Composition, and Volatile Flavor of Longissimus Thoracis Muscle in Sunit Sheep. Animals 2022, 12, 3081. https://doi.org/10.3390/ani12223081
Yang Z, Liu C, Dou L, Chen X, Zhao L, Su L, Jin Y. Effects of Feeding Regimes and Postmortem Aging on Meat Quality, Fatty Acid Composition, and Volatile Flavor of Longissimus Thoracis Muscle in Sunit Sheep. Animals. 2022; 12(22):3081. https://doi.org/10.3390/ani12223081
Chicago/Turabian StyleYang, Zhihao, Chang Liu, Lu Dou, Xiaoyu Chen, Lihua Zhao, Lin Su, and Ye Jin. 2022. "Effects of Feeding Regimes and Postmortem Aging on Meat Quality, Fatty Acid Composition, and Volatile Flavor of Longissimus Thoracis Muscle in Sunit Sheep" Animals 12, no. 22: 3081. https://doi.org/10.3390/ani12223081
APA StyleYang, Z., Liu, C., Dou, L., Chen, X., Zhao, L., Su, L., & Jin, Y. (2022). Effects of Feeding Regimes and Postmortem Aging on Meat Quality, Fatty Acid Composition, and Volatile Flavor of Longissimus Thoracis Muscle in Sunit Sheep. Animals, 12(22), 3081. https://doi.org/10.3390/ani12223081