Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Design
2.2. Sample Collection and Processing
2.3. Serum Biochemical Variables
2.4. Ruminal Fermentation Variables and Feed Composition Analysis
2.5. Extraction of DNA and Polymerase Chain Reaction (PCR) Amplification
2.6. Sequencing of the 16S rRNA Gene and Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. Serum Biochemistry
3.2. Antioxidant Indices
3.3. Serum Metabolites
3.4. Rumen Enzyme Concentrations
3.5. Effects of the Fruit of Nitraria tangutorum (FNT) on Rumen pH and Concentrations of Volatile Fatty Acids in Hu Rams
3.6. Effects of the Fruit of Nitraria tangutorum (FNT) on the Rumen Bacterial Community Composition in Hu Rams
3.7. Correlation Analysis between Differentially Abundant Bacteria and Serum Metabolite and Biochemical Variables
4. Discussion
4.1. Effects of the Fruit of Nitraria Tangutorum (FNT) Supplement on Serum Biochemistry Variables in Hu Rams
4.2. Effects of the Fruit of Nitraria Tangutorum (FNT) Supplement on Rumen pH and Rumen Fermentation in Hu Rams
4.3. Effects of the Fruit of Nitraria Tangutorum (FNT) Supplement on Rumen Microorganisms in Hu Rams
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, J.; Hoseini-Alfatemi, S.M.; Sharifi-Rad, M.; da Silva, J.A.T. Antibacterial, antioxidant, antifungal and anti-inflammatory activities of crude extract from Nitraria schoberi fruits. 3 Biotech 2015, 5, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simitzis, P.E. Enrichment of animal diets with essential oils-a great perspective on improving animal performance and quality characteristics of the derived products. Medicines 2017, 4, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, G.; Diaz, P.; Banon, S.; Garrido, M.D. Effect on lamb meat quality of including thyme (Thymus zygis ssp gracilis) leaves in ewes’ diet. Meat. Sci. 2010, 85, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Redoy, M.R.A.; Shuvo, A.A.S.; Cheng, L.; Al-Mamun, M. Effect of herbal supplementation on growth, immunity, rumen histology, serum antioxidants and meat quality of sheep. Animal 2020, 14, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Su, Z.; Xu, W.; Sun, H.X.; Gao, J.F.; Tu, D.F.; Ren, C.H.; Zhang, Z.J.; Cao, H.G. Garlic skin induces shifts in the rumen microbiome and metabolome of fattening lambs. Animal 2021, 15, 100216. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, F.; Yan, T.; Chang, S.; Wanapat, M.; Hou, F. Cistanche deserticola addition improves growth, digestibility, and metabolism of sheep fed on fresh forage from alfalfa/tall fescue pasture. Animals 2020, 10, 668. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, X.L.; Chang, S.H.; Zhang, C.; Du, W.C.; Hou, F.J. Effect of cistanche deserticola on rumen microbiota and rumen function in grazing sheep. Front. Microbiol. 2022, 13, 840725. [Google Scholar] [CrossRef]
- Chanjula, P.; Cherdthong, A. Effects of spent mushroom Cordyceps militaris supplementation on apparent digestibility, rumen fermentation, and blood metabolite parameters of goats. J. Anim. Sci. 2018, 96, 1150–1158. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Xin, H.; Peng, C. Pharmacology and phytochemistry of the Nitraria genus (Review). Mol. Med. Rep. 2015, 11, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Rjeibi, I.; Feriani, A.; Hentati, F.; Hfaiedh, N.; Michaud, P.; Pierre, G. Structural characterization of water-soluble polysaccharides from Nitraria retusa fruits and their antioxidant and hypolipidemic activities. Int. J. Biol. Macromol. 2019, 129, 422–432. [Google Scholar] [CrossRef]
- Hu, N. Study on the Separation and Analysis of Constituents and Pharmacological Activities of Nitraria tangutorum Bobr. Ph.D. Dissertation, University of Chinese Academy of Sciences, Beijing, China, 2015. [Google Scholar]
- Guo, P.; Sheng, Y.L.; Zhao, K.C.; Wang, J.Q.; Yao, J.F.; Chen, T.G.; Zeng, L.J. Exploitation and utilization of wild Nitraria tangutorum resources. J. Gansu For. Sci. Technol. 1987, 4, 15–24. [Google Scholar]
- Ni, W.H.; Gao, T.T.; Wang, H.L.; Du, Y.Z.; Li, J.Y.; Li, C.; Wei, L.X.; Bi, H.T. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants. J. Ethnopharmacol. 2013, 150, 529–535. [Google Scholar] [CrossRef]
- Senejoux, F.; Girard, C.; Aisa, H.A.; Bakri, M.; Kerram, P.; Berthelot, A.; Bevalot, F.; Demougeot, C. Vasorelaxant and hypotensive effects of a hydroalcoholic extract from the fruits of Nitraria sibirica Pall. (Nitrariaceae). J. Ethnopharmacol. 2012, 141, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Deng, K.; Hu, N.; Wang, H.L. Nitraria tangutorum Bobr.-derived polysaccharides protect against LPS-induced lung injury. Int. J. Biol. Macromol. 2021, 186, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Zhou, H.N.; Zhang, G.; Dong, Q.; Wang, Z.H.; Wang, H.L.; Hu, N. Characterization, antioxidant, and neuroprotective effects of anthocyanins from Nitraria tangutorum Bobr. fruit. Food Chem. 2021, 353, 129435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, J.B.; Bi, H.T.; Song, J.Y.; Yang, H.X.; Xia, Z.H.; Du, Y.Z.; Gao, T.T.; Wei, L.X. Characterization and cardioprotective activity of anthocyanins from Nitraria tangutorum Bobr. by-products. Food Funct. 2017, 8, 2771–2782. [Google Scholar] [CrossRef]
- Chaabane, M.; Koubaa, M.; Soudani, N.; Elwej, A.; Grati, M.; Jamoussi, K.; Boudawara, T.; Chaabouni, S.E.; Zeghal, N. Nitraria retusa fruit prevents penconazole-induced kidney injury in adult rats through modulation of oxidative stress and histopathological changes. Pharm. Biol. 2017, 55, 1061–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.L.; Zhou, J.H.; Bi, H.T.; Yang, X.Y.; Chen, W.L.; Jiang, K.J.; Yao, Y.; Ni, W.H. Bioactive ingredients from Nitraria tangutorun Bobr. protect against cerebral ischemia/reperfusion injury through attenuation of oxidative stress and the inflammatory response. J. Med. Food 2021, 24, 686–696. [Google Scholar] [CrossRef]
- Jiang, S.R.; Chen, C.; Dong, Q.; Shao, Y.; Zhao, X.H.; Tao, Y.D.; Yue, H.L. Alkaloids and phenolics identification in fruit of Nitraria tangutorum Bobr. by UPLC-Q-TOF-MS/MS and their a-glucosidase inhibitory effects in vivo and in vitro. Food Chem. 2021, 364, 130412. [Google Scholar] [CrossRef]
- Zhang, L.H.; Xie, Z.K.; Zhao, R.F.; Zhang, Y.B. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Appl. Soil Ecol. 2018, 127, 87–95. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using effect size—or why the P value is not enough. J. Grad. Med. Educ. 2012, 4, 279–282. Available online: https://pubmed.ncbi.nlm.nih.gov/23997866/ (accessed on 5 November 2022). [CrossRef]
- Council, N.R. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 384. [Google Scholar]
- Liang, Y.; Zhou, J.; Ji, K.; Liu, H.; Degen, A.; Zhai, M.; Jiao, D.; Guo, J.; Zhao, Z.; Yang, G. Protective effect of resveratrol improves systemic inflammation responses in LPS-injected lambs. Animals 2019, 9, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Li, F.; Ma, X.W.; Li, F.D.; Wang, Z.L. Effects of barley starch level in diet on fermentation and microflora in rumen of Hu sheep. Animals 2022, 12, 1941. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. Offical Method of Analysis; Association of Official Agricultural Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Liu, C.S.; Zhao, D.F.; Ma, W.J.; Guo, Y.D.; Wang, A.J.; Wang, Q.L.; Lee, D.J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biot. 2016, 100, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species difinition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Barberan, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2014, 8, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Du, E.C.; Guo, W.Z.; Zhao, N.; Chen, F.; Fan, Q.W.; Zhang, W.; Huang, S.W.; Zhou, G.S.; Fu, T.D.; Wei, J.T. Effects of diets with various levels of forage rape (Brassica napus) on growth performance, carcass traits, meat quality and rumen microbiota of Hu lambs. J. Sci. Food Agric. 2022, 102, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.R.; Hao, Z.H.; Zhang, H.J. Effects of yeast culture on lactation performance and apparent digestibility of nutrients in heat-stressed dairy cows. China Feed. 2019, 8, 5. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, P.; Wang, R.; Zhao, X. Therapeutic effect of dendrobium candidum on lupus nephritis in mice. Pharmacogn. Mag. 2017, 13, 129–135. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Wang, L.L.; Luo, R.Q.; Chen, H.L.; Nie, C.X.; Niu, J.L.; Chen, C.; Xu, Y.P.; Li, X.Y.; Zhang, W.J. Effect of a multispecies probiotic mixture on the growth and incidence of diarrhea, immune function, and fecal microbiota of ore-weaning dairy calves. Front. Microbiol. 2021, 12, 681014. [Google Scholar] [CrossRef]
- Artiles-Ortega, E.; Portal, O.; Jeyanathan, J.; Reguera-Barreto, B.; de la Fe-rodriguez, P.Y.; Lima-Orozco, R.; Fievez, V. Performance, rumen microbial community and immune status of goat hids fed Leucaena leucocephala post-weaning as affected by prenatal and early life nutritional interventions. Front. Microbiol. 2022, 12, 769438. [Google Scholar] [CrossRef]
- Elsohaby, I.; Cameron, M.; Elmoslemany, A.; McClure, J.T.; Keefe, G. Effect of passive transfer of immunity on growth performance of preweaned dairy calves. Can. J. Vet. Res. 2019, 83, 90–96. [Google Scholar]
- Sang, J.; Ma, Q.; Ren, M.J.; He, S.T.; Feng, D.D.; Yan, X.L.; Li, C.Q. Extraction and characterization of anthocyanins from Nitraria tangutorun bobr. dry fruit and evaluation of their stability in aqueous solution and taurine-contained beverage. J. Food Meas. Charact. 2018, 12, 937–948. [Google Scholar] [CrossRef]
- Tang, C.; Ding, R.X.; Sun, J.; Liu, J.; Kan, J.; Jin, C.H. The impacts of natural polysaccharides on intestinal microbiota and immune responses—A review. Food Funct. 2019, 10, 2290–2312. [Google Scholar] [CrossRef]
- Dominiczak, M.H.; Beastall, G.; Wallace, A.M. Biosynthesis of cholesterol and steroids. In Medical Biochemistry E-Book; Elsevier Health Sciences: New York, NY, USA, 2014; Volume 200. [Google Scholar]
- Schoop, V.; Martello, A.; Eden, E.R.; Hoglinger, D. Cellular cholesterol and how to find it. BBA-Mol. Cell Biol. L 2021, 1866, 158989. [Google Scholar] [CrossRef]
- Li, Y.; Ding, H.Y.; Wang, X.C.; Feng, S.B.; Li, X.B.; Wang, Z.; Liu, G.W.; Li, X.W. An association between the level of oxidative stress and the concentrations of NEFA and BHBA in the plasma of ketotic dairy cows. J. Anim. Physiol. Anim. Nutr. 2016, 100, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Tajik, J.; Nazifi, S. Serum concentrations of lipids and lipoproteins and their correlations together and with thyroid hormones in Iranian water buffalo (Bulbalus bulbalis). Asian J. Anim. Sci. 2011, 5, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Li, H.; Ding, C.X.; Suo, Y.R.; Wang, L.S.; Wang, H.L. Anthocyanins composition and antioxidant activity of two major wild Nitraria tangutorun Bobr. variations from Qinghai-Tibet Plateau. Food Res. Int. 2011, 44, 2041–2046. [Google Scholar] [CrossRef]
- Gu, D.Y.; Yang, Y.; Bakri, M.; Chen, Q.B.; Aisa, H.A. Biological activity and LC-MS profiling of ethyl acetate extracts from Nitraria sibirica (Pall.) fruits. Nat. Prod. Res. 2018, 32, 2054–2057. [Google Scholar] [CrossRef] [PubMed]
- Parnian Khajehdizaj, F.; Taghizadeh, A.; Baghbanzadeh Nobari, B. Effect of feeding microwave irradiated sorghum grain on nutrient utilization, rumen fermentation and serum metabolites in sheep. Livest. Sci. 2014, 167, 161–170. [Google Scholar] [CrossRef]
- Shin, E.K.; Jeong, J.K.; Choi, I.S.; Kang, H.G.; Hur, T.Y.; Jung, Y.H.; Kim, I.H. Relationships among ketosis, serum metabolites, body condition, and reproductive outcomes in dairy cows. Theriogenology 2015, 84, 252–260. [Google Scholar] [CrossRef]
- Huang, R.H. Effects of Oligosaccharides, Allicin and Yeast Extract on Growth and Health of Pigs. Ph.D. Dissertation, Nanjing Agricultural University, Nanjing, China, 2009. [Google Scholar]
- Khattab, I.M.; Salem, A.Z.M.; Abdel-Wahed, A.M.; Kewan, K.Z. Effects of urea supplementation on nutrient digestibility, nitrogen utilisation and rumen fermentation in sheep fed diets containing dates. Livest. Sci. 2013, 155, 223–229. [Google Scholar] [CrossRef]
- Gonzalez, F.D.; Muino, R.; Pereira, V.; Campos, R.; Benedito, J.L. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet. Sci. 2011, 12, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.F.; Liu, R.S.; Wang, K.; Chen, W.H.; Xue, C.S.; Zhang, X.B.; Xie, W.Z. Effect of chinese herbal madicine additives on enzyme activity of sheep serum. J. Anim. Sci. Vet. Mecidine 2019, 38, 8–10. [Google Scholar]
- Camann, C.; Pugh, D.G. Sheep, goat, and cervid medicine (3rd edition). J. Am. Vet. Med. A 2021, 258, 1359. [Google Scholar] [CrossRef]
- Soest, P.J.V. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 2018. [Google Scholar]
- Kim, Y.H.; Nagata, R.; Ohkubo, A.; Ohtani, N.; Kushibiki, S.; Ichijo, T.; Sato, S. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Vet. Res. 2018, 14, 310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Jin, W.; Feng, P.F.; Liu, J.H.; Mao, S.Y. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal 2018, 12, 2511–2520. [Google Scholar] [CrossRef]
- O’Hara, E.; Neves, A.L.A.; Song, Y.; Guan, L.L. The role of the gut microbiome in cattle production and health: Driver or passenger? Annu. Rev. Anim. Biosci. 2020, 8, 199–220. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.J.; Bai, H.X.; Zheng, L.X.; Jiang, H.; Cui, H.Y.; Cao, Y.C.; Yao, J.H. Bioactive polysaccharides and oligosaccharides as possible feed additives to manipulate rumen fermentation in rusitec fermenters. Int. J. Biol. Macromol. 2018, 109, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Li, X.X.; Zhang, L.Y.; Wu, J.P.; Zhao, S.G.; Jiao, T. Effect of oregano oil and cobalt Lactate on sheep in vitro digestibility, fermentation characteristics and rumen microbial community. Animals 2022, 12, 118. [Google Scholar] [CrossRef]
- Li, H.; Zhou, R.; Zhu, J.X.; Huang, X.D.; Qu, J.P. Environmental filtering increases with elevation for the assembly of gut microbiota in wild pikas. Microb. Biotechnol. 2019, 12, 976–992. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Gao, H.M.; Qin, W.; Song, P.F.; Wang, H.J.; Zhang, J.J.; Liu, D.X.; Wang, D.; Zhang, T.Z. Marked seasonal variation in structure and function of fut microbiota inforest and alpine musk deer. Front. Microbiol. 2021, 12, 699797. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Wallace, R.J.; Morais, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Xue, Y.; Lin, L.; Hu, F.; Zhu, W.; Mao, S. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. Microbiome 2020, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, Y.; Wang, H.; Nan, X.; Guo, Y.; Xiong, B. Calcium propionate supplementation has Minor effects on major ruminal bacterial community composition of early lactation dairy cows. Front. Microbiol. 2022, 13, 847488. [Google Scholar] [CrossRef] [PubMed]
- Lapebie, P.; Lombard, V.; Drula, E.; Terrapon, N.; Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 2019, 10, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naas, A.E.; Mackenzie, A.K.; Mravec, J.; Schuckel, J.; Willats, W.G.T.; Eijsink, V.G.H.; Pope, P.B. Do Rumen Bacteroidetes utilize an alternative mchanism for cellulose degradation? Mbio 2014, 5, e01401-14. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Xue, C.X.; Sun, D.M.; Zhu, W.Y.; Mao, S.Y. Impact of high-grain diet feeding on mucosa-associated bacterial community and gene expression of tight junction proteins in the small intestine of goats. Microbiologyopen 2019, 8, e00745. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Nan, X.M.; Zhao, Y.G.; Jiang, L.S.; Wang, H.; Zhang, F.; Hua, D.K.; Liu, J.; Yao, J.H.; Yang, L.; et al. Dietary supplementation of inulin ameliorates subclinical mastitis via regulation of rumen microbial community and metabolites in dairy cows. Microbiol. Spectr. 2021, 9, e0010521. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, E.; Roos, S.; Liu, H.Y.; Lindberg, J.E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal 2014, 8, 1777–1787. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Xiao, X.H.; Zhang, Q.; Zheng, J.; Li, M.; Yu, M.; Wang, X.J.; Deng, M.Q.; Zhai, X.; Li, R.R. Improved glucose and lipid metabolism in the early life of female offspring by maternal dietary genistein is associated with alterations in the gut microbiota. Front. Endocrinol. 2018, 9, 516. [Google Scholar] [CrossRef]
- Vangylswyk, N.O. Succiniclasticum Ruminis Gen-Nov, Sp-Nov, a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Bacteriol. 1995, 45, 297–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, J.C.; Luan, S.; Cardoso, F.C.; Derakhshani, H.; Khafipour, E.; Loor, J.J. Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front. Microbiol. 2016, 7, 701. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, J.; Lei, R.; Xue, B.; Li, Y.; Tian, X.; Zhang, K.; Luo, B. Cold exposure, gut microbiota, and hypertension: A mechanistic study. Sci. Total Environ. 2022, 833, 155199. [Google Scholar] [CrossRef] [PubMed]
- Andres, S.; Jaramillo, E.; Bodas, R.; Blanco, C.; Benavides, J.; Fernandez, P.; Gonzalez, E.P.; Frutos, J.; Belenguer, A.; Lopez, S.; et al. Grain grinding size of cereals in complete pelleted diets for growing lambs: Effects on ruminal microbiota and fermentation. Small Rumin. Res. 2018, 159, 38–44. [Google Scholar] [CrossRef]
- Sakamoto, M.; Ikeyama, N.; Kunihiro, T.; Iino, T.; Yuki, M.; Ohkuma, M. Mesosutterella multiformis gen. nov., sp. nov., a member of the family Sutterellaceae and Sutterellamegalosphaeroides sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2018, 68, 3942–3950. [Google Scholar] [CrossRef]
- Hiippala, K.; Kainulainen, V.; Kalliomaki, M.; Arkkila, P.; Satokari, R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front. Microbiol. 2016, 7, 1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaakoush, N.O. Sutterella species, IgA-degrading bacteria in ulcerative colitis. Trends Microbiol. 2020, 28, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.K. Study on Rumen Microbial Composition and Functional Profiles Using Metagenomics and the Regulation of Rumen Microbial Fermentation with Exogenous Additives. Ph.D. Dissertation, Huazhong Agricultural University, Wuhan, China, 2021. [Google Scholar]
- Wang, P.; Li, D.T.; Ke, W.X.; Liang, D.; Hu, X.S.; Chen, F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int. J. Obes. 2020, 44, 213–225. [Google Scholar] [CrossRef]
- Guo, W.; van Niekerk, J.K.; Zhou, M.; Steele, M.A.; Guan, L.L. Longitudinal assessment revealed the shifts in rumen and colon mucosal-attached microbiota of dairy calves during weaning transition. J. Dairy Sci. 2021, 104, 5948–5963. [Google Scholar] [CrossRef]
- Lecuyer, E.; Rakotobe, S.; Lengline-Garnier, H.; Lebreton, C.; Picard, M.; Juste, C.; Fritzen, R.; Eberl, G.; McCoy, K.D.; Macpherson, A.J.; et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T Helper 17 Cell responses. Immunity 2014, 40, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Palma-Hidalgo, J.M.; Jiménez, E.; Popova, M.; Morgavi, D.P.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Belanche, A. Inoculation with rumen fluid in early life accelerates the rumen microbial development and favours the weaning process in goats. Anim. Microbiome 2021, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.D.; Deng, Y.R.; Tian, Z.G.; Lian, Z.X. Traditional Chinese medicine and immune regulation. Clin. Rev. Allerg. Immu. 2013, 44, 229–241. [Google Scholar] [CrossRef] [PubMed]
Items | Basal Diet |
---|---|
Corn straw | 25.00 |
Corn bran | 10.70 |
Corn grain | 22.50 |
Barley | 15.00 |
Molasses | 4.00 |
Corn germ meal | 15.00 |
Soybean meal | 5.70 |
Limestone | 1.10 |
Salt | 0.50 |
Premix A | 0.50 |
Chemical composition | |
DM B, % | 87.87 |
Crude protein, % DM | 11.00 |
Ether extract, % DM | 1.69 |
P, % DM | 0.26 |
Ca, % DM | 0.90 |
Metabolic energy C, MJ/kg DM | 9.60 |
Items | Groups | SEM A | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | N16 | N48 | Treatment | Linear | Quadratic | ||
Total protein, g/L | 82.3 | 76.2 | 84.4 | 2.53 | 0.42 | 0.75 | 0.21 |
Albumin, g/L | 46.7 | 45.6 | 49.8 | 1.67 | 0.60 | 0.47 | 0.48 |
Immunoglobulin G, g/L | 22.3 | 30.6 | 34.6 | 2.32 | 0.08 | 0.03 | 0.63 |
Glucose, mmol/L | 4.43 | 4.97 | 4.33 | 0.14 | 0.14 | 0.76 | 0.05 |
Triglyceride, mmol/L | 1.51 | 1.70 | 1.60 | 0.07 | 0.63 | 0.68 | 0.39 |
Total cholesterol, mmol/L | 4.56 | 4.98 | 5.51 | 0.20 | 0.39 | 0.20 | 0.67 |
Blood urea nitrogen, mmol/L | 4.82 | 5.08 | 5.32 | 0.17 | 0.52 | 0.26 | 0.97 |
Items | Groups | SEM A | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | N16 | N48 | Treatment | Linear | Quadratic | ||
Malondialdehyde, mmol/mL | 7.78 | 8.26 | 7.69 | 0.36 | 0.80 | 0.92 | 0.52 |
Glutathione peroxidase, U/mL | 817 | 849 | 900 | 34.0 | 0.63 | 0.35 | 0.90 |
Superoxide dismutase, U/mL | 64.5 | 62.8 | 59.0 | 3.55 | 0.83 | 0.56 | 0.90 |
Total antioxidant capacity, U/mL | 16.2 | 16.7 | 15.6 | 0.52 | 0.72 | 0.63 | 0.52 |
The contents of catalase, U/mL | 184 | 141 | 155 | 10.5 | 0.24 | 0.26 | 0.21 |
Items | Groups | SEM A | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | N16 | N48 | Treatment | Linear | Quadratic | ||
Non-esterified fatty acid, µmol/L | 686 | 736 | 762 | 26.2 | 0.51 | 0.26 | 0.84 |
β-hydroxybutyrate, µmol/L | 309 a | 294 a | 235 b | 11.4 | 0.01 | 0.001 | 0.26 |
Alkaline phosphatase, U/L | 95.6 | 86.8 | 93.4 | 3.97 | 0.67 | 0.83 | 0.40 |
Lactate dehydrogenase, U/L | 171 | 159 | 145 | 5.9 | 0.11 | 0.07 | 0.93 |
Items | Groups | SEM A | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | N16 | N48 | Treatment | Linear | Quadratic | ||
Pepsin, IU/L | 128 | 129 | 133 | 4.5 | 0.91 | 0.68 | 0.90 |
Lipase, IU/L | 184 | 165 | 137 | 9.2 | 0.10 | 0.04 | 0.79 |
Amylase, IU/mL | 77.1 | 69.0 | 79.1 | 3.30 | 0.45 | 0.82 | 0.22 |
Cellulase, IU/L | 267 | 301 | 283 | 12.9 | 0.59 | 0.63 | 0.37 |
Items | Groups | SEM A | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | N16 | N48 | Treatment | Linear | Quadratic | ||
pH | 5.69 | 5.60 | 5.94 | 0.12 | 0.26 | 0.41 | 0.40 |
Total VFA, mmol/L | 81.5 | 95.6 | 80.8 | 9.82 | 0.80 | 0.78 | 0.64 |
Acetate, mmol/L | 49.2 | 57.1 | 53.3 | 5.53 | 0.87 | 0.97 | 0.60 |
Propionate, mmol/L | 25.1 | 29.4 | 24.7 | 3.81 | 0.87 | 0.65 | 0.34 |
Butyrate, mmol/L | 6.50 | 7.86 | 5.43 | 0.90 | 0.55 | 0.66 | 0.14 |
Valerate, mmol/L | 0.54 | 1.09 | 0.71 | 0.15 | 0.25 | 0.98 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Cheng, X.; Dong, Q.; Zhou, J.; Degen, A.A.; Jiao, D.; Ji, K.; Liang, Y.; Wu, X.; Yang, G. Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep. Animals 2022, 12, 3211. https://doi.org/10.3390/ani12223211
Du X, Cheng X, Dong Q, Zhou J, Degen AA, Jiao D, Ji K, Liang Y, Wu X, Yang G. Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep. Animals. 2022; 12(22):3211. https://doi.org/10.3390/ani12223211
Chicago/Turabian StyleDu, Xia, Xindong Cheng, Qiaoxia Dong, Jianwei Zhou, Abraham Allan Degen, Dan Jiao, Kaixi Ji, Yanping Liang, Xiukun Wu, and Guo Yang. 2022. "Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep" Animals 12, no. 22: 3211. https://doi.org/10.3390/ani12223211
APA StyleDu, X., Cheng, X., Dong, Q., Zhou, J., Degen, A. A., Jiao, D., Ji, K., Liang, Y., Wu, X., & Yang, G. (2022). Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep. Animals, 12(22), 3211. https://doi.org/10.3390/ani12223211