Oxidative Stress Response of Meagre to Dietary Black Soldier Fly Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Enzymatic Activity Determination
2.3. Malondialdehyde (MDA) Determination
2.4. Glutathione and Oxidative Stress Index
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Lock, E.-J.; Biancarosa, I.; Gasco, L. Insects as raw materials in compound feed for aquaculture. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 263–276. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, I.; Castro, C.; Antunes, B.; Coutinho, F.; Rangel, F.; Couto, A.; Serra, C.R.; Peres, H.; Pousão-Ferreira, P.; Matos, E.; et al. Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses. Aquaculture 2020, 516, 734613. [Google Scholar] [CrossRef]
- Guerreiro, I.; Serra, C.R.; Coutinho, F.; Couto, A.; Castro, C.; Rangel, F.; Peres, H.; Pousão-Ferreira, P.; Matos, E.; Gasco, L.; et al. Digestive enzyme activity and nutrient digestibility in meagre (Argyrosomus regius) fed increasing levels of black soldier fly meal (Hermetia illucens). Aquac. Nutr. 2021, 27, 142–152. [Google Scholar] [CrossRef]
- Coutinho, F.; Castro, C.; Guerreiro, I.; Rangel, F.; Couto, A.; Serra, C.R.; Peres, H.; Pousão-Ferreira, P.; Rawski, M.; Oliva-Teles, A.; et al. Mealworm larvae meal in diets for meagre juveniles: Growth, nutrient digestibility and digestive enzymes activity. Aquaculture 2021, 535, 736362. [Google Scholar] [CrossRef]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A potential source of protein and other nutrients for feed and food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef]
- Couto, A.; Serra, C.R.; Guerreiro, I.; Coutinho, F.; Castro, C.; Rangel, F.; Lavrador, A.S.; Monteiro, M.; Santos, R.; Peres, H.; et al. Black soldier fly meal effects on meagre health condition: Gut morphology, gut microbiota and humoral immune response. J. Insects Food Feed 2022, 8, 1281–1295. [Google Scholar] [CrossRef]
- Hua, K. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture 2021, 530, 735732. [Google Scholar] [CrossRef]
- Tran, H.Q.; Nguyen, T.T.; Prokešová, M.; Gebauer, T.; Doan, H.V.; Stejskal, V. Systematic review and meta-analysis of production performance of aquaculture species fed dietary insect meals. Rev. Aquac. 2022, 14, 1637–1655. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Yu, Y.P. Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus × O. aureus. Aquaculture 1999, 179, 439–446. [Google Scholar] [CrossRef]
- Olsen, R.E.; Suontama, J.; Langmyhr, E.; Mundheim, H.; Ringø, E.; Melle, W.; Malde, M.K.; Hemre, G.-I. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar. Aquacult. Nutr. 2006, 12, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, O.; Amlund, H.; Berg, A.; Olsen, R.E. The effect of dietary chitin on growth and nutrient digestibility in farmed Atlantic cod, Atlantic salmon and Atlantic halibut. Aquacult. Res. 2017, 48, 123–133. [Google Scholar] [CrossRef]
- Ngo, D.H.; Kim, S.K. Antioxidant effects of chitin, chitosan and their derivatives. Adv. Food Nutr. Res. 2014, 73, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Gasco, L.; J´ozefiak, A.; Henry, M. Beyond the protein concept: Health aspects of using edible insects on animals. J. Insects Food Feed 2021, 7, 715–741. [Google Scholar] [CrossRef]
- Giordano, E.; Visioli, F. Long-chain omega 3 fatty acids: Molecular bases of potential antioxidant actions. Prostaglandins Leukot. Essent. Fatty Acids 2014, 90, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Taşbozan, O.; Gökçe, M.A. Fatty acids in fish. Fatty Acids 2017, 1, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Gasco, L.; Biasato, I.; Enes, P.; Gai, F. Potential and challenges for the use of insects as feed for aquaculture. In Mass Production of Beneficial Organisms–Invertebrates and Entomopathogens, 2nd ed.; Morales-Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 465–492. [Google Scholar] [CrossRef]
- Gu, J.; Liang, H.; Ge, X.; Xia, D.; Pan, L.; Mi, H.; Ren, M. A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish Shellfish Immunol. 2022, 120, 214–221. [Google Scholar] [CrossRef]
- Hidalgo, M.C.; Morales, A.E.; Pula, H.J.; Tomás-Almenar, C.; Sánchez-Muros, M.J.; Melenchón, F.; Fabrikov, D.; Cardenete, G. Oxidative metabolism of gut and innate immune status in skin and blood of tench (Tinca tinca) fed with different insect meals (Hermetia illucens and Tenebrio molitor). Aquaculture 2022, 558, 738384. [Google Scholar] [CrossRef]
- Mi, J.; Lu, R.; Yan, X.; Song, D.; Yang, L.; Qin, C.; Yang, G.; Zhang, H.; Lin, M.; Nie, G. Evaluating the mixture of earthworm meal and wormcast as a protein source for common carp (Cyprinus carpio L.) based on growth performance, antioxidant, immune capacity, lipid metabolism and intestinal health. Aquac. Rep. 2022, 24, 101118. [Google Scholar] [CrossRef]
- Song, S.-G.; Chi, S.-Y.; Tan, B.-P.; Liang, G.-L.; Lu, B.-Q.; Dong, X.-H.; Yang, Q.-H.; Liu, H.-Y.; Zhang, S. Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus ♂ x Epinephelus fuscoguttatus ♀). Aquac. Res. 2018, 49, 2210–2217. [Google Scholar] [CrossRef]
- Wang, G.; Peng, K.; Hu, J.; Yi, C.; Chen, X.; Wu, H.; Huang, Y. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 2019, 507, 144–154. [Google Scholar] [CrossRef]
- Dong, G.F.; Yang, Y.O.; Song, X.M.; Yu, L.; Zhao, T.T.; Huang, G.L.; Hu, Z.J.; Zhang, J.L. Comparative effects of dietary supplementation with maggot meal and soybean meal in gibel carp (Carassius auratus gibelio) and darkbarbel catfish (Pelteobagrus vachelli): Growth performance and antioxidant responses. Aquac. Nutr. 2013, 19, 543–554. [Google Scholar] [CrossRef]
- Henry, M.A.; Gai, F.; Enes, P.; Peréz-Jiménez, A.; Gasco, L. Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2018, 83, 308–313. [Google Scholar] [CrossRef]
- Ushakova, N.A.; Dontsov, A.E.; Marsova, M.V.; Bastrakov, A.I. Antioxidant properties of an extract of Hermetia illucens larvae. Biol. Bull. 2021, 48, 118–121. [Google Scholar] [CrossRef]
- Caimi, C.; Gasco, L.; Biasato, I.; Malfatto, V.; Varello, K.; Prearo, M.; Pastorino, P.; Bona, M.C.; Francese, D.F.; Schiavone, A.; et al. Could dietary black soldier fly meal inclusion affect the liver and intestinal histological traits and the oxidative stress biomarkers of Siberian sturgeon (Acipenser baerii) juveniles? Animals 2020, 10, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawole, F.J.; Adeoye, A.A.; Tiamiyu, L.O.; Ajala, K.I.; Obadara, S.O.; Ganiyu, I.O. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haematophysiological response, and oxidative stress biomarker. Aquaculture 2020, 518, 734849. [Google Scholar] [CrossRef]
- Li, S.; Ji, H.; Zhang, B.; Zhou, J.; Yu, H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017, 477, 62–70. [Google Scholar] [CrossRef]
- Cardinaletti, G.; Randazzo, B.; Messina, M.; Zarantoniello, M.; Giorgini, E.; Zimbelli, A.; Bruni, L.; Parisi, G.; Olivotto, I.; Tulli, F. Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Castro, C.; Diogenes, A.F.; Coutinho, F.; Panserat, S.; Corraze, G.; Pérez-Jiménez, A.; Peres, H.; Oliva-Teles, A. Liver and intestine oxidative status of gilthead sea bream fed vegetable oil and carbohydrate rich diets. Aquaculture 2016, 464, 665–672. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye-binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.C.; Capucchio, M.T.; Caldaroni, B.; Magara, G.; Dörr, A.J.M.; Biasato, I.; Biasibetti, E.; Righetti, M.; Pastorino, P.; Prearo, M.; et al. Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 496, 50–57. [Google Scholar] [CrossRef]
- Zhou, J.S.; Liu, S.S.; Ji, H.; Yu, H.B. Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr. 2018, 24, 1–10. [Google Scholar] [CrossRef]
- Mourente, G.; Bell, J.G.; Tocher, D.R. Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiol. Biochem. 2007, 33, 269–280. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology And Medicine, 4th ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Taufek, N.M.; Aspani, F.; Muin, H.; Raji, A.A.; Razak, S.A.; Alias, Z. The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus). Fish Physiol. Biochem. 2016, 42, 1143–1155. [Google Scholar] [CrossRef]
- Martínez-Álvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Ver. Fish Biol. Fisher. 2005, 25, 75–88. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, C.; Coutinho, F.; Iglesias, P.; Oliva-Teles, A.; Couto, A. Chlorella sp. and Nannochloropsis sp. inclusion in plant-based diets modulate the intestine and liver antioxidant mechanisms of European sea bass juveniles. Front. Vet. Sci. 2020, 7, 607575. [Google Scholar] [CrossRef]
- Magalhães, R.; Guerreiro, I.; Santos, R.A.; Coutinho, F.; Couto, A.; Serra, C.R.; Olsen, R.E.; Peres, H.; Oliva-Teles, A. Oxidative status and intestinal health of gilthead sea bream (Sparus aurata) juveniles fed diets with different ARA/EPA/DHA ratios. Sci. Rep. 2020, 10, 13824. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M. Glutathione Peroxidases. In Encyclopedia of Biological Chemistry; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Cambridge, UK, 2013; pp. 399–404. [Google Scholar] [CrossRef]
- Pacini, N.; Abete, M.C.; Dörr, A.J.M.; Prearo, M.; Natali, M.; Elia, A.C. Detoxifying response in juvenile tench fed by selenium diet. Environ. Toxicol. Pharmacol. 2012, 33, 46–52. [Google Scholar] [CrossRef]
- Pacini, N.; Elia, A.C.; Abete, M.C.; Dörr, A.J.M.; Brizio, P.; Gasco, L.; Righetti, M.; Prearo, M. Antioxidant response versus selenium accumulation in the liver and kidney of the Siberian sturgeon (Acipenser baeri). Chemosphere 2013, 93, 2405–2412. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, X.; Lu, Y.; Chen, H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods 2020, 75, 104248. [Google Scholar] [CrossRef]
Diets | One-Way ANOVA | Polynomial Contrasts | ||||||
---|---|---|---|---|---|---|---|---|
CTR | HM10 | HM20 | HM30 | p-Value | Linear | Quadratic | Cubic | |
SOD | 91 ± 24 | 100 ± 34 | 98 ± 34 | 95 ± 32 | 0.930 | 0.831 | 0.562 | 0.813 |
CAT | 320 ± 95 | 284 ± 47 | 303 ± 37 | 259 ± 42 | 0.189 | 0.079 | 0.848 | 0.218 |
G6PD | 72 ± 6 | 77 ± 10 | 73 ± 16 | 85 ± 20 | 0.236 | 0.132 | 0.442 | 0.265 |
GR | 5.2 ± 0.51 | 5.6 ± 0.77 | 5.6 ± 0.92 | 6.3 ± 1.27 | 0.080 | 0.016 | 0.616 | 0.435 |
GPX | 174 ± 35 a | 193 ± 27 ab | 229 ± 23 b | 158 ± 49 a | 0.002 | 0.817 | 0.001 | 0.028 |
Diets | One-Way ANOVA | Polynomial Contrasts | ||||||
---|---|---|---|---|---|---|---|---|
CTR | HM10 | HM20 | HM30 | p-Value | Linear | Quadratic | Cubic | |
tGSH | 1042 ± 91 b | 1041 ± 81 b | 905 ± 93 a | 972 ± 86 ab | 0.006 | 0.015 | 0.264 | 0.015 |
GSH | 1038 ± 91 b | 1037 ± 81 b | 902 ± 92 a | 968 ± 86 ab | 0.006 | 0.015 | 0.263 | 0.016 |
GSSG | 3.4 ± 1.48 | 3.7 ± 1.77 | 3.4 ± 1.32 | 3.7 ± 2.12 | 0.980 | 0.833 | 0.956 | 0.714 |
OSI | 0.66 ± 0.30 | 0.71 ± 0.32 | 0.76 ± 0.27 | 0.77 ± 0.49 | 0.912 | 0.492 | 0.871 | 0.935 |
MDA | 16 ± 5 | 22 ± 13 | 19 ± 11 | 28 ± 15 | 0.164 | 0.064 | 0.603 | 0.234 |
Diets | One-Way ANOVA | Polynomial Contrasts | ||||||
---|---|---|---|---|---|---|---|---|
CTR | HM10 | HM20 | HM30 | p-Value | Linear | Quadratic | Cubic | |
SOD | 333 ± 101 | 312 ± 78 | 271 ± 55 | 279 ± 129 | 0.498 | 0.169 | 0.654 | 0.619 |
CAT | 46.8 ± 28.2 | 71.7 ± 26.1 | 54.9 ± 17.6 | 52.3 ± 20.9 | 0.786 | 0.354 | 0.928 | 0.688 |
G6PD | 3.28 ± 1.08 | 4.11 ± 1.09 | 4.39 ± 2.16 | 4.41 ± 1.59 | 0.227 | 0.150 | 0.209 | 0.394 |
GR | 7.38 ± 1.92 | 7.38 ± 1.29 | 7.38 ± 0.39 | 8.55 ± 1.03 | 0.838 | 0.390 | 0.883 | 0.801 |
GPX | 47 ± 13.4 | 36.7 ± 3.9 | 39.2 ± 13.6 | 46.8 ± 12.5 | 0.311 | 0.985 | 0.063 | 0.969 |
Diets | One-Way ANOVA | Polynomial Contrasts | ||||||
---|---|---|---|---|---|---|---|---|
CTR | HM10 | HM20 | HM30 | p-Value | Linear | Quadratic | Cubic | |
tGSH | 845 ± 189 | 743 ± 158 | 792 ± 199 | 805 ± 232 | 0.745 | 0.815 | 0.386 | 0.527 |
GSH | 830 ± 189 | 725 ± 158 | 769 ± 197 | 780 ± 223 | 0.717 | 0.714 | 0.373 | 0.529 |
GSSG | 14.7 ± 3.17 a | 16.6 ± 2.41 ab | 20.5 ± 5.45 b | 18.0 ± 2.61 ab | 0.021 | 0.023 | 0.106 | 0.150 |
OSI | 3.67 ± 1.11 | 4.44 ± 0.54 | 5.37 ± 1.66 | 5.1 ± 1.49 | 0.045 | 0.014 | 0.255 | 0.500 |
MDA | 102 ± 31 | 126 ± 48 | 103 ± 46 | 98 ± 35 | 0.475 | 0.601 | 0.285 | 0.302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerreiro, I.; Castro, C.; Serra, C.R.; Coutinho, F.; Couto, A.; Peres, H.; Pousão-Ferreira, P.; Gasco, L.; Gai, F.; Oliva-Teles, A.; et al. Oxidative Stress Response of Meagre to Dietary Black Soldier Fly Meal. Animals 2022, 12, 3232. https://doi.org/10.3390/ani12233232
Guerreiro I, Castro C, Serra CR, Coutinho F, Couto A, Peres H, Pousão-Ferreira P, Gasco L, Gai F, Oliva-Teles A, et al. Oxidative Stress Response of Meagre to Dietary Black Soldier Fly Meal. Animals. 2022; 12(23):3232. https://doi.org/10.3390/ani12233232
Chicago/Turabian StyleGuerreiro, Inês, Carolina Castro, Cláudia R. Serra, Filipe Coutinho, Ana Couto, Helena Peres, Pedro Pousão-Ferreira, Laura Gasco, Francesco Gai, Aires Oliva-Teles, and et al. 2022. "Oxidative Stress Response of Meagre to Dietary Black Soldier Fly Meal" Animals 12, no. 23: 3232. https://doi.org/10.3390/ani12233232
APA StyleGuerreiro, I., Castro, C., Serra, C. R., Coutinho, F., Couto, A., Peres, H., Pousão-Ferreira, P., Gasco, L., Gai, F., Oliva-Teles, A., & Enes, P. (2022). Oxidative Stress Response of Meagre to Dietary Black Soldier Fly Meal. Animals, 12(23), 3232. https://doi.org/10.3390/ani12233232