Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use
Abstract
:Simple Summary
Abstract
1. Introduction
2. Aspects Involved in the Production of Goat and Sheep By-Products
3. Nutritional Composition of Goat and Sheep Edible By-Products
3.1. Goat and Sheep Meat
3.2. Goats and Sheep: Edible By-Products
3.3. Centesimal Composition
3.4. Amino Acids
3.5. Fatty Acids
3.6. Minerals
3.7. Vitamins
4. Cultural and Culinary Use of Goats and Sheep Edible By-Products
5. Application of Goat and Sheep By-Products to Obtain New Ingredients
Flavors Obtained from Goat and Sheep By-Products
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Overview of Global Meat Market Developments in 2020. Meat Market Review. Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 14 November 2022).
- De Pilla Montebello, N.; Araújo, W.M.C. Carne & Cia; Editora Senac: São Paulo, Brazil, 2006. [Google Scholar]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in valueaddition of edible meat by-products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef]
- Queiroz, A.L.M.; Araújo, A.R.A.; Pacheco, M.T.B.; Madruga, M.S. Potential use of goat viscera to obtain protein hydrolysates. LWT Food Sci. Technol. 2017, 84, 832–837. [Google Scholar] [CrossRef]
- Rahman, U.; Sahar, A.; Khan, M.A. Recovery and utilization of effluents from meat processing industries. Food Res. Int. 2014, 65, 322–328. [Google Scholar] [CrossRef]
- Lafarga, T.; Hayes, M. Bioactive peptides from meat muscle and byproducts: Generation, functionality and application as functional ingredientes. Meat Sci. 2014, 98, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, A.L.M.; Bezerra, T.K.A.; Pereira, S.F.; Da Silva, M.E.C.; De Almeida Gadelha, C.A.; Gadelha, T.S.; Pacheco, M.; Teresa, B.; Madruga, M.S. Functional protein hydrolysate from goat by-products: Optimization and characterization studies. Food Biosci. 2017, 20, 19–27. [Google Scholar] [CrossRef]
- Gagaoua, M.; Boudechicha, H. Ethnic meat products of the North African and Mediterranean countries: An overview. J. Ethn. Foods 2018, 5, 83–98. [Google Scholar] [CrossRef]
- Steingrímsdóttir, L.; Thorkelsson, G.; Eythórsdóttir, E. Food, Nutrition, and Health in Iceland. In Nutritional and Health Aspects of Food in Nordic Countries; Elsevier BV Duxford: Cambridge, UK, 2018; pp. 145–177. [Google Scholar]
- Teixeira, A.; Silva, S.; Guedes, C.; Rodrigues, S. Sheep and Goat Meat Processed Products Quality: A Review. Foods 2020, 9, 960. [Google Scholar] [CrossRef]
- Dalmás, P.S.; Bezerra, T.K.A.; Morgano, M.A.; Milani, R.F.; Madruga, M.S. Development of goat pâté prepared with variety meat. Small Rumin. Res. JCR 2011, 98, 46–50. [Google Scholar] [CrossRef]
- Amaral, D.S.; Silva, F.A.P.; Bezerra, T.K.A.; Guerra, I.C.D.; Dalmás, P.S.; Pimentel, K.M.L.; Madruga, M.S. Chemical and sensory quality of sheep liver pâté prepared with variety meat. Semina. Cienc. Agrar. JCR 2013, 34, 1741–1752. [Google Scholar]
- Amaral, D.S.; Silva, F.A.P.; Bezerra, T.K.A.; Arcanjo, N.M.O.; Guerra, I.C.D.; Dalmás, P.S.; Madruga, M.S. Effect of storage time and packaging on the quality of lamb pâté prepared with ‘variety meat’. Food Packag. Shelf Life JCR 2015, 3, 39–46. [Google Scholar]
- Hamzeh, A.; Azizieh, A.; Yazagy, S. The effect of the fat percentage and liver type in the stability and pH value of locally prepared Liver patê. Int. Food Res. J. 2016, 23, 1131–1135. [Google Scholar]
- Teixeira, A.; Samanta, A.; Etelvina, P.; Fernando, M.; Sandra, R. Physicochemical characteristics of sheep and goat pâtés. Differences between fat sources and proportions. Heliyon 2019, 5, e02119. [Google Scholar] [CrossRef]
- Dalmás, P.S.; Silva, F.A.P.; Moreira, R.T.; Bezerra, T.K.A.; Guerra, I.C.D.; Coutinho, E.P.; Morgano, M.A.; Milani, R.F.; Madruga, M.S. Desenvolvimento de embutido rico em ferro elaborado a partir de subprodutos comestíveis do abate de caprinos. Bol. Cent. Pesqui. Process. Aliment. JCR 2012, 30, 233–242. [Google Scholar] [CrossRef]
- Silva, F.A.P.; Amaral, D.S.; Guerra, I.C.D.; Dalmás, P.S.; Arcanjo, N.M.O.; Bezerra, T.K.A.; Beltrão Filho, E.M.; Moreira, R.T.; Madruga, M.S. The chemical and sensory qualities of smoked blood sausage made with the edible by-products of goat slaughter. Meat Sci. 2013, 94, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.P.; Amaral, D.S.; Guerra, I.C.D.; Arcanjo, N.M.O.; Bezerra, T.K.A.; Ferreira, V.C.S.; Araújo, I.B.S.; Dalmás, P.S.; Madruga, M.S. Shelf life of cooked goat blood sausage prepared with the addition of heart and kidney. Meat Sci. JCR 2014, 97, 529–533. [Google Scholar] [CrossRef]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.; Drummond, L.; Álvarez, C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci. 2018, 144, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Peinado, I.; Koutsidis, G.; Ames, J. Production of seafood flavor formulations from enzymatic hydrolysates of fish by-products. Food Sci. Technol. 2016, 66, 444–452. [Google Scholar]
- Zhan, P.; Tian, H.; Zhang, X.; Wang, L. Contribution to aroma characteristics of mutton process flavor from the enzymatic hydrolysate of sheep bone protein assessed by descriptive sensory analysis and gas chromatography olfactometry. J. Chromatogr. B 2013, 921, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.R.R.A.; De Medeiros, L.L.; Bezerra, T.K.A.; Pacheco, M.T.B.; Galvão, M.S.; Madruga, M.S. Effects of thermal processing on the flavor molecules of goat by-product hydrolysates. Food Res. Int. JCR 2020, 138, 109758. [Google Scholar] [CrossRef]
- Barbosa, P.T.; Santos, I.C.V.; Ferreira, V.C.S.; Fragoso, S.P.; Araújo, I.B.S.; Costa, A.C.V.; Araújo, L.C.; Silva, F.A.P. Physicochemical properties of low sodium goat kafta. LWT Food Sci. Technol. 2017, 76, 314–319. [Google Scholar] [CrossRef]
- Iñiguez, L. The challenges of research and development of small ruminant production in dry areas. Small Rumin. Res. 2011, 98, 12–20. [Google Scholar] [CrossRef]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Aristoy, M.C.; Toldrá, F. Essential Amino Acids. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: New York, NY, USA, 2011. [Google Scholar]
- Honikel, K.O. Composition and calories. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 105–121. [Google Scholar]
- Kim, Y.N. Vitamins. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 161–182. [Google Scholar]
- Ockerman, H.W.; Basu, L. By-products. In Encyclopedia of Meat Sciences; Jensen, W., Devine, C., Dikemann, M., Eds.; Elsevier Science Ltd.: London, UK, 2004; pp. 104–112. [Google Scholar]
- Nollet, L.M.L.; Toldrá, F. Introduction. Offal meat: Definitions, regions, cultures, generalities. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 3–11. [Google Scholar]
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Novo Censo Agropecuário Mostra Crescimento de Efetivo de Caprino e Ovino no Nordeste. EMBRAPA Caprinos e Ovinos. 2018. Available online: https://www.embrapa.br/modelo/busca-de-noticias/-/noticia/36365362/novo-censo-gropecuario-mostra-crescimento-de-efetivo-de-caprinos-eovinos-no-nordeste (accessed on 16 November 2022).
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of Byproducts and Waste Materials from Meat, Poultry and Fish Processing Industries: A Review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BRASIL, Ministério da Agricultura, Pecuária e Abastecimento. Decreto Nº 9.013, De 29 de Março de Dispõe Sobre o Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal, Que Disciplina a Fiscalização e a Inspeção Industrial e Sanitária de Produtos de Origem Animal. Publicado no Diário Oficial da União em 30 de março de 2017. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/arquivos/decreto-n-9013-2017_alt-decreto-9069-2017_pt.pdf/view (accessed on 11 July 2022).
- BRASIL 2017 Ministério da Agricultura, Pecuária e Abastecimento. Resolução Nº 1, de 9 de Janeiro de Dispõe Sobre a Uniformização da Nomenclatura de Produtos Cárneos não Formulados em uso Para Aves e Coelhos, Suídeos, Caprinos, Ovinos, Bubalinos, Eqüídeos, Ovos e Outras Espécies de Animais. Available online: http://www.cidasc.sc.gov.br/inspecao/files/2012/08/resolu%C3%A7%C3%A3o-1.pdf (accessed on 11 July 2022).
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed. Sci. Technol. 2019, 251, 37–51. [Google Scholar] [CrossRef]
- Bohrer, B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Pearson, A.M.; Dutson, T.R. Edible Meat By-Products Advances in Meat Research; Elsevier Apllied Science: London, UK, 1988. [Google Scholar]
- Madruga, M.S.; Bressan, M.C. Goat meats: Description, rational use, certification, processing and technological developments. Small Rumin. Res. 2011, 98, 39–45. [Google Scholar] [CrossRef]
- Anderson, B.A. Composition and nutritional value of edible meat by-product. In Advances in Meat Research; Pearson, A.M., Dutson, T.R., Eds.; Elsevier Applied Science: London, UK, 1988; pp. 15–45. [Google Scholar]
- Prates, J.A.M.; Alfaia, C.M.; Alves, S.P.; Bessa, R.J.B. Fatty Acids. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 137–159. [Google Scholar]
- García-Llatas, G.; Alegría, A.; Barberá, R.; Farré, R. Minerals and Trace Elements. In Handbook of Analysis of Edible Animals By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 183–203. [Google Scholar]
- Guthneck, B.T.; Bennett, B.A.; Schweigert, B.S. Utilization of Amino Acids from Foods by the Rat: II. Lysine. J. Nutr. 1953, 49, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, F.A. Moisture, fat and cholesterol content of some raw; barbecued and cooked organ meats of beef and mutton. J. Food Sci. 1988, 53, 270–271. [Google Scholar] [CrossRef]
- Park, Y.W.; Kouassi, M.A.; Chin, K.B. Moisture, total fat and cholesterol in goat organ and muscle meat. J. Food Sci. 1991, 56, 1191–1193. [Google Scholar] [CrossRef]
- Madruga, M.S. Qualidade da carne caprina. Aspectos químicos, sensoriais e aromáticos. Produção Caprinos No Bras. 2019, 2, 549–556. [Google Scholar]
- Anaeto, M.; Adeyeye, J.A.; Chioma, G.O.; Olarinmoye, A.O.; Tayo, G.O. Goat products: Meeting the challenges of human health and nutrition. Agric. Biol. J. North Am. 2010, 1, 1231–1236. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Laubscher, L.L.; Leisegang, K. Nutritional Value of Cooked Offal Derived from Free-Range Rams Reared in South Africa. Meat Sci. 2013, 93, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Brasil, L.; Queiroz, A.; Silva, J.; Bezerra, T.; Arcanjo, N.; Magnani, M.; Souza, E.; Madruga, M.S. Microbiological and nutritional quality of the goat meat by-product “sarapatel”. Molecules 2014, 19, 1047–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, A.L.M.; Brasil, L.M.S.; Silva, J.; Magnani, M.; Souza, E.L.; Madruga, M.S. Microbiological and nutritional quality of “buchada caprina” an edible goat meat by-product. Small Rumin. Res. 2013, 115, 62–66. [Google Scholar] [CrossRef]
- Park, Y.W.; Washington, A.C. Fatty Acid Composition of Goat Organ and Muscle Meat of Alpine and Nubian Breeds. J. Food Sci. 1993, 58, 245–248. [Google Scholar] [CrossRef]
- Madruga, M.S.; Sousa, W.H.; Mendes, E.M.S.; Brito, E.A. Carnes caprinas e ovinas: Processamento e fabricação de produtos derivados. Tecnol. Cienc. Agropecu. 2007, 1, 61–67. [Google Scholar]
- Umaraw, P.; Pathak, V.; Rajkumar, V.; Verma, A.K.; Singh, V.P.; Verma, A.K. Quality characteristics of edible by products compared to Longissimus dorsi muscle of Barbari kids. Indian J. Small Rumin. 2018, 2, 134–138. [Google Scholar] [CrossRef]
- Rhee, K.S.; Waldron, D.F.; Ziprin, Y.A.; Rhee, K.C. Fatty acid composition of goat diets vs intramuscular fat. Meat Sci. 2000, 54, 313–318. [Google Scholar] [CrossRef]
- Branskalieva, V.; Sahlu, T.; Goetsch, A.L. Fatty acid composition of goat muscles and fat depots: A review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef]
- Madruga, M.S.; Araújo, W.O.; Sousa, W.H.; Cézar, M.F.; Galvão, M.S.; Cunha, M.G.G. Efeito do genótipo e do sexo sobre a composição química e o perfil de ácidos graxos da carne de cordeiros. Rev. Bras. Zootec. Braz. J. Anim. Sci. JCR 2006, 35, 1838–1844. [Google Scholar] [CrossRef] [Green Version]
- Milani, T.M.G.; Menis, M.E.C.; Jordano, A.; Boscolo, M.; Conti-Silva, A.C. Pre-extrusion aromatization of a soy protein isolate using volatile compounds and flavor enhancers: Effects on physical characteristics, volatile retention and sensory characteristics of extrudates. Food Res. Int. 2014, 62, 375–381. [Google Scholar] [CrossRef]
- Fatma, H.M.A.; Mahdey, E.A. Incidence of brucella species in slaughtered food animals and its edible offal at Beni-suef, Egypt. Glob. Vet. 2010, 5, 248–254. [Google Scholar]
- Ockerman, H.W.; Hansen, C.L. Animal By-Product Processing & Utilization; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–544. [Google Scholar]
- Mazhangara, I.R.; Chivandi, E.; Mupangwa, J.F.; Muchenje, V. The Potential of Goat Meat in the Red Meat Industry. Sustainability 2019, 11, 3671. [Google Scholar] [CrossRef] [Green Version]
- Watkins, P.J.; Kearney, G.; Rose, G.; Allen, D.; Ball, A.J.; Pethick, D.W.; Warner, R.D. Effect of branched-chain fatty acids, 3-methylindole and 4-methylphenol on consumer sensory scores of grilled lamb meat. Meat Sci. 2014, 96, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Castada, H.Z.; Polentz, V.; Barringer, S.; Wick, M. Temperature-dependent Henry’s Law constants of 4-alkyl branched-chain fatty acids and 3-methylindole in an oil-air matrix and analysis of volatiles in lamb fat using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 2135–2145. [Google Scholar] [CrossRef]
- Santos, N.M.; Costa, R.G.; Madruga, M.S.; Medeiros, A.N.; Albuquerque, C.L.C.; Queiroga, R.C.R.E. Constitution and Composition Chemistry of the Precooked Goat like Buchada Produced in the State of Paraíba, Brazil. Braz. Arch. Biol. Technol. 2008, 51, 793–798. [Google Scholar] [CrossRef]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Albuquerque, G.N.; Costa, R.G.; Barba, F.J. Effect of organic acids on the quality of sheep “buchada”: From food safety to physicochemical, nutritional, and sensorial evaluation. J. Food Process. Preserv. 2019, 43, e13877. [Google Scholar] [CrossRef]
- Singh, V.P.; Verma, A.; Umaraw, P.; Roy, D.; Rawat, S. Quality and storage life of sorpotel using finger millet. Indian J. Small Rumin. 2021, 27, 100–104. [Google Scholar] [CrossRef]
- Costa, R.G.; Madruga, M.S.; Santos, N.M.; Medeiros, A.N. Qualidade físico-química, química e microbiológica da buchada caprina. Hig. Aliment. 2005, 19, 62–68. [Google Scholar]
- Madruga, M.S.; Melo, H.M.; Rezer, J.S.; Lima, A.W.O. Condições microbiológicas de vísceras caprinas processadas em um micro-abatedouro e exposta à venda ao consumidor. Hig. Aliment. 2004, 18, 60–64. [Google Scholar]
- Ngo, D.; Vo, T.; Ngo, D.; Wijesekara, I.; Kim, S. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int. J. Biol. Macromol. 2012, 51, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Benhabiles, M.S.; Abdi, N.; Drouiche, N.; Lounici, H.; Pauss, A.; Goosen, M.F.A.; Mameri, N. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit. Mater. Sci. Eng. 2012, 32, 922–928. [Google Scholar] [CrossRef]
- Meshginfar, N.; Sadeghi, A.; Ziaiifar, A.; Ghorbani, M.; Kashaninejad, M. Study of antioxidant activity of sheep visceral protein hydrolysate: Optimization using response surface methodology. ARYA Atheroscler. 2014, 10, 179–184. [Google Scholar]
- Bhaskar, N.; Modi, V.K.; Govindaraju, K.; Radha, C.; Lalitha, R.G. Utilization of meat industry by products: Protein hydrolysate from sheep visceral mass. Bioresour. Technol. 2007, 98, 388–394. [Google Scholar] [CrossRef]
- Araújo, Í.B.S.; Lima, D.A.S.; Pereira, S.F.; Madruga, M.S. Quality of low-fat chicken sausages with added chicken feet collagen. Poult. Sci. JCR 2018, 98, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Wu, L.; Wang, Z.; Saguer, E.; Zhang, D. Purification and Identification of Antioxidant Alcalase-Derived Peptides from Sheep Plasma Proteins. Antioxidants 2019, 8, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meshginfar, N.; Sadeghi, A.; Ghorbani, M.; Aalami, M. Effects of Protein Hydrolysate from Sheep Visceral on Oxidative Stability of Soybean Oil and Chicken Sausage: Effects of Protein Hydrolysate. J. Food Process. Preserv. 2017, 41, e12875. [Google Scholar] [CrossRef]
- Vidal, A.R.; Duarte, L.P.; Schmidt, M.M.; Cansian, R.L.; Fernandes, I.A.; Mello, R.O.; Demiate, I.M.; Dornelles, R.C.P. Extraction and characterization of collagen from sheep slaughter byproducts. Waste Manag. 2020, 102, 838–846. [Google Scholar] [CrossRef]
- Liu, B.; Aisa, H.A.; Yili, A. Isolation and identification of two potential antioxidant peptides from sheep abomasum protein hydrolysates. Eur. Food Res. Technol. 2018, 244, 1615–1625. [Google Scholar] [CrossRef]
- Kumar, N.S.S.; Nazeer, R.A.; Ganesh, R.J. Functionalnproperties of protein hydrolysates from different body parts of horse mackerel (Magalapis cordyla) and croaker (Otolithes ruber). Mediterr. J. Nutr. Metab. 2012, 5, 105–110. [Google Scholar] [CrossRef]
- Araújo, I.B.S.; Bezerra, T.K.A.; Nascimetno, E.S.; Gadelha, C.A.A.; Santo-Gadelha, T.; Madruga, M.S. Optimal conditions for obtaining collagen from chicken feet and its characterization. Food Sci. Technol. Camp. 2018, 38, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, A.R.R.A.; Bezerra, T.K.A.; Queiroz, A.L.M.; Tejo, M.; Pacheco, M.T.B.; Madruga, M.S. Collagen production from chicken keel bone using acid and enzymatic treatment at a temperature of 30 °C. Food Sci. Technol. JCR 2019, 40, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Ishwarya, P.S. Spray Drying Techniques for Food Ingredient Encapsulation; John Wiley & Sons: Oxford, MS, USA, 2015. [Google Scholar]
- Madruga, M.S.; Elmore, J.S.; Oruna-Cancha, M.J.; Balagiannis, D.; Mottram, D.S. Determination of some water-soluble aroma precursors in goat meat and their enrolment on flavour profile of goat meat. Food Chem. 2010, 123, 513–520. [Google Scholar] [CrossRef]
- Sukkhown, P.; Jangchud, K.; Lorjaroenphon, Y.; Pirak, T. Flavored-functional protein hydrolysates from enzymatic hydrolysis of dried squid by-products: Effect of drying method. Food Hidrocolloids 2017, 76, 103–112. [Google Scholar] [CrossRef]
- Halim, N.R.A.; Yusof, H.M.; Sarbon, N.M. Functional and bioactive properties of fish protein hydrolysates and peptides: A comprehensive review. Trends Food Sci. Technol. 2016, 51, 24–33. [Google Scholar] [CrossRef]
- Toldrá, F.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptides during food processing. Food Chem. 2018, 267, 395–404. [Google Scholar] [CrossRef]
- Mora, L.; Reig, M.; Toldrá, F. Bioactive peptides generated from meat industry by-products. Food Res. Int. 2014, 65, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Madruga, M.S.; Elmore, J.S.; Dodson, A.T.; Mottram, D.S. Volatile flavour profile of goat meat extracted by three widely used techniques. Food Chem. 2009, 115, 1081–1087. [Google Scholar] [CrossRef]
- Wong, E.; Johnson, C.B.; Nixon, L.N. Contribution Of 4-Methyloctanoic (Hircinoic) Acid to Mutton and Goat Meat Flavor. N. Z. J. Agric. Res. 1975, 18, 261–266. [Google Scholar] [CrossRef]
- Brennand, C.P.; Ha, J.K.; Lindsay, R.C. Aroma properties and thresholds of some branched chain and other minor volatile fatty acids occurring in milkfat and meat lipids. J. Sens. Stud. 1989, 4, 105–120. [Google Scholar] [CrossRef]
- Gravador, R.S.; Harrison, S.M.; Monahan, F.J.; Gkarane, V.; Farmer, L.J.; Brunton, N.P. Validation of a Rapid Microwave-Assisted Extraction Method and GC-FID Quantification of Total Branched Chain Fatty Acids in Lamb Subcutaneous. Adipose Tissue. J. Food Sci. 2019, 84, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Jaborek, J.R.; Zerby, H.N.; Wick, M.P.; Fluharty, F.L.; Moeller, S.J. Effect of energy source and level, animal age, and sex on the flavor profile of sheep meat. Transl. Anim. Sci. 2020, 4, 1140–1147. [Google Scholar] [CrossRef]
- Watkins, P.J.; Jaborek, J.R.; Teng, F.; Day, L.; Castada, H.Z.; Baringer, S.; Wick, M. Branched chain fatty acids in the flavour of sheep and goat milk and meat: A review. Small Rumin. Res. 2021, 200, 106398. [Google Scholar] [CrossRef]
- Sugiyama, T.; Sasada, H.; Masaki, J.; Yamashita, K. Unusual Fatty-Acids with Specific Odor from Mature Male Goat. Agric. Biol. Chem. 1981, 45, 2655–2658. [Google Scholar]
- Ha, J.K.; Lindsay, R.C. Distribution of Volatile Branched-Chain Fatty-Acids in Perinephric Fats of Various Red Meat Species. Food Sci. Technol. Lebensm. Wiss. Technol. 1990, 23, 433–440. [Google Scholar]
Meat | Brain | Heart | Kidneys | Liver | Lung | Gut | Spleen | Tongue | |
---|---|---|---|---|---|---|---|---|---|
Centesimal Composition (g/100 g), Total Caloric Value—VCT (kcal/100 g) and Cholesterol (mg/100 g) | |||||||||
Moisture | 71.2–78 | 76.74 | 75.15–80.4 | 80.26 | 73.37–74.0 | 79.03–80.3 | 80.94 | 77.93 | 68.4 |
Ash | 0.88–1.1 | 1.29 | 0.95 | 1.1 | 1.3 | 0.74 | 0.23 | 1.15 | 1.02 |
Proteins | 18.7–23.1 | 13.82 | 16.76–9.38 | 15.6 | 20.32–2.63 | 16.86–7.19 | 15.36 | 18.45 | 16.63 |
Fat | 1.8–6.4 | 8.06 | 4.40–6.36 | 2.93–1.21 | 4.88–5.98 | 2.26–3.09 | 3.36 | 2.37 | 13.68 |
Total Caloric Value (TCV) | 91–150 | 127 | 118 | 89 | 126 | 96 | 92 | 96 | 189 |
Cholesterol | 45–75 | 1340 | 122 | 419 | 415 | 448 | 113 | 243 | 206 |
Essential amino acids (EAA–g/100 g protein) | |||||||||
Tryptophan | 0.0033 | 1.36 | 1.31 | 1.5 | 1.22 | 1.45 | 1.34 | 1.46 | 1.45 |
Histidine | 0.046 | 5.29 | 5.38 | 5.23 | 4.23 | 4.64 | 4.4 | 4.62 | 4.7 |
Threonine | 0.046 | 5.29 | 5.43 | 5.69 | 6.58 | 5,74 | 4.16 | 6.27 | 4.67 |
Valine | 0.043 | 4.7 | 5.08 | 5.44 | 4.53 | 5.15 | 5.24 | 5.27 | 4.5 |
Methionine | - | 6.01 | 5.59 | 5.52 | 6.27 | 6.07 | 5.55 | 6.49 | 5.7 |
Isoleucine | 0.027 | 2.98 | 3.08 | 3.41 | 3.04 | 2.54 | 3.59 | 2.7 | 3.18 |
Leucine | 0.061 | 5.21 | 6.35 | 4.64 | 6.02 | 5.82 | 5.99 | 5.5 | 5.59 |
Phenylalanine | 0.028 | 6.61 | 6.25 | 5,74 | 5.64 | 7.16 | 7.76 | 6.58 | 7.02 |
Tyrosine | 0.021 | 4.68 | 3.97 | 4.77 | 3.5 | 4.51 | 4.11 | 3.74 | 3.97 |
Lysine | 0.058 | 8.24 | 7.04 | 8.48 | 8.39 | 8.04 | 7.22 | 8.89 | 7.05 |
Non-essential amino acids (NEAA—g/100 g protein) | |||||||||
Aspartic acid | 0.024 | 5.27 | 1.29 | 5.29 | 4.2 | 3.05 | 13.68 | 4.82 | 8.47 |
Glutamic acid | 0.068 | 6.71 | 1.71 | 4.74 | 4.38 | 2.41 | 13.14 | 4.27 | 8.15 |
Serine | 0.022 | 6.98 | 1.71 | 5.08 | 4.73 | 2.66 | 12.62 | 4.08 | 8.43 |
Glycine | 0.151 | 5.29 | 1.71 | 4.93 | 4.76 | 2.49 | 12.09 | 4.61 | 8.74 |
Alanine | 0.230 | 6.06 | 1.48 | 4.58 | 5.59 | 2.46 | 11.41 | 3.26 | 7.77 |
Arginine | - | 8.2 | 1.62 | 4.48 | 5.02 | 2.88 | 11.46 | 3.24 | 8.33 |
Proline | 0.038 | 7.86 | 1.37 | 4.26 | 4.54 | 2.48 | 12.26 | 3.44 | 8.8 |
Cysteine | 0.0003 | 6.34 | 1.45 | 4.64 | 4.78 | 2.38 | 13.47 | 4.15 | 8.26 |
EAA + NEAA | 0.866 | 5.27 | 1.29 | 5.29 | 4.2 | 3.05 | 13.68 | 4.82 | 8.47 |
Saturated Fatty Acids (g/100 g) | |||||||||
12:00 | - | 0.03–0.25 | 0 | 0.01–0.04 | 0.01 | 0.04 | 0.02–0.03 | 0.02 | 0.01 |
14:00 | 0.0488 | 0.41–0.48 | 0.03 | 0.13–0.23 | 0.07 | 0.04–0.07 | 0.03–0.09 | 0.15 | 0.06 |
16:00 | 0.6098 | 2.53–3.29 | 1 | 0.76–1.10 | 0.56 | 0.74–0.97 | 0.43–0.91 | 0.83 | 0.55 |
18:00 | 0.7561 | 2.40–2.52 | 1.01 | 1.78 | 0.47 | 0.94–1.10 | 0.32–0.51 | 0.67 | 0.55 |
20:00 | 0.0439 | 0 | 0.03 | 0 | 0 | 0 | 0.01 | 0 | 0.01 |
22:00 | 0.0244 | 0 | 0.03 | 0 | 0 | 0 | 0 | 0 | 0 |
24:00 | - | 0 | 0.04 | 0.01 | 0.03 | 0.05 | 0.02 | 0.01 | 0.02 |
SFA | 1.483 | 5.59–6.63 | 2.14 | 1.93–3.29 | 1.14 | 1.77–2.23 | 0.88–1.56 | 1.68 | 1,2 |
Mono Unsaturated Fatty Acids (g/100 g) | |||||||||
16:1 | 0.0244 | 0.43–0.62 | 0.02 | 0.04–0.15 | 0.02 | 0.04–0.07 | 0.03–0.04 | 0.06 | 0.02 |
18:1 | 0.9024 | 5.00–7.82 | 1.31 | 0.95–1.24 | 0.52 | 0.88–0.95 | 0.40–0.84 | 1.06 | 0.58 |
20:1 | - | 0.26 | 0.12 | 0.03–0.05 | 0.02 | 0.07 | 0.01 | 0.03 | 0.02 |
MUFAs | 0.9068 | 5.88–8.46 | 1.45 | 1.02–1.77 | 0.56 | 0.92–1.40 | 0.60–0.89 | 1.15 | 0.62 |
Polyunsaturated Fatty Acids (g/100 g) | |||||||||
18:2 | 0.0537 | 0.40–0.48 | 0.04 | 0.29–0.43 | 0.24 | 0.32–0.37 | 0.08–0.13 | 0.15 | 0.14 |
18:3 | 0.0195 | 0.47–0.51 | 0.08 | 0.01 | 0.01 | 0.01–0.06 | 0.02 | 0.01 | 0.01 |
20:4 | - | 0.06–0.07 | 0.3 | 0.01–0.13 | 0.23 | 0.36 | 0.02–0.22 | 0.08 | 0.2 |
22:6 n-3 | 0.0061 | 0 | 0 | 0.52 | 0 | 0 | 0.14 | 0 | 0 |
PUFAs | 0.0793 | 0.94–1.06 | 0.94 | 0.43–0.53 | 0.48 | 0.55–0.93 | 0.13–0.37 | 0.24 | 0.35 |
Minerals (mg/100 g) | |||||||||
Al | Na | 0.22 | 0.37 | 0.19 | 0.53 | 0.32 | 0.33 | 0.29 | 0.4 |
Ar | Na | 0.56 | 0.93 | 1.44 | 1.49 | 1.18 | 0.18 | 1.18 | 0.57 |
Ha | 15.5–17.8 | 10.61 | 5,71 | 12.37 | 6.09 | 10.44 | 20.87 | 8.35 | 7.11 |
Cr | Na | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.01 | 0.02 | 0.01 |
Cu | 0.07–0.23 | 0.3 | 0.34 | 0.25 | 3.7 | 0.22 | 0.07 | 0.13 | 0.16 |
Fe | 2.0–20.84 | 1.63 | 3.38 | 6.73 | 6.56 | 7.1 | 0.81 | 51.41 | 2.09 |
Mg | 20.4–28.9 | 13.94 | 18 | 18.6 | 18 | 11.48 | 13 | 15.3 | 19.39 |
Mn | 0.007–0.021 | 0.04 | 0.03 | 0.08 | 0.26 | 0.04 | 0.07 | 0.03 | 0.04 |
Hg | Na | 0.03 | 0.04 | 0.38 | 0.44 | 0.07 | 0.15 | 0.05 | 0.2 |
Mo | Na | 0 | 0.07 | 0.12 | 0.12 | 0.02 | 0.03 | 0.09 | 0 |
Ni | Na | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P | 212–275 | 296 | 174 | 220 | 336 | 209 | 59.2 | 266 | 212 |
K | 301–413 | 296 | 224 | 195 | 284 | 180 | 45 | 368 | 223 |
Se | 8.8 | 21.7 | 15 | 142 | 48.12 | 26 | 15.59 | 48.55 | 22.76 |
Na | 98.5–858.3 | 132 | 73.21 | 184 | 55.41 | 85.72 | 22.38 | 52.4 | 118 |
Zn | 2.0–3.59 | 1.08 | 1.45 | 1.73 | 3.48 | 1.7 | 1.66 | 1.95 | 2.44 |
Water-soluble vitamins (mg/100 g) | |||||||||
B1-Thiamin | 0.11 | 0.13 | 0.17 | 2.04 | 1.52 | 0.28 | 1.3 | 0.13 | 0.17 |
B2-Riboflavin | 0.49 | 0.14 | 0.22 | 3.04 | 0.88 | 0.17 | 2.54 | 0.14 | 0.22 |
B3-Niacin | - | 0.08 | 0.32 | 2.79 | 0.83 | 0.14 | 1.8 | 0.08 | 0.32 |
Pantothenic acid | - | 0.36 | 0.33 | 5.97 | 1.72 | 0.23 | 1.63 | 0.36 | 0.33 |
B6-Pyridoxine | - | 0.2 | 0.37 | 12.88 | 7.01 | 0.65 | 178 | 0.2 | 0.37 |
B9-Folic acid | - | 0.02 | 0.1 | 0.81 | 0.21 | 0.2 | 2.36 | 0.02 | 0.1 |
B12-Cyanocobalamin | 1.13 | ||||||||
Vit C | - | ||||||||
Fat-soluble vitamins (mg/100 g) | |||||||||
Vit. A | - | 0.002 | 0.006 | 0.069 | 15.66 | 0.003 | 0.002 | 0.008 | 0.009 |
Vit. E | - | 0.07 | 0.09 | 0.09 | 0.61 | 0.08 | 0.10 | 0.08 | 0.08 |
Vit. D | - | - | - | - | - | - | - | - | - |
Vit. K | - | 0.0038 | 0.011 | 0.0035 | 0.013 | 0.0046 | 0.012 | 0.009 | 0.002 |
Beef | Brain | Heart | Kidneys | Liver | Lung | Gut | Spleen | Tongue | |
---|---|---|---|---|---|---|---|---|---|
Centesimal Composition (g/100 g), Total Caloric Value—VCT (kcal/100 g) and Cholesterol (mg/100 g) | |||||||||
Moisture | 74.05 | 78.36–79.2 | 76.7–77.06 | 79.23–79.77 | 69.71–71.37 | 79.7–80.41 | 78.81 | 78.15–79.66 | 66.6–68.77 |
Ash | 1.15 | 1.19–1.33 | 0.93–0.97 | 1.00–1.26 | 1.26–1.44 | 0.97–1.10 | 0.26 | 1.17–1.3 | 0.92–1.06 |
Proteins | 24 | 10.4–13.05 | 16.47–8.19 | 15.74–6.22 | 20.38–2.26 | 16.7–16.12 | 16.76 | 16.02–17.2 | 15.7–16.61 |
Fat | 8.1 | 7.29–8.58 | 3.66–5.68 | 2.92–2.95 | 4.87–5.02 | 2.41–2.6 | 4.05 | 3.05–3.1 | 13.53–17.17 |
Total Caloric Value (TCV) | 175 | 118–122 | 106–122 | 92–97 | 134–139 | 87–95 | 104 | 92 | 187–222 |
Cholesterol | 66 | 1336–1352 | 112–135 | 299–337 | 371–430 | 431 | 113 | 250–262 | 156–210 |
Essential amino acids (g/100 g protein) | |||||||||
Tryptophan | 0.073 | 1.29 | 1.4 | 1.59 | 1.19 | 1.36 | 1.46 | 1.38 | 1.36 |
Histidine | 0.198 | 5.54 | 5.93 | 5.08 | 4.39 | 4.56 | 4.72 | 5.05 | 5,71 |
Threonine | 0.267 | 5.3 | 5.45 | 4.89 | 5.52 | 5.41 | 3.86 | 6.94 | 4.87 |
Valine | 0.337 | 4.19 | 4.86 | 5.11 | 4.68 | 4.53 | 6.05 | 5.5 | 3.62 |
Methionine | 0.160 | 6.04 | 5.56 | 5.04 | 5.12 | 6.63 | 5.33 | 7.04 | 5.22 |
Isoleucine | 0.302 | 2.47 | 3.18 | 3.78 | 2.83 | 2.58 | 3.44 | 2.89 | 3.64 |
Leucine | 0.487 | 5.21 | 6.77 | 6.34 | 6.2 | 5.02 | 5.78 | 5.9 | 5.45 |
Phenylalanine | 0.253 | 6.83 | 6.45 | 5.61 | 5.66 | 7.43 | 7.17 | 6.55 | 6.79 |
Tyrosine | 0.210 | 4.23 | 3.81 | 4.36 | 3.67 | 3.37 | 4.42 | 3.34 | 3.78 |
Lysine | 0.552 | 8.51 | 7.86 | 7.69 | 7.79 | 7.78 | 7.05 | 8.91 | 7.49 |
Non-essential amino acids (g/100 g protein) | |||||||||
Aspartic acid | 0.550 | 5.28 | 5.5 | 6.65 | 5.17 | 8.33 | 8.76 | 6.76 | 6.28 |
Glutamic acid | 0.907 | 1.34 | 1.61 | 1.69 | 1.68 | 1.4 | 1.48 | 1.46 | 1.48 |
Serine | 0.232 | 5.19 | 4.72 | 4.91 | 4.91 | 4.64 | 4.36 | 4.39 | 4.79 |
Glycine | 0.305 | 3.89 | 4.23 | 4.9 | 4.79 | 5.48 | 5.11 | 4.38 | 4.3 |
Alanine | 0.376 | 3.2 | 2.09 | 2.57 | 2.64 | 2.48 | 2.6 | 2.27 | 2.72 |
Arginine | 0.371 | 13.47 | 13.75 | 12.78 | 10.93 | 10.53 | 10.8 | 12.11 | 14.42 |
Proline | 0.262 | 4.69 | 4.15 | 3.78 | 4.53 | 3.22 | 3.32 | 4.02 | 3.72 |
Cysteine | 0.075 | 8.08 | 7.65 | 8.82 | 8.22 | 7.27 | 8.65 | 8.83 | 8.3 |
EAA + NEAA | 5.917 | 94.75 | 94.97 | 95.59 | 89.92 | 92.02 | 94.36 | 97.72 | 93.94 |
Saturated Fatty Acids (g/100 g) | |||||||||
12:00 | 0.01 | 0.00 | 0.02 | 0.00–0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.03–0.25 |
14:00 | 0.15 | 0.02–0.04 | 0.13–0.20 | 0.03–0.06 | 0.02–0.05 | 0.04 | 0.15 | 0.07 | 0.41–0.48 |
4:00 | 1.01 | 0.94–1.06 | 0.77–0.86 | 0.42–0.51 | 0.68 | 0.65 | 1.00 | 0.66 | 2.53–3.29 |
18:00 | 0.643 | 1.00–1.07 | 0.69–1.16 | 0.52–0.55 | 1.08–1.12 | 0.44 | 0.80 | 0.75 | 2.40–2.52 |
20:00 | - | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
22:00 | - | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
24:00 | - | 0.05 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.03 | 0.00 |
SFA | 3.35 | 2.04–2.19 | 1.68–2.25 | 1–1.12 | 1.82–1.94 | 0.89–1.14 | 1.96 | 1.03–1.53 | 5.59–6.63 |
Mono Unsaturated Fatty Acids (g/100 g) | |||||||||
16:1 | 0.144 | 0.03–0.05 | 0.03–0.07 | 0.02–0.04 | 0.03–0.13 | 0.02 | 0.08 | 0.02 | 0.43–0.62 |
18:1 | 2.21 | 1.06–1.29 | 0.82–1.38 | 0.54–0.55 | 0.74–0.92 | 0.73 | 1.42 | 0.72 | 5.00–7.82 |
20:1 | - | 0.09 | 0.02–0.04 | 0.01–0.03 | 0.00 | 0.02 | 0.03 | 0.02 | 0.26 |
MUFAs | 2.37 | 1.18–1.55 | 0.87–1.6 | 0.59–0.63 | 0.77–1.05 | 0.67–0.77 | 1.53 | 0.76–0.81 | 5.88–8.46 |
Polyunsaturated Fatty Acids (g/100 g) | |||||||||
18:2 | 0.33 | 0.03–0.04 | 0.21–0.24 | 0.21–0.22 | 0.32–0.35 | 0.12 | 0.13 | 0.18 | 0.40–0.48 |
18:3 | 0.04 | 0.08 | 0.03–0.13 | 0.01–0.07 | 0.07 | 0.01 | 0.01 | 0.01 | 0.47–0.51 |
20:4 | 0.06 | 0.23–0.30 | 0.08–0.09 | 0.14–0.23 | 0.36 | 0.17 | 0.07 | 0.28 | 0.06–0.07 |
22:6 n-3 | - | 0.45–0.49 | 0.01–0.03 | 0.00–0.03 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 |
PUFAs | 0.42 | 0.87–0.88 | 0.33–0.55 | 0.46–0.55 | 0.75–1.01 | 0.30–0.35 | 0.21 | 0.23–0.47 | 0.94–1.06 |
Minerals (mg/100 g) | |||||||||
Al | Na | 0.14 | 0.03 | 0.19 | 0.16 | 0.48 | 0.27 | 0.16 | 0.28 |
Ar | Na | 0.73 | 6.04 | 2.1 | 1.66 | 1.85 | 0.1 | 0.92 | 0.34 |
Ca | 5–7 | 9.0–10.27 | 6.0–6.79 | 13.0–14.15 | 5.92–7.0 | 7.74–10.0 | 8.0–14.85 | 9.0–11.49 | 8.05–9.0 |
Cr | Na | 0 | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | 0.01 | 0.08 |
Cu | 0.120 | 0.24–0.28 | 0.29–0.40 | 0.38–0.45 | 5.70–6.98 | 0.25–0.41 | 0.06 | 0.12–0.16 | 0.17–0.21 |
Fe | 1.0–2.2 | 1.75–1.93 | 3.07–4.60 | 6.11–6.38 | 6.15–7.37 | 6.40–8.58 | 0.90–2.30 | 41.89–53.11 | 2.46–2.65 |
Mg | 24 | 12.0–14.08 | 15.19–17.0 | 17.0–17.46 | 17.91–19.0 | 11.68–14.0 | 17.81–21.0 | 17.23–21.0 | 21.0–24.53 |
Mn | 0.010 | 0.04 | 0.03–0.05 | 0.11–0.69 | 0.18–0.28 | 0.02–0.03 | 0.04–0.16 | 0.04–0.05 | 0.03–0.05 |
Hg | Na | 0.02 | 0.03 | 0.61 | 0.16 | 0.07 | 0.19 | 0.04 | 0.45 |
Mo | Na | 0 | 0 | 0.02 | 0.15 | 0.01 | 0 | 0.04 | 0 |
Ni | Na | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 |
P | 176–215 | 270.0–271.0 | 163.0–175.0 | 204.0–246.0 | 334.0–364.0 | 187.0–219.0 | 55.61–400.0 | 266.0–280.0 | 184.0–207.0 |
K | 333 | 296.0–312.0 | 225.0–316.0 | 198.0–277.0 | 280.0–313.0 | 204.0–238.0 | 42.0–48.75 | 327.0–358.0 | 220.0–257.0 |
Se | Na | 34.6 | 33.3 | 127 | 43.38 | 16.12 | 13.92 | 64.53 | 23.2 |
Na | 72 | 112.0–122.0 | 72.62–89.0 | 156.0–163.0 | 55.82–70.0 | 109.0–157.0 | 18.37–75.0 | 50.58–84.0 | 78.0–185.0 |
Zn | 3.83 | 1.11–1.17 | 1.31–1.87 | 1.92–2.24 | 3.73–4.66 | 1.58–1.80 | 1.89–1.93 | 1.71–2.84 | 2.32–2.46 |
Water-soluble vitamins (mg/100 g) | |||||||||
B1-Thiamin | 0.102 | 0.12 | 0.15 | 0.07 | 0.34 | 0.17 | 0.02 | 0.07 | 0.35 |
B2-Riboflavin | 0.267 | 0.21 | 0.2 | 0.23 | 0.3 | 0.35 | 0.08 | 0.23 | 0.31 |
B3-Niacin | 6.29 | 2.66 | 2.78 | 2.75 | 5.43 | 15.66 | 0.63 | 5.42 | 5.51 |
Pantothenic acid | 0.685 | 1.73 | 0.35 | 0.88 | 1.66 | 6.95 | 0.2 | 6.07 | 6.22 |
B6- Pyridoxine | 0.15 | 0.33 | 0.16 | 0.02 | 0.3 | 0.26 | 0.22 | 0.27 | 0.51 |
B9- Folic acid | 0.023 | 1.86 | 2.4 | 13.89 | 2.17 | 206 | 1.87 | 3.19 | 46.21 |
B12–Cyanocobalamin | 0.0026 | ||||||||
Vit. C | 1.0 | ||||||||
Fat-soluble vitamins (mg/100 g) | |||||||||
Vit. A | 0.045 | 0.0015 | 0.0047 | 0.067 | 14,106 | 0.0024 | 0.003 | 0.0066 | 0.0073 |
Vit. E | - | 0.09 | 0.15 | 0.10 | 0.60 | 0.08 | 0.20 | 0.10 | 0.07 |
Vit. D | - | ||||||||
Vit. K | - | 0.0028 | 0.0097 | 0.0029 | 0.0147 | 0.005 | 0.011 | 0.0075 | 0.0015 |
Goat/Lamb Ethnic Meats/Foods | |||
---|---|---|---|
Name | Origin | Description | Reference |
Blomor | Iceland | Sausage-type (lamb’s blood, canned and fermented) | [9] |
Lifrarpylsa | Iceland | Sausage-type (lamb’s blood, canned and fermented) | [9] |
Osbana | Algeria, Tunisia, Libya and Morocco | Sausage type (lamb by-products-heart, liver, spleen and kidneys) | [8] |
Kourdass | North Africa, Mediterranean | Sausage type lamb by-products-stomach, intestines, liver, lung, spleen and fat. | [8] |
Geema | Kumano Himalayas/Northeast India | Sausage type (minced goat meat, fresh blood, placed in the small intestine of goat). | [60] |
Air-dried | Kumano Himalayas/Northeast India | Sausage type (minced goat meat, goat lungs, stuffed in goat’s large intestines). | [61] |
Mcharmla | Algeria and Morocco | Lamb dish prepared with chopped liver, spices, cooked 20/30 min. | [8] |
Goat Buchada | Northeast of Brazil | Goat dish prepared with minced by-products (heart, lungs, liver, intestine, blood, spices) stuffed in goat/lamb stomach, sewn, and cooked. | [50,53,62,63] |
Sheep Buchada | blood, viscera | Lamb dish prepared with minced by-products (heart, lungs, liver, intestine, blood, spices) stuffed in goat/lamb stomach, sewn, and cooked. | [64] |
Sarapatel | Northeast of Brazil | Goat and lamb dish prepared with chopped offal (heart, lungs, liver, intestine, blood, spices) and cooked. | [48] |
Tarfa-gara | Algeria | Goat and lamb dish prepared with minced by-products (heart, lungs, liver, intestine, blood, spices) and cooked. | [8] |
Klaya | Tunisia | Ready-to-eat lamb product, prepared with meat and offal (liver, kidney, fat, seasoning) boiled and fried in oil. | [8] |
Hutspungar | Iceland | Lamb dish prepared with pressed testicles | [9] |
Kheuri | Sikkim India | Stuffed yak or beef mixture pressed into the sheep’s stomach and hung outdoors for 1–2 months. | [10] |
Goat/lamb offal-meat products | |||
Smoked goat sausage | Blood, viscera | [16,17] | |
Goat chorizo | Heart, kidneys | [18] | |
Goat pate | Blood, liver | [11] | |
Sheep pate | Blood, liver, meat traces | [12,13] | |
Goat and sheep pate | Liver | [14] | |
Goat and sheep pate | Liver | [15] |
Products | By-Products | Reference |
---|---|---|
Flavoring/flavor enhancer | Liver, heart and lung | [7] |
Natural antioxidant | Stomach and intestine | [70] |
Nutritional supplement | Stomach, large and small intestines | [71] |
Food additive Additive and natural antioxidant | Blood plasma Viscera | [72] [73] |
Natural antioxidant | Abomasum | [74] |
Collagen | Bone, cartilage, carcass and meat trimmings | [75] |
Flavoring | Bone | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordeiro, A.R.R.d.A.; Bezerra, T.K.A.; Madruga, M.S. Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use. Animals 2022, 12, 3277. https://doi.org/10.3390/ani12233277
Cordeiro ARRdA, Bezerra TKA, Madruga MS. Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use. Animals. 2022; 12(23):3277. https://doi.org/10.3390/ani12233277
Chicago/Turabian StyleCordeiro, Ana Rita Ribeiro de Araújo, Taliana Kênia Alencar Bezerra, and Marta Suely Madruga. 2022. "Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use" Animals 12, no. 23: 3277. https://doi.org/10.3390/ani12233277
APA StyleCordeiro, A. R. R. d. A., Bezerra, T. K. A., & Madruga, M. S. (2022). Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use. Animals, 12(23), 3277. https://doi.org/10.3390/ani12233277