Implications of Salinity and Acidic Environments on Fitness and Oxidative Stress Parameters in Early Developing Seahorses Hippocampus reidi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioethics
2.2. Live Prey Culture
2.3. Seahorse Breeding
2.4. Experiments
2.4.1. Trial 1: Effect of pH and Salinity on Seahorse Juveniles
2.4.2. Trial 2: Effect of Acidification on Seahorse Juveniles Reared in SW at pH 8.0
2.5. Biochemical Analyses
2.6. Treatment of Data
- -
- Survival (S, %): (final number of fishes/initial number of fishes) × 100, accounting for sampled juveniles
- -
- Specific growth rate (SGR, % day−1): Ln wf–Ln wi/t × 100, where wf and wi are the final and initial mean weight, and t is the experimental time in days.
- -
- Fulton’s Factor Condition Index: K = W/L3 × 10, where W and L are mean weight and length, respectively.
2.7. Statistical Analysis
3. Results
3.1. Trial 1: Effect of pH and Salinity on Juveniles
3.1.1. Biochemical Oxidative Stress Indices
3.1.2. Global Assessment: SW and BW
3.2. Trial 2: Effect of Acidification on Juveniles
4. Discussion
4.1. Combined Effects of Salinity and pH on Early-Developing Juveniles
4.2. Biochemical Indices: Seawater–SW (S33) and Brackish Water–BW (S11)
4.3. Global Assessment (PCA)
4.4. Trial 2: Effect of pH on the Growth of Seahorse Juveniles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abreu, P.C.; Robaldo, R.B.; Sampaio, L.A.; Bianchini, A.; Odebrecht, C. Recurrent Amyloodiniosis on Broodstock of the Brazilian Flounder Paralichthys orbignyanus: Dinospore Monitoring and Prophylactic Measures. J. World Aquac. Soc. 2007, 36, 42–50. [Google Scholar] [CrossRef]
- Cohen, F.P.; Planas, M.; Valenti, W.C.; Lillebø, A.; Calado, R. Optimizing packing of live seahorses for shipping. Aquaculture 2018, 482, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Qin, G.; Zhang, B.; Tan, S.; Sun, J.; Lin, Q. Effects of food, salinity, and ammonia-nitrogen on the physiology of juvenile seahorse (Hippocampus erectus) in two typical culture models in China. Aquaculture 2020, 520, 734965. [Google Scholar] [CrossRef]
- Meira-Filho, M.R.C.; Ramirez, J.R.B.; Vianna, R.T.; Júnior, J.P. Efficacy of glacial acetic acid in the control of Trichodina sp. and Apiosoma sp. associated with Mugil liza. Aquaculture 2017, 479, 7–12. [Google Scholar] [CrossRef]
- Heuer, R.M.; Grosell, M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Integr. Comp. Physiol. 2014, 307, R1061–R1084. [Google Scholar] [CrossRef] [Green Version]
- Ishimatsu, A.; Kikkawa, T.; Hayashi, M.; Lee, K.-S.; Kita, J. Effects of CO2 on Marine Fish: Larvae and Adults. J. Oceanogr. 2004, 60, 731–741. [Google Scholar] [CrossRef]
- Ishimatsu, A.; Hayashi, M.; Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 2008, 373, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Kwon, B.-O.; Hong, S.; Noh, J.; Lee, J.; Ryu, J.; Kang, S.-G.; Khim, J.S. Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma. Environ. Pollut. 2018, 241, 586–595. [Google Scholar] [CrossRef]
- Calado, R. Location. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I., Planas, M., Holt, G.J., Eds.; Wiley Blackwell: West Sussex, UK, 2017; pp. 75–79. [Google Scholar]
- Tlusty, M. The benefits and risks of aquacultural production for the aquarium trade. Aquaculture 2002, 205, 203–219. [Google Scholar] [CrossRef]
- Timmons, M.B.; Ebeling, J.M. Recirculating Aquaculture, 2nd ed.; Northeastern Regional Aquaculture Center: College Park, MD, USA, 2010. [Google Scholar]
- Park, M.S.; Shin, H.S.; Choi, C.Y.; Na Kim, N.; Park, D.-W.; Kil, G.-S.; Lee, J. Effect of hypoosmotic and thermal stress on gene expression and the activity of antioxidant enzymes in the cinnamon clownfish, Amphiprion melanopus. Anim. Cells Syst. Seoul 2011, 15, 219–225. [Google Scholar] [CrossRef]
- Copatti, C.E.; Baldisserotto, B.; de Freitas Souza, C.; Monserrat, J.M.; Garcia, L. Water pH and hardness alter ATPases and oxidative stress in the gills and kidney of pacu (Piaractus mesopotamicus). Neotrop. Ichthyol. 2019, 17, e190032. [Google Scholar] [CrossRef]
- Pellegrin, L.; Nitz, L.F.; Maltez, L.C.; Copatti, C.E.; Garcia, L. Alkaline water improves the growth and antioxidant responses of pacu juveniles (Piaractus mesopotamicus). Aquaculture 2019, 519, 734713. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, H.-J.; Kim, K.-W.; Hwang, I.-K.; Kim, D.-H.; Oh, C.W.; Lee, J.S.; Kang, J.-C. Growth performance, oxidative stress, and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity. Fish Physiol. Biochem. 2017, 43, 1421–1431. [Google Scholar] [CrossRef]
- Lemos, C.H.D.P.; Ribeiro, C.V.D.M.; de Oliveira, C.P.B.; Couto, R.D.; Copatti, C.E. Effects of interaction between pH and stocking density on the growth, haematological and biochemical responses of Nile tilapia juveniles. Aquaculture 2018, 495, 62–67. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Timmons, M.B.; Bisogni, J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 2006, 257, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Cohen, F.P.A.; Valenti, W.C.; Calado, R. Traceability Issues in the Trade of Marine Ornamental Species. Rev. Fish. Sci. 2013, 21, 98–111. [Google Scholar] [CrossRef]
- Foster, S.; Wiswedel, S.; Vincent, A. Opportunities and challenges for analysis of wildlife trade using CITES data—Seahorses as a case study. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 26, 154–172. [Google Scholar] [CrossRef]
- Olivotto, I.; Planas, M.; Simoes, N.; Holt, G.J.; Avella, M.A.; Calado, R. Advances in Breeding and Rearing Marine Ornamentals. J. World Aquac. Soc. 2011, 42, 135–166. [Google Scholar] [CrossRef]
- Koldewey, H.J.; Martin-Smith, K.M. A global review of seahorse aquaculture. Aquaculture 2010, 302, 131–152. [Google Scholar] [CrossRef]
- Kuo, T.-C.; Vincent, A. Assessing the changes in international trade of marine fishes under CITES regulations—A case study of seahorses. Mar. Policy 2018, 88, 48–57. [Google Scholar] [CrossRef]
- Foster, S.J.; Kuo, T.-C.; Wan, A.K.Y.; Vincent, A.C. Global seahorse trade defies export bans under CITES action and national legislation. Mar. Policy 2019, 103, 33–41. [Google Scholar] [CrossRef]
- Hora, M.D.S.C.D.; Joyeux, J.-C. Closing the reproductive cycle: Growth of the seahorse Hippocampus reidi (Teleostei, Syngnathidae) from birth to adulthood under experimental conditions. Aquaculture 2009, 292, 37–41. [Google Scholar] [CrossRef]
- Olivotto, I.; Avella, M.; Sampaolesi, G.; Piccinetti, C.; Ruiz, P.N.; Carnevali, O. Breeding and rearing the longsnout seahorse Hippocampus reidi: Rearing and feeding studies. Aquaculture 2008, 283, 92–96. [Google Scholar] [CrossRef]
- Fonseca, T.; David, F.S.; Ribeiro, F.A.S.; A Wainberg, A.; Valenti, W.C. Technical and economic feasibility of integrating seahorse culture in shrimp/oyster farms. Aquac. Res. 2015, 48, 655–664. [Google Scholar] [CrossRef]
- Cohen, F.; Valenti, W.C.; Planas, M.; Calado, R. Seahorse Aquaculture, Biology and Conservation: Knowledge Gaps and Research Opportunities. Rev. Fish. Sci. Aquac. 2016, 25, 100–111. [Google Scholar] [CrossRef]
- Oliver, M.P.; Burhans, R.; Simões, N. Seahorses and Pipefish. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I., Planas, M., Holt, G.J., Eds.; Wiley Blackwell: West Sussex, UK, 2017; pp. 299–326. [Google Scholar]
- Hora, M.d.S.C.d.; Joyeux, J.-C.; Rodrigues, R.V.; Sousa-Santos, L.P.d.; Gomes, L.C.; Tsuzuki, M.Y. Tolerance and growth of the longsnout seahorse Hippocampus reidi at different salinities. Aquaculture 2016, 463, 188–193. [Google Scholar] [CrossRef]
- Martinez-Cardenas, L.; Purser, J.G. Effect of direct transfer to different salinities on early juvenile Pot-bellied seahorse, Hippocampus abdominalis, survival in culture conditions. J. World Aquac. Soc. 2016, 47, 201–206. [Google Scholar] [CrossRef]
- Dong, X.; Duan, X.; Sun, Z.; Zhang, X.; Li, C.; Yang, S.; Ren, B.; Zheng, S.; Dionysiou, D.D. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis. Appl. Catal. B Environ. 2019, 261, 118214. [Google Scholar] [CrossRef]
- Faleiro, F.; Baptista, M.; Santos, C.; Aurélio, M.L.; Pimentel, M.; Pegado, M.R.; Paula, J.R.; Calado, R.; Repolho, T.; Rosa, R. Seahorses under a changing ocean: The impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish. Conserv. Physiol. 2015, 3, cov009. [Google Scholar] [CrossRef] [Green Version]
- Simčič, T.; Jesenšek, D.; Brancelj, A. Metabolic potential, respiration rate and their relationship in offspring of different sizes of marble trout (Salmo marmoratus Cuvier). Turk. J. Fish Aquat Sci 2015, 15, 39–48. [Google Scholar] [CrossRef]
- Sokolova, I.M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr Comp. Biol 2013, 53, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Sokolova, I.M.; Frederich, M.; Bagwe, R.; Lannig, G.; Sukhotin, A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 2012, 79, R713–R715. [Google Scholar] [CrossRef]
- Lushchak, V.I. Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiol. Biochem. 2016, 42, 711–747. [Google Scholar] [CrossRef]
- Shrivastava, J.; Ndugwa, M.; Caneos, W.; De Boeck, G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquat. Toxicol. 2019, 212, 54–69. [Google Scholar] [CrossRef]
- Sampaio, E.; Lopes, A.R.; Francisco, S.; Paula, J.R.; Pimentel, M.; Maulvault, A.L.; Repolho, T.; Grilo, T.F.; Pousão-Ferreira, P.; Marques, A.; et al. Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Sci Total Environ. 2018, 618, 388–398. [Google Scholar] [CrossRef]
- Tseng, C.; Chien, J.H.; Chu, T.; Cheng, A.; Shiu, Y.; Han, T.; Liu, C. Effects of food type, temperature and salinity on the growth performance and antioxidant status of the longsnout seahorse, Hippocampus reidi. Aquac. Res. 2020, 51, 4793–4804. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Stoliar, O.B.; Lushchak, V.I. Environmental pollution and oxidative stress in fish. In Oxidative stress—Environmental Induction and Dietary Antioxidants; Lushchak, V., Ed.; InTech: Rang-Du-Fliers, France, 2012; pp. 131–166. [Google Scholar]
- Carneiro, M.D.; García-Mesa, S.; Sampaio, L.; Planas, M. Primary, secondary, and tertiary stress responses of juvenile seahorse Hippocampus reidi exposed to acute acid stress in brackish and seawater. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2021, 255, 110592. [Google Scholar] [CrossRef]
- Planas, M.; Silva, C.; Quintas, P.; Chamorro, A.; Piñero, S. Ongrowing and enhancement of n-3 HUFA profile in adult Artemia: Short- vs long-time enrichment. J. Appl. Phycol. 2017, 29, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Randazzo, B.; Rolla, L.; Ofelio, C.; Planas, M.; Gioacchini, G.; Vargas, A.; Giorgini, E.; Olivotto, I. The influence of diet on the early development of two seahorse species (H. guttulatus and H. reidi): Traditional and innovative approaches. Aquaculture 2018, 490, 75–90. [Google Scholar] [CrossRef]
- Planas, M.; Chamorro, A.; Quintas, P.; Vilar, A. Establishment and maintenance of threatened long-snouted seahorse, Hippocampus guttulatus, broodstock in captivity. Aquaculture 2008, 283, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Blanco, A.; Chamorro, A.; Planas, M. Implications of physical key factors in the early rearing of the long-snouted seahorse Hippocampus guttulatus. Aquaculture 2014, 433, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Kikkawa, T.; Kita, J.; Ishimatsu, A. Comparison of the lethal effect of CO 2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull. 2004, 48, 108–110. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Solórzano, L. Determination of ammonia in natural waters by the phenolhypochlorite. Method Limnol. Oceanogr. 1969, 14, 799–801. [Google Scholar] [CrossRef]
- Hansen, H.P.; Grasshoff, K. Automated chemical analysis. In Methods of Seawater Analysis, 2nd ed.; Grasshoff, K., Ehrdhardt, M., Kremling, K., Eds.; Verlag Chemie: Weinheim, Germany, 1983; pp. 347–395. [Google Scholar]
- Novelli, B.; Socorro, J.A.; Caballero, M.J.; Ferrer, F.J.O.; Segade-Botella, A.; Domínguez, L.M. Development of seahorse (Hippocampus reidi, Ginsburg 1933): Histological and histochemical study. Fish Physiol. Biochem. 2015, 41, 1233–1251. [Google Scholar] [CrossRef]
- Suarez-Bregua, P.; Rosendo, S.; Comesaña, P.; Sánchez-Ruiloba, L.; Morán, P.; Planas, M.; Rotllant, J. Dynamic changes in DNA methylation during seahorse (Hippocampus reidi) postnatal development and settlement. Front. Zool. 2021, 18, 52. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Mccord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Sturve, J.; Stephensen, E.; Förlin, L. Effects of redox cycling on DT diaphorase activity in the liver of rainbow trout (Oncorhynchus mykiss). Comp. Hepatol. 2005, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Aebi, H. Catalase in vitro, Methods Enzymol. 1984, 105, 121–126. 105. [CrossRef]
- Lupiañez, J.A.; Adroher, F.J.; Vargas, A.M.; Osuna, A. Differential behaviour of glucose 6-phosphate dehydrogenase in two morphological forms of Trypanosoma cruzi. Int. J. Biochem. 1987, 19, 1085–1089. [Google Scholar] [CrossRef]
- Barroso, J.B.; García-Salguero, L.; Peragón, J.; de la Higuera, M.; Lupiáñez, J. The influence of dietary protein on the kinetics of NADPH production systems in various tissues of rainbow trout (Oncorhynchus mykiss). Aquaculture 1994, 124, 47–59. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984, 105, 114–120. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 1975, 250, 5475–5480. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Anderson, M.E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985, 113, 548–555. [Google Scholar] [CrossRef]
- Baker, M.A.; Cerniglia, G.J.; Zaman, A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 1990, 190, 360–365. [Google Scholar] [CrossRef]
- Vandeputte, C.; Guizon, I.; Genestie-Denis, I.; Vannier, B.; Lorenzon, G. A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: Performance study of a new miniaturized protocol. Cell Biol. Toxicol. 1994, 10, 415–421. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef]
- Lourie, S.A.; Foster, S.J.; Cooper, E.W.T.; Vincent, A.C.J. A Guide to the Identification of Seahorses; University of British Columbia and World Wildlife Fund: Washington, DC, USA, 2004. [Google Scholar]
- Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 23 February 2018).
- Husson, F.; Josse, J.; Le, S.; Mazet, J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. Available online: https://CRAN.R-project.org/package=FactoMineR (accessed on 20 March 2020).
- Kassambara, A. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 23 February 2020).
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Corrplot: Visualization of a Correlation Matrix. Available online: https://CRAN.R-project.org/package=corrplot (accessed on 6 March 2020).
- Birnie-Gauvin, K.; Costantini, D.; Cooke, S.J.; Willmore, W.G. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish Fish. 2017, 18, 928–942. [Google Scholar] [CrossRef]
- Gressler, L.T.; Riffel, A.P.K.; Parodi, T.V.; Saccol, E.M.H.; Koakoski, G.; da Costa, S.T.; Pavanato, M.A.; Heinzmann, B.M.; Caron, B.; Schmidt, D.; et al. Silver catfish Rhamdia quelen immersion anaesthesia with essential oil of Aloysia triphylla (L’Hérit) Britton or tricaine methanesulfonate: Effect on stress response and antioxidant status. Aquac. Res. 2014, 45, 1061–1072. [Google Scholar] [CrossRef]
- Planas, M.; Olivotto, I.; González, M.J.; Laurà, R.; Angeletti, C.; Amici, A.; Zarantoniello, M. Pre-breeding Diets in the Seahorse Hippocampus reidi: How Do They Affect Fatty Acid Profiles, Energetic Status and Histological Features in Newborn? Front. Mar. Sci. 2021, 8, 688058. [Google Scholar] [CrossRef]
- Whittington, C.M.; Griffith, O.W.; Qi, W.; Thompson, M.B.; Wilson, A.B. Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Mol. Biol. Evol. 2015, 32, 3114–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.-K.; Yang, W.-K.; Lin, S.-T.; Liu, C.-C.; Lin, H.-M.; Chen, H.-H.; Cheng, C.-W.; Lee, T.-H.; Hwang, P.-P. The acute and regulatory phases of time-course changes in gill mitochondrion-rich cells of seawater-acclimated medaka (Oryzias dancena) when exposed to hypoosmotic environments. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 164, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.V.; Pedron, J.D.S.; Romano, L.A.; Tesser, M.B.; Sampaio, L.A. Acute responses of juvenile cobia Rachycentron canadum (Linnaeus 1766) to acid stress. Aquac. Res. 2015, 46, 1241–1247. [Google Scholar] [CrossRef]
- Kwan, G.T.; Shen, S.G.; Drawbridge, M.; Checkley, D.M.; Tresguerres, M. Ion-transporting capacity and aerobic respiration of larval white seabass (Atractoscion nobilis) may be resilient to ocean acidification conditions. Sci. Total Environ. 2021, 791, 148285. [Google Scholar] [CrossRef]
- Mota, V.C.; Hop, J.; Sampaio, L.A.; Heinsbroek, L.T.N.; Verdegem, M.C.J.; Eding, E.H.; Verreth, J.A.J. The effect of low pH on physiology, stress status and growth performance of turbot (Psetta maxima L.) cultured in recirculating aquaculture systems. Aquac. Res. 2018, 49, 3456–3467. [Google Scholar] [CrossRef] [Green Version]
- Tresguerres, M.; Hamilton, T.J. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. J. Exp. Biol. 2017, 220, 2136–2148. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.; García-Rejón, L.; Lupiáñez, J.; Higuera, M. Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout, Oncorhynchus mykiss (Walbaum): Adaptive response to a high-protein/non-carbohydrate diet and starvation of glucose 6-phosphate dehydrogenase activity. Aquac. Nutr. 2015, 1, 213–220. [Google Scholar] [CrossRef]
- Gallagher, E.P.; Hasspieler, B.M.; Di Glulio, R.T. Effects of buthionine sulfoximine and diethyl maleate on glutathione turnover in the channel catfish. Biochem. Pharmacol. 1992, 43, 2209–2215. [Google Scholar] [CrossRef]
- Otto, D.M.E.; Moon, T.W. Endogenous antioxidant systems of two teleost fish, the rainbow trout and the black bullhead, and the effect of age. Fish Physiol. Biochem. 1996, 15, 349–358. [Google Scholar] [CrossRef]
- Winston, G.W.; Di Giulio, R.T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 1991, 19, 137–161. [Google Scholar] [CrossRef]
- Martínez-Álvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant Defenses in Fish: Biotic and Abiotic Factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Fernández-Díaz, C.; Kopecka, J.; Cañavate, J.; Sarasquete, C.; Solé, M. Variations on development and stress defences in Solea senegalensis larvae fed on live and microencapsulated diets. Aquaculture 2006, 251, 573–584. [Google Scholar] [CrossRef]
- livotto, I.; Di Stefano, M.; Rosetti, S.; Cossignani, L.; Pugnaloni, A.; Giantomassi, F.; Carnevali, O. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: Molecular and biochemical implications. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 159, 207–218. [Google Scholar] [CrossRef]
- Costantini, D. Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J. Exp. Biol. 2019, 222, jeb194688. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Kamler, E.; Keckei, H.; Bauer-Nemeschkal, E. Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. J. Fish Biol. 1998, 53, 658–682. [Google Scholar] [CrossRef]
- Toth, L.G.; Szabo, M.; Webb, D.J. Adaptation of the tetrazolium reduction test for the measurement of the electron transport system (ETS) activity during embryonic development of medaka. J. Fish Biol. 1995, 46, 835–844. [Google Scholar] [CrossRef]
- Boveris, A.; Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 1973, 134, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Biller, J.D.; Takahashi, L.S. Oxidative stress and fish immune system: Phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Cienc. 2018, 90, 3403–3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Zheng, M.; Gao, D.; Li, S.; Fang, W.; Huang, J.; Xie, J.; Liu, J.; Liu, Y.; Li, Z.; et al. Hypoosmotic stress induced tissue-specific immune responses of yellowfin seabream (Acanthopagrus latus) revealed by transcriptomic analysis. Fish Shellfish Immunol. 2020, 99, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Zheng, M.; Li, S.; Xie, J.; Fang, W.; Gao, D.; Huang, J.; Lu, J. Response of gut microbiota and immune function to hypoosmotic stress in the yellowfin seabream (Acanthopagrus latus). Sci. Total. Environ. 2020, 745, 140976. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Cao, L.; Liu, J.; Ren, Z.; Zhao, B.; Dou, S. Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae. Sci. Total Environ. 2020, 718, 137234. [Google Scholar] [CrossRef]
- Moreira, A.; Figueira, E.; Soares, A.M.V.M.; Freitas, R. The effects of arsenic and seawater acidification on antioxidant and biomineralization responses in two closely related Crassostrea species. Sci. Total Environ. 2016, 545–546, 569–581. [Google Scholar] [CrossRef]
- Díaz, M.E.; Furné, M.; Trenzado, C.E.; García-Gallego, M.; Domezain, A.; Sanz, A. Antioxidant defences in the first life phases of the sturgeon Acipenser naccarii. Aquaculture 2010, 307, 123–129. [Google Scholar] [CrossRef]
- Robergs, R.A. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle. PLoS ONE 2017, 12, e0189822. [Google Scholar] [CrossRef]
- Robergs, R.A. Invited review: Quantifying proton exchange from chemical reactions—Implications for the biochemistry of metabolic acidosis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 235, 29–45. [Google Scholar] [CrossRef]
- Matsuyama, S.; Reed, J.C. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 2000, 7, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Carcupino, M.; Baldacci, A.; Mazzini, M.; Franzoi, P. Functional significance of the male brood pouch in the reproductive strategies of pipefishes and seahorses: A morphological and ultrastructural comparative study on three anatomically different pouches. J. Fish Biol. 2002, 61, 1465–1480. [Google Scholar] [CrossRef]
- Sommer, S.; Whittington, C.M.; Wilson, A.B. Standardised classification of pre-release development in male-brooding pipefish, seahorses, and seadragons (Family Syngnathidae). BMC Dev. Biol. 2012, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Hermes-Lima, M.; Moreira, D.C.; Rivera-Ingraham, G.A.; Giraud-Billoud, M.; Genaro-Mattos, T.C.; Campos, É.G. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic. Biol. Med. 2015, 89, 1122–1143. [Google Scholar] [CrossRef]
- Maulvault, A.L.; Barbosa, V.; Alves, R.; Anacleto, P.; Camacho, C.; Cunha, S.; Fernandes, J.O.; Ferreira, P.P.; Rosa, R.; Marques, A.; et al. Integrated multi-biomarker responses of juvenile seabass to diclofenac, warming and acidification co-exposure. Aquat. Toxicol. 2018, 202, 65–79. [Google Scholar] [CrossRef]
- Silva, C.S.E.; Novais, S.C.; Lemos, M.F.L.; Mendes, S.; Oliveira, A.P.; Gonçalves, E.J.; Faria, A. M Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae. Sci. Total Environ. 2016, 563–564, 89–98. [Google Scholar] [CrossRef]
- Srikanth, K.; Pereira, E.; Duarte, A.C.; Ahmad, I. Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—A review. Environ. Sci. Pollut. Res. 2013, 20, 2133–2149. [Google Scholar] [CrossRef]
- Almroth, B.C.; Johansson, A.; Förlin, L.; Sturve, J. Early-age changes in oxidative stress in brown trout, Salmo trutta. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 155, 442–448. [Google Scholar] [CrossRef]
- Barcellos, J.L.G.; Kreutz, L.C.; Koakoski, G.; Oliveira, T.A.; Rosa, J.G.S.d.; Fagundes, M. Fish age, instead of weight and size, as a determining factor for time course differences in cortisol response to stress. Physiol. Behav. 2012, 107, 397–400. [Google Scholar] [CrossRef]
- Halmetoja, A.; Valtonen, E.T.; Koskenniemi, E. Perch (Perca fluviatilis L.) parasites reflect ecosystem conditions: A comparison of a natural lake and two acidic reservoirs in Finland. Int. J. Parasitol. 2000, 30, 1437–1444. [Google Scholar] [CrossRef]
- Jain, S.; Nath, S. Kinetic model of ATP synthase: pH dependence of the rate of ATP synthesis. FEBS Lett. 2000, 476, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Stanton, R.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 2012, 64, 362–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Jiang, Z.; Mao, M.; Mao, S.; Sun, Y.; Sui, Y. Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus. Iran J. Fish. Sci. 2018, 17, 675–689. [Google Scholar] [CrossRef]
- Kuno, M.; Li, G.; Moriura, Y.; Hino, Y.; Kawawaki, J.; Sakai, H. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells. Pflugers Arch. Eur. J. Physiol. 2016, 468, 837–847. [Google Scholar] [CrossRef] [PubMed]
SW | BW | |||
---|---|---|---|---|
pH 6.5 | pH 8.0 | pH 6.5 | pH 8.0 | |
Salinity (‰) | 33 ± 1 | 11 ± 1 | ||
pH | 6.6 ± 0.01 | 8.1 ± 0.0 | 6.5 ± 0.01 | 7.8 ± 0.01 |
Alkalinity (mg CaCO3 L−1) | 22 ± 5 b | 138 ± 5 a | 20 ± 5 b | 62 ± 5 a |
Temperature ( °C) | 26.1 ± 0.1 | 26.1 ± 0.2 | ||
Oxygen (mg O2 L−1) | 6.53 ± 0.03 | 6.56 ± 0.01 | ||
TAN (mg N- NH4 + +NH3 L−1) | 0.21 ± 0.04 | 0.13 ± 0.02 | ||
Nitrite (mg N-NO2 L−1) | 0.02 ± 0.0 | 0.05 ± 0.05 | ||
Nitrate (mg N-NO3 L−1) | 0.13 ± 0.03 | 0.11 ± 0.01 |
pH 6.5 | pH 8 | |
---|---|---|
Salinity (‰) | 33 ± 1 | |
pH | 6.6 ± 0.01 | 8.1 ± 0.0 |
Alkalinity (mg CaCO3 L−1) | 21 ± 4 b | 142 ± 7 a |
Temperature (°C) | 26.0 ± 0.5 | |
Oxygen (mg O2 L−1) | 6.5 ± 0.5 | |
TAN (mg N-NH4 + +NH3 L−1) | 0.3 ± 0.1 | |
Nitrite (mg N-NO2 L−1) | 0.1 ± 0.05 | |
Nitrate (mg N-NO3 L−1) | 0.2 ± 0.05 |
SW | BW | |||
---|---|---|---|---|
pH 6.5 | pH 8.0 | pH 6.5 | pH 8.0 | |
Survival (%) | 98.9 ± 0.48 a | 96.9 ± 0.96 b | 86.9 ± 2.2 b | 92.2 ± 2.2 a |
Final length (mm) | 27.5 ± 0.86 | 26.9 ± 1.10 | 19.6 ± 0.2 b | 22.8 ± 0.7 a |
Final weight (mg) | 37.8 ± 2.7 | 35.8 ± 3.5 | 17.6 ± 0.4 b | 27.9 ± 2.2 a |
SGR (%) | 5.1 ± 0.2 | 5.0 ± 0.1 | 4.0 ± 0.0 b | 4.8 ± 0.1 a |
K | 0.18 ± 0.01 | 0.18 ± 0.01 | 0.23 ± 0.03 | 0.23 ± 0.00 |
Age (Days after Male’s Pouch Release—DAR) | ANOVA (p) | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | 0 | 2 | 7 | 14 | 21 | age | pH | Age × pH | |
SOD | 6.5 | 51.5 ± 10.2 | 51.6 ± 19.9 | 45.7 ± 1.8 | 49.9 ± 3.2 | 47.4 ± 2.5 | 0.159 | 0.613 | 0.478 |
8.0 | 47.0 ± 0.7 | 58.1 ± 16.4 | 52.2 ± 2.8 | 75.1 ± 11.0 | |||||
DTD | 6.5 | 3.1 ± 1.0 ab | 2.7 ± 1.0 b | 4.2 ± 0.5 ab | 4.2 ± 0.2 ab | 4.64 ± 0.3 a | 0.001 | 0.788 | 0.238 |
8.0 | 3.4 ± 0.2 ab | 4.3 ± 0.5 ab | 3.1 ± 0.1 ab | 4.7 ± 0.5 a | |||||
CAT | 6.5 | 3.6 ± 0.6 cd | 2.6 ± 0.7 d | 4.5 ± 1.4 c | 7.7 ± 1.2 ab | 11.4 ± 0.5 a | <0.001 | 0.252 | 0.438 |
8.0 | 2.5 ± 0.0 d | 3.6 ± 0.3 cd | 5.0 ± 1.1 bc | 12.1 ± 1.5 a | |||||
G6PDH | 6.5 | 1.0 ± 0 b | 1.22 ± 0.3 b | SNA | 2.0 ± 0.0 a | 2.7 ± 0.3 a | <0.001 | - | 0.958 |
8.0 | 1.1 ± 0.1 b | 1.3 ± 0.1 b | SNA | 2.6 ± 0.0 a |
Age (Days after Male’s Pouch Release—DAR) | ANOVA (p) | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | 0 | 2 | 7 | 14 | 21 | Age | pH | Age × pH | |
GPx | 6.5 | 420 ± 240 ab | 398 ± 45 a | 168 ± 54 c | 227 ± 22 abc | 351 ± 36 ab | <0.001 | 0.231 | 0.934 |
8.0 | 344 ± 53 ab | 129 ± 52 c | 193 ± 10 bc | 342 ± 23 ab | |||||
GR | 6.5 | 5.5 ± 0.3 c | 5.2 ± 0.8 c | 7.2 ± 0.3 bc | 8.6 ± 0.7 ab | 10.4 ± 0.8 a | <0.001 | 0.640 | 0.901 |
8.0 | 5.2 ± 0.2 c | 7.5 ± 0.8 bc | 7.9 ± 0.9 b | 10.0 ± 1.4 a | |||||
GST | 6.5 | 5.0 ± 1.2 d | 6.3 ± 0.1 d | 10.6 ± 1.3 cd | 18.1 ± 3.5 b | 17.3 ± 2.3 bc | <0.001 | 0.288 | 0.087 |
8.0 | 5.7 ± 0.1 d | 12.1 ± 4.1 cd | 16.0 ± 0.0 bc | 24.3 ± 3.6 a | |||||
GSH | 6.5 | 59.1 ± 2.7 ab | 48.4 ± 0.5 b | 57.6 ± 4.4 ab | 68.5 ± 11.2 a | 73.9 ± 3.5 a | <0.001 | 0.031 | 0.303 |
8.0 | 45.7 ± 0.9 b | 56.2 ± 3.4 ab | 58.1 ± 2.6 ab | 60.8 ± 9.6 ab | |||||
GSSG | 6.5 | 2.6 ± 0.1 ab | 2.3 ± 0.2 b | 3.5 ± 0.3 ab | 3.4 ± 0.1 ab | 3.1 ± 0.4 ab | 0. 006 | 0.379 | 0.175 |
8.0 | 2.7 ± 0.0 ab | 2.9 ± 0.7 ab | 3.6 ± 0.8 ab | 3.9 ± 0.2 a | |||||
OSI | 6.5 | 8.7 ± 0.7 | 9.7 ± 0.8 | 12.3 ± 1.9 | 10.0 ± 1.4 | 8.4 ± 1.4 | 0.379 | 0.095 | 0.171 |
8.0 | 11.9 ± 0.3 | 10.6 ± 3.1 | 12.5 ± 3.3 | 12.9 ± 2.7 | |||||
TEAC | 6.5 | 207 ± 27 a | 183 ± 0.7 ab | 76 ± 43 b | 73 ± 38 b | 99 ± 25 b | <0.001 | 0.714 | 0.543 |
8.0 | 173 ± 32 ab | 88 ± 52 b | 121 ± 47 ab | 76 ± 24 b | |||||
TBARS | 6.5 | 0.00 ± 0.00 c | 0.02 ± 0.02 bc | 0.06 ± 0.05 bc | 0.18 ± 0.11 ab | 0.14 ± 0.05 ab | <0.001 | 0.918 | 0.540 |
8.0 | 0.0 ± 0.0 c | 0.06 ± 0.03 bc | 0.17 ± 0.09 ab | 0.34 ± 0.2 a |
Age (Days after Male’s Pouch Release—DAR) | ANOVA (p) | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | 0 | 2 | 7 | 14 | 21 | Age | pH | Age × pH | |
SOD | 6.5 | 39.6 ± 17.6 b | 68.5 ± 4.6 a | 100.7 ± 32.4 a | 91.3 ± 14.6 a | 89.3 ± 33.3 a | 0.012 | 0.311 | 0.331 |
8.0 | 68.9 ± 6.8 a | 62.9 ± 14.4 a | 71.9 ± 4.5 a | 101.6 ± 25.8 a | |||||
DTD | 6.5 | 1.9 ± 2.1 b | 4.1 ± 0.6 a | 4.5 ± 0.3 a | 4.44 ± 0.6 a | 4.3 ± 0.1 a | 0.019 | 0.245 | 0.775 |
8.0 | 4.3 ± 0.9 a | 4.5 ± 0.1 a | 5.1 ± 0.5 a | 4.6 ± 0.6 a | |||||
CAT | 6.5 | 4.7 ± 0.2 b | 5.5 ± 1.2 b | 8.2 ± 2.3 ab | 11.9 ± 1.0 a | 10.4 ± 4.7 ab | <0.001 | 0.288 | 0.374 |
8.0 | 5.0 ± 0.4 b | 5.3 ± 0.5 b | 8.8 ± 1.8 ab | 13.7 ± 4.1 a | |||||
G6PDH | 6.5 | 2.0 ± 0.4 | SNA | 1.8 ± 0.3 | 1.8 ± 0.5 | 1.6 ± 0.6 | 0.147 | - | 0.110 |
8.0 | 1.3 ± 0.1 | 1.0 ± 0.3 | 2.2 ± 0.5 | 2.2 ± 0.4 |
Age (Days after the Male’s Pouch Release—DAR) | ANOVA (p) | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | 0 | 2 | 7 | 14 | 21 | Age | pH | Age × pH | |
GPx | 6.5 | 486 ± 110 a | 271 ± 41 ab | 177 ± 2 b | 313 ± 21 ab | 226 ± 72 b | <0.001 | 0.442 | 0.485 |
8.0 | 256 ± 39 b | 171 ± 31 b | 323 ± 128 ab | 354 ± 59 ab | |||||
GR | 6.5 | 7.4 ± 1.8 b | 7.4 ± 0.9 b | 10.9 ± 2.8 ab | 12.6 ± 0.9 a | 11.3 ± 3.3 a | 0.008 | 0.550 | 0.462 |
8.0 | 7.1 ± 0.3 b | 8.3 ± 0.6 ab | 10.7 ± 1.9 a | 13.4 ± 3.9 a | |||||
GST | 6.5 | 13.1 ± 4.3 | 14.9 ± 4.5 | 21.0 ± 6.1 | 21.6 ± 8.2 | 14.4 ± 3.2 | 0.096 | 0.777 | 0.171 |
8.0 | 15.3 ± 2.1 | 12.7 ± 2.7 | 23.2 ± 6.0 | 19.7 ± 5.7 | |||||
GSH | 6.5 | 48 ± 5.5 ab | 27.3 ± 0.1 c | 37.2 ± 5.7 c | 32.9 ± 4.3 c | 24.0 ± 0.7 c | <0.001 | <0.001 | <0.001 |
8.0 | 31.5 ± 3.3 c | 32.5 ± 3.8 c | 56.5 ± 7.8 a | 56.7 ± 0.3 a | |||||
GSSG | 6.5 | 1.1 ± 1.5 d | 2.5 ± 0.5 cd | 2.6 ± 0.01 cd | 2.0 ± 0.01 d | 4.3 ± 0.4 a | <0.001 | 0.072 | 0.009 |
8.0 | 2.5 ± 0.2 cd | 3.2 ± 0.6 abc | 2.8 ± 0.2 bc | 3.4 ± 0.3 ab | |||||
OSI | 6.5 | 4.7 ± 6.7 e | 18.2 ± 3.8 bc | 15.6 ± 1.4 bc | 13.6 ± 2.0 bc | 36.0 ± 2.1 a | <0.001 | 0.001 | <0.001 |
8.0 | 16.0 ± 0.6 bc | 19.4 ± 1.6 b | 10.1 ± 1.0 de | 11.5 ± 0.6 cde | |||||
TEAC | 6.5 | 210 ± 15 a | 55 ± 53 abc | 40 ± 22 abcd | 48 ± 39 abcd | 2.2 ± 3.8 cd | <0.001 | 0.529 | 0.748 |
8.0 | 92 ± 0 ab | 67 ± 48 ab | 33 ± 23 bcd | 0 ± 0 d | |||||
TBARS | 6.5 | 1.56 ± 1.0 | 1.21 ± 0.1 | 0.15 ± 0.2 | 0.63 ± 0.4 | 0.44 ± 0.22 | 0.081 | 0.164 | 0.300 |
8.0 | 1.25 ± 0.4 | 1.26 ± 0.3 | 0.38 ± 0.3 | 1.23 ± 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, M.D.D.; García-Mesa, S.; Sampaio, L.A.; Planas, M. Implications of Salinity and Acidic Environments on Fitness and Oxidative Stress Parameters in Early Developing Seahorses Hippocampus reidi. Animals 2022, 12, 3227. https://doi.org/10.3390/ani12223227
Carneiro MDD, García-Mesa S, Sampaio LA, Planas M. Implications of Salinity and Acidic Environments on Fitness and Oxidative Stress Parameters in Early Developing Seahorses Hippocampus reidi. Animals. 2022; 12(22):3227. https://doi.org/10.3390/ani12223227
Chicago/Turabian StyleCarneiro, Mario D. D., Sergio García-Mesa, Luis A. Sampaio, and Miquel Planas. 2022. "Implications of Salinity and Acidic Environments on Fitness and Oxidative Stress Parameters in Early Developing Seahorses Hippocampus reidi" Animals 12, no. 22: 3227. https://doi.org/10.3390/ani12223227
APA StyleCarneiro, M. D. D., García-Mesa, S., Sampaio, L. A., & Planas, M. (2022). Implications of Salinity and Acidic Environments on Fitness and Oxidative Stress Parameters in Early Developing Seahorses Hippocampus reidi. Animals, 12(22), 3227. https://doi.org/10.3390/ani12223227