Milk Pathogens in Correlation with Inflammatory, Oxidative and Nitrosative Stress Markers in Goat Subclinical Mastitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Microbiological Analysis
Bacterial Species Identification in Milk
- DNA extraction
- PCR and gel electrophoresis
- DNA sequencing
2.3. SCC Assessment
2.4. Enzymatic Activity Assessment
- Lactate dehydrogenase (LDH)
- β-glucuronidase
2.5. Oxidative Stress Markers Evaluation
- Catalase activity
- Glutathione peroxidase activity
- Lipid peroxides quantification
- Determination of milk’s total antioxidant capacity
- Determination of nitric oxide levels in milk
- Determination of DNA damage using 8-hydroxy-deoxyguanosine assessment
2.6. Statistical Analysis
3. Results
3.1. Microbiological and Molecular Analysis
3.2. SCC
3.3. Enzymatic Activity
3.4. Oxidative Stress Markers and 8-Hydroxy-Deoxyguanosine Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef] [PubMed]
- Matuozzo, M.; Spagnuolo, M.S.; Hussein, H.A.; Gomaa, A.M.; Scaloni, A.; D’Ambrosio, C. Novel Biomarkers of Mastitis in Goat Milk Revealed by MALDI-TOF-MS-Based Peptide Profiling. Biology 2020, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Haenlein, G.F.W. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Prosser, C.G. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J. Food Sci. 2021, 86, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, N. The Nutritional Value and Health Benefits of Goat Milk Components. In Nutrients in Dairy and Their Implications on Health and Disease, 1st ed.; Ross, W.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 441–449. [Google Scholar] [CrossRef]
- Năsalean, A.; Ognean, L.; Muntean, S.; Bâlici, S.; Matei, H. Comparative analysis of electrophoretic profile of major proteins of milk from alpine and Carpathian goats. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Vet. Med. 2017, 74, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, C.; Martin, P.; Candalh, C.; Fauquant, J.; Piot, M.; Roucayrol, A.M.; Pilla, F.; Heyman, M. Goats’ milk of defective αs1-casein genotype decreases intestinal and systemic sensitization to β-lactoglobulin in guinea pigs. J. Dairy Res. 2001, 68, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Zaninelli, M.; Tangorra, F.M.; Costa, A.; Rossi, L.; Dell’Orto, V.; Savoini, G. Improved fuzzy logic system to evaluate milk electrical conductivity signals from on-line sensors to monitor dairy goat mastitis. Sensors 2016, 16, 1079. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 2017, 18, 569. [Google Scholar] [CrossRef]
- Ajuwape, A.T.P.; Roberts, A.A.; Solarin, O.O.; Adetosoye, A.I. Bacteriological and haematological studies of clinical mastitis in goats in Ibadan, OYO State, Nigeria. Small Rumin. Res. 2005, 60, 307–310. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Mavrogianni, V.S.; Petridis, I.G.; Vasileiou, N.G.C.; Fthenakis, G.C. Mastitis in sheep—The last 10 years and the future of research. Vet. Microbiol. 2015, 181, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Giannini, P.; Jermini, M.; Hummerjohann, J.; Baumgartner, A.; Stephan, R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins 2015, 7, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Lyra, D.G.; Sousa, F.G.; Borges, M.F.; Givisiez, P.E.; Queiroga, R.C.; Souza, E.L.; Gebreyes, W.A.; Oliveira, C.J. Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk. Foodborne Pathog. Dis. 2013, 10, 126–130. [Google Scholar] [CrossRef]
- Bergonier, D.; De Crémoux, R.; Rupp, R.; Lagriffoul, G.; Berthelot, X. Mastitis of dairy small ruminants. Vet. Res. 2003, 34, 689–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, S.; Malcolm, D.; Prosser, C.G. Prevalence and incidence of intramammary infections in lactating dairy goats. N. Z. Vet. J. 2014, 62, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.; Sierra, D.; Sánchez, A.; Corrales, J.C.; Marco, J.C.; Paape, M.J.; Gonzalo, C. Mastitis in small ruminants. Small Rumin. Res. 2007, 68, 145–153. [Google Scholar] [CrossRef]
- Akter, S.; Rahman, M.M.; Sayeed, M.A.; Islam, M.N.; Hossain, D.; Hoque, M.A.; Koop, G. Prevalence, aetiology and risk factors of subclinical mastitis in goats in Bangladesh. Small Rumin. Res. 2020, 184, 106046. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; Risseti, R.M.; Bolaños, C.A.D.; Caffaro, K.A.; De Morais, A.C.B.; Lara, G.H.B.; Zamprogna, T.O.; Paes, A.C.; Listoni, F.J.P.; Franco, M.M.J. Trueperella pyogenes multispecies infections in domestic animals: A retrospective study of 144 cases (2002 to 2012). Vet. Q. 2015, 35, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Leitner, G.; Merin, U.; Silanikove, N. Changes in milk composition asaffected by subclinical mastitis in goats. J. Dairy Sci. 2004, 87, 1719–1726. [Google Scholar] [CrossRef]
- Min, B.R.; Tomita, G.; Hart, S.P. Effect of subclinicalintramammary infection on somatic cell counts and chemical composition of goats’ milk. J. Dairy Res. 2007, 74, 204–210. [Google Scholar] [CrossRef]
- Pyörälä, S. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 2003, 34, 565–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliszewski, R.; de Kairuz, M.S.N.; De Elias, S.N.G.; Oliver, G. Assessment of β-glucuronidase levels in goat’s milk as an indicator of mastitis: Comparison with other mastitis detection methods. J. Food Prot. 2002, 65, 864–866. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T. Determination of lactate dehydrogenase (LDH) activity in milk by a fluorometric assay. J. Dairy Res. 2005, 72, 209–216. [Google Scholar] [CrossRef]
- Chagunda, M.G.; Larsen, T.; Bjerring, M.; Ingvartsen, K.L. L-lactate dehydrogenase and N-acetyl-[beta]-D-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J. Dairy Res. 2006, 73, 431. [Google Scholar] [CrossRef] [PubMed]
- Batavani, R.A.; Asri, S.; Naebzadeh, H. The effect of subclinical mastitis on milk composition in dairy cows. Iran. J. Vet. Res. 2007, 8, 205–211. [Google Scholar] [CrossRef]
- Stuhr, T.; Aulrich, K.; Barth, K.; Knappstein, K.; Larsen, T. Influence of udder infection status on milk enzyme activities and somatic cell count throughout early lactation in goats. Small Rumin. Res. 2013, 111, 139–146. [Google Scholar] [CrossRef]
- Katsoulos, P.D.; Christodoulopoulos, G.; Minas, A.; Karatzia, M.A.; Pourliotis, K.; Kritas, S.K. The role of lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase in the diagnosis of subclinical intramammary infections in dairy sheep and goats. J. Dairy Res. 2010, 77, 107–111. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Pirisi, A.; De Cremoux, R.; Gonzalo, C. Somatic cells of goat and sheep milk: Analytical, sanitary, productive and technological aspects. Small Rumin. Res. 2007, 68, 126–144. [Google Scholar] [CrossRef]
- Alhussien, M.N.; Dang, A.K. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World 2018, 11, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Dairy Federation (IDF). Guidelines for the Use and Interpretation of Bovine Milk Somatic Cell Count in the Dairy Industry; IDF: Schaerbeek, Belgium, 2013; Volume 466. [Google Scholar]
- Boulaaba, A.; Grabowski, N.; Klein, G. Differential cell count of caprine milk by flow cytometry and microscopy. Small Rumin. Res. 2011, 97, 117–123. [Google Scholar] [CrossRef]
- Tian, S.Z.; Chang, C.J.; Chiang, C.C.; Peh, H.C.; Huang, M.C.; Lee, J.W.; Zhao, X. Comparison of morphology, viability, and function between blood and milk neutrophils from peak lactating goats. Can. J. Vet. Res. 2005, 69, 39. [Google Scholar] [PubMed]
- Granado, R.J.; Rodríguez, M.S.; Arce, C.; Estévez, V.R. Factors affecting somatic cell count in dairy goats: A review. Span. J. Agric. Res. 2014, 12, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Puggioni, G.M.G.; Tedde, V.; Uzzau, S.; Dore, S.; Liciardi, M.; Cannas, E.A.; Pollera, C.; Moroni, P.; Bronzo, V.; Addis, M.F. Relationship of late lactation milk somatic cell count and cathelicidin with intramammary infection in small ruminants. Pathogens 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Haenlein, G.F. Relationship of somatic cell counts in goat milk to mastitis and productivity. Small Rumin. Res. 2002, 45, 163–178. [Google Scholar] [CrossRef]
- Paape, M.J.; Wiggans, G.R.; Bannerman, D.D.; Thomas, D.L.; Sanders, A.H.; Contreras, A.; Moroni, P.; Miller, R.H. Monitoring goat and sheep milk somatic cell counts. Small Rumin. Res. 2007, 68, 114–125. [Google Scholar] [CrossRef]
- Persson, Y.; Olofsson, I. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats. Acta Vet. Scand. 2011, 53, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchtík, J.; Šustová, K.; Sýkora, V.; Kalhotka, L.; Pavlata, L.; Konečná, L. Changes in the somatic cells counts and total bacterial counts in raw goat milk during lactation and their relationships to selected milk traits. Ital. J. Anim. Sci. 2021, 20, 911–917. [Google Scholar] [CrossRef]
- Podhorecká, K.; Borková, M.; Šulc, M.; Seydlová, R.; Dragounová, H.; Švejcarová, M.; Peroutková, J.; Elich, O. Somatic cell count in goat milk: An indirect quality indicator. Foods 2021, 10, 1046. [Google Scholar] [CrossRef]
- Gecaj, R.M.; Ajazi, F.C.; Bytyqi, H.; Mehmedi, B.; Çadraku, H.; Ismaili, M. Somatic Cell Number, Physicochemical, and Microbiological Parameters of Raw Milk of Goats During the End of Lactation as Compared by Breeds and Number of Lactations. Front. Vet. Sci. 2021, 8, 694114. [Google Scholar] [CrossRef]
- McDougall, S.; Murdough, P.; Pankey, W.; Delaney, C.; Barlow, J.; Scruton, D. Relationships among somatic cell count, California mastitis test, impedance and bacteriological status of milk in goats and sheep in early lactation. Small Rumin. Res. 2001, 40, 245–254. [Google Scholar] [CrossRef]
- Koop, G.; van Werven, T.; Toft, N.; Nielen, M. Estimating test characteristics of somatic cell count to detect Staphylococcus aureus-infected dairy goats using latent class analysis. J. Dairy Sci. 2011, 94, 2902–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroni, P.; Pisoni, G.; Ruffo, G.; Boettcher, P.J. Risk factors for intramammary infections and relationship with somatic-cell counts in Italian dairy goats. Prev. Vet. Med. 2005, 69, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Andrei, S.M.; Matei, S.; Rugină, D.; Bogdan, L.; Ştefănuţ, C. Interrelationships between the content of oxidative markers, antioxidative status, and somatic cell count in cow’s milk. Czech J. Anim. Sci. 2016, 61, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511. [Google Scholar] [CrossRef]
- Preiser, J.C. Oxidative stress. J. Parenter. Enter. Nutr. 2012, 36, 147–154. [Google Scholar] [CrossRef]
- Celi, P. The role of oxidative stress in small ruminants’ health and production. Rev. Bras. Zootec. 2010, 39, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Novac, C.S.; Andrei, S. The Impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat’s milk: A review. Pathogens 2020, 9, 882. [Google Scholar] [CrossRef]
- Silanikove, N.; Shapiro, F.; Shamay, A.; Leitner, G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: Manipulation with casein hydrolyzates. Free Radic. Biol. Med. 2005, 38, 1139–1151. [Google Scholar] [CrossRef]
- Matei, S.T.; Groza, I.; Bogdan, L.; Ciupe, S.; Fiţ, N.; Andrei, S. Correlation between mastitis pathogenic bacteria and Glutathione peroxidase activity in cows milk. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Vet. Med. 2011, 1, 221–225. [Google Scholar] [CrossRef]
- Seifu, E.; Donkin, E.F.; Buys, E.M. Potential of lactoperoxidase to diagnose subclinical mastitis in goats. Small Rumin. Res. 2007, 69, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N.; Merin, U.; Shapiro, F.; Leitner, G. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality. J. Dairy Sci. 2014, 97, 3449–3455. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.C., Jr.; Augusto, O. Connecting the chemical and biological properties of nitric oxide. Chem. Res. Toxicol. 2012, 25, 975–989. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N.; Merin, U.; Leitner, G. Physiological role of indigenous milk enzymes: An overview of an evolving picture. Int. Dairy J. 2006, 16, 533–545. [Google Scholar] [CrossRef]
- Sova, H.; Jukkola-Vuorinen, A.; Puistola, U.; Kauppila, S.; Karihtala, P. 8-Hydroxydeoxyguanosine: A new potential independent prognostic factor in breast cancer. Br. J. Cancer 2010, 102, 1018–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanolin, M.E.; Girardi, P.; Degan, P.; Rava, M.; Olivieri, M.; Di Gennaro, G.; Nicolis, M.; De Marco, R. Measurement of a urinary marker (8-hydroxydeoxyguanosine, 8-OHdG) of DNA oxidative stress in epidemiological surveys: A pilot study. Int. J. Biol. Markers 2015, 30, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Young, B.E.; Patinkin, Z.W.; Pyle, L.; de la Houssaye, B.; Davidson, B.S.; Geraghty, S.; Morrow, A.L.; Krebs, N. Markers of oxidative stress in human milk do not differ by maternal BMI but are related to infant growth trajectories. Matern. Child Health J. 2017, 21, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Dan, S.D.; Tabaran, A.; Mihaiu, L.; Mihaiu, M. Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. J. Infect. Dev. Ctries 2015, 9, 035–041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, H.R.M.; Argolo, C.S.; Argôlo-Filho, R.C.; Loguercio, L.L. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol. 2019, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, L.S.; Sampelayo, M.S.; Extremera, F.G.; Osorio, M.R. Evaluation of the allergenicity of goat milk, cow milk, and their lactosera in a guinea pig model. J. Dairy Sci. 2009, 92, 837–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dore, S.; Liciardi, M.; Amatiste, S.; Bergagna, S.; Bolzoni, G.; Caligiuri, V.; Cerrone, A.; Farina, G.; Montagna, C.O.; Saletti, M.A.; et al. Survey on small ruminant bacterial mastitis in Italy, 2013–2014. Small Rumin. Res. 2016, 141, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Gelasakis, A.I.; Angelidis, A.S.; Giannakou, R.; Filioussis, G.; Kalamaki, M.S.; Arsenos, G. Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. J. Dairy Sci. 2016, 99, 3698–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, S.; Anniss, F.M.; Cullum, A.A. Effect of transport stress on somatic cell counts in dairy goats. Proc. N. Z. Soc. Anim. Prod. 2002, 62, 16–18. [Google Scholar]
- da Silva, E.R.; Siqueira, A.P.; Martins, J.C.D.; Ferreira, W.P.B.; da Silva, N. Identification and in vitro antimicrobial susceptibility of Staphylococcus species isolated from goat mastitis in the Northeast of Brazil. Small Rumin. Res. 2004, 55, 45–49. [Google Scholar] [CrossRef]
- Aragão, B.B.; Trajano, S.C.; de Oliveira, R.P.; da Silva, D.M.S.; de Carvalho, R.G.; Juliano, M.A.; Junior, J.W.P.; Mota, R.A. Multiresistant zoonotic pathogens isolated from goat milk in Northeastern Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101701. [Google Scholar] [CrossRef]
- Vrbovská, V.; Kovařovic, V.; Mašlaňová, I.; Indráková, A.; Petráš, P.; Šedo, O.; Švec, P.; Fišarová, L.; Šiborová, M.; Mikulášek, K.; et al. Staphylococcus petrasii diagnostics and its pathogenic potential enhanced by mobile genetic elements. Int. J. Med. Microbiol. 2019, 309, 151355. [Google Scholar] [CrossRef]
- McDougall, S.; Pankey, W.; Delaney, C.; Barlow, J.; Murdough, P.A.; Scruton, D. Prevalence and incidence of subclinical mastitis in goats and dairy ewes in Vermont, USA. Small Rumin. Res. 2002, 46, 115–121. [Google Scholar] [CrossRef]
- Persson, Y.; Järnberg, Å.; Humblot, P.; Nyman, A.K.; Waller, K.P. Associations between Staphylococcus aureus intramammary infections and somatic cell counts in dairy goat herds. Small Rumin. Res. 2015, 133, 62–66. [Google Scholar] [CrossRef]
- Cocolin, L.; Foschino, R.; Comi, G.; Fortina, M.G. Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiol. 2007, 24, 752–758. [Google Scholar] [CrossRef]
- Perin, L.M.; Miranda, R.O.; Todorov, S.D.; de Melo Franco, B.D.G.; Nero, L.A. Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int. J. Food Microbiol. 2014, 185, 121–126. [Google Scholar] [CrossRef]
- Pieniz, S.; de Moura, T.M.; Cassenego, A.P.V.; Andreazza, R.; Frazzon, A.P.G.; de Oliveira Camargo, F.A.; Brandelli, A. Evaluation of resistance genes and virulence factors in a food isolated Enterococcus durans with potential probiotic effect. Food Control 2015, 51, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Yerlikaya, O.; Akbulut, N. In vitro characterisation of probiotic properties of Enterococcus faecium and Enterococcus durans strains isolated from raw milk and traditional dairy products. Int. J. Dairy Technol. 2020, 73, 98–107. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, H.; He, J.; Yuan, Y.; Yuan, Z. The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk. Int. J. Food Microbiol. 2008, 121, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Nieminen, T.; Rintaluoma, N.; Andersson, M.; Taimisto, A.M.; Ali-Vehmas, T.; Seppälä, A.; Priha, O.; Salkinoja-Salonen, M. Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet. Microbiol. 2007, 124, 329–339. [Google Scholar] [CrossRef]
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological applications of Bacillus licheniformis. Crit. Rev. Biotechnol. 2021, 41, 609–627. [Google Scholar] [CrossRef]
- Leitner, G.; Merin, U.; Lavi, Y.; Egber, A.; Silanikove, N. Aetiology of intramammary infection and its effect on milk composition in goat flocks. J. Dairy Res. 2007, 74, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Toquet, M.; Gómez-Martín, Á.; Bataller, E. Review of the bacterial composition of healthy milk, mastitis milk and colostrum in small ruminants. Res. Vet. Sci. 2021, 140, 1–5. [Google Scholar] [CrossRef]
- Smistad, M.; Sølverød, L.; Inglingstad, R.A.; Østerås, O. Distribution of somatic cell count and udder pathogens in Norwegian dairy goats. J. Dairy Sci. 2021, 104, 11878–11888. [Google Scholar] [CrossRef]
- Bagnicka, E.; Winnicka, A.; Jóźwik, A.; Rzewuska, M.; Strzałkowska, N.; Kościuczuk, E.; Prusak, B.; Kaba, J.; Horbańczuk, J.; Krzyżewski, J. Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin. Res. 2011, 100, 72–77. [Google Scholar] [CrossRef]
- The Agricultural Marketing Service (AMS). Available online: https://www.ams.usda.gov/publications/content/general-specifications-dairy-plants-approved-usda-inspection-and-grading (accessed on 25 August 2022).
- Batavani, R.A.; Mortaz, E.; Falahian, K.; Dawoodi, M.A. Study on frequency, etiology and some enzymatic activities of subclinical ovine mastitis in Urmia, Iran. Small Rumin. Res. 2003, 50, 45–50. [Google Scholar] [CrossRef]
- Khatun, M.; Bruckmaier, R.M.; Thomson, P.C.; House, J.; García, S.C. Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. J. Dairy Sci. 2019, 102, 9200–9212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Li, F.; Chi, Y.; Xiang, J. Potential relationship among three antioxidant enzymes in eliminating hydrogen peroxide in penaeid shrimp. Cell Stress Chaperones 2012, 17, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Andrei, S.; Matei, S.; Fit, N.; Cernea, C.; Ciupe, S.; Bogdan, S.; Groza, I.S. Glutathione peroxidase activity and its relationship with somatic cell count, number of colony forming units and protein content in subclinical mastitis cows milk. Rom. Biotechnol. Lett. 2011, 16, 6209–6217. [Google Scholar]
- Darbaz, I.; Salar, S.; Sayiner, S.; Baştan, İ.; Ergene, O.; Baştan, A. Evaluation of milk glutathione peroxidase and superoxide dismutase levels in subclinical mastitis in Damascus goats. Turk. J. Vet. Anim. Sci. 2019, 43, 259–263. [Google Scholar] [CrossRef]
- Atakisi, O.; Oral, H.; Atakisi, E.; Merhan, O.; Pancarci, S.M.; Ozcan, A.; Marasli, S.; Polat, B.; Colak, A.; Kaya, S. Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Res. Vet. Sci. 2010, 89, 10–13. [Google Scholar] [CrossRef]
- Nyárády, K.; Turai, R.; Funke, S.; Györgyi, E.; Makai, A.; Prémusz, V.; Bódis, J.; Sulyok, E. Effects of perinatal factors on sirtuin 3, 8-hydroxy-2′-deoxyguanosine, brain-derived neurotrophic factor and serotonin in cord blood and early breast milk: An observational study. Int. Breastfeed. J. 2020, 15, 1–8. [Google Scholar] [CrossRef]
Species | No. Isolates/Frequency % | CI 95% |
---|---|---|
Enterococcus durans | 14/18.42 | 10.45–28.97 |
Bacillus licheniformis | 8/10.53 | 4.66–19.69 |
Enterococcus faecium | 8/9.21 | 3.78–18.06 |
Staphylococcus aureus | 6/7.89 | 2.95–16.40 |
Staphylococcus caprae | 5/6.58 | 2.17–14.69 |
Staphylococcus epidermidis | 5/6.58 | 2.17–14.69 |
Bacillus subtilis | 4/5.26 | 1.45–12.93 |
Macrococcus caseolyticus | 4/5.26 | 1.45–12.93 |
Staphylococcus hominis | 4/5.26 | 1.45–12.93 |
Bacillus pumilus | 3/3.95 | 0.82–11.11 |
Staphylococcus chromogenes | 3/3.95 | 0.82–11.11 |
Aerococcus viridans | 2/2.63 | 0.32–9.18 |
Enterococcus faecalis | 2/2.63 | 0.32–9.18 |
Moraxella osloensis | 2/2.63 | 0.32–9.18 |
Staphylococcus haemolyticus | 2/2.63 | 0.32–9.18 |
Staphylococcus petrasii subsp. jetensii | 2/2.63 | 0.32–9.18 |
Aeromonas hydrophila | 1/1.32 | 0.03–7.11 |
Bacillus cereus | 1/1.32 | 0.03–7.11 |
Bacillus clausii | 1/1.32 | 0.03–7.11 |
Bacillus thuringiensis | 1/1.32 | 0.03–7.11 |
Staphylococcus cohnii | 1/1.32 | 0.03–7.11 |
Staphylococcus equorum | 1/1.32 | 0.03–7.11 |
Staphylococcus sciuri | 1/1.32 | 0.03–7.11 |
Staphylococcus vitulinus | 1/1.32 | 0.03–7.11 |
Staphylococcus xylosus | 1/1.32 | 0.03–7.11 |
Streptococcus pseudoporcinus | 1/1.32 | 0.03–7.11 |
Total | 84 1/86.84 2 | 77.13–93.51 2 |
Microbiological Category (n) | SCC (×103 Cells/mL) Mean ± SD | Log10 SCC Mean ± SD | Significant Difference from (p ≤ 0.05) |
---|---|---|---|
N (10) | 236.4 ± 64.1 | 5.36 ± 0.11 | NAS, B, SA |
NAS (26) | 710.52 ± 458.02 | 5.76 ± 0.27 | N, E, SA |
E (24) | 251.75 ± 112.7 | 5.36 ± 0.17 | NAS, B, SA, O |
B (18) | 709.83 ± 385.91 | 5.79 ± 0.22 | N, E, SA |
SA (6) | 4377.83 ± 1426.65 | 6.62 ± 0.12 | N, NAS, E, B, O |
O (10) | 871.9 ± 1478.12 | 5.64 ± 0.54 | E, SA |
Enzyme | Microbiological Category | |||||
---|---|---|---|---|---|---|
N | NAS | E | B | SA | O | |
LDH (U/L) | 125.92 ± 17.47 | 287.84 ± 81.47 | 270.92 ± 62.33 | 253.15 ± 69.7 | 446.71 ± 23.28 | 301.02 ± 149.57 |
Signif. dif. (p ≤ 0.05) | NAS, E, B, SA, O | N, SA | N, SA | N, SA | N, NAS, E, B, O | N, SA |
β-glucuronidase (U) | 19.23 ± 3.51 | 35.16 ± 10.2 | 26.29 ± 9.34 | 39.06 ± 12.84 | 60.92 ± 3.35 | 31.46 ± 11.95 |
Signif. dif. (p ≤ 0.05) | NAS, E, B, SA, O | N, E, B, SA, O | N, NAS, B, SA, O | N, NAS, E, SA, O | N, NAS, E, B, O | N, NAS, E, B, SA |
Parameter | Microbiological Category | |||||
---|---|---|---|---|---|---|
N | NAS | E | B | SA | O | |
CAT (U/mL) | 1.54 ± 0.24 | 2.85 ± 1.45 | 2.63 ± 1.51 | 2.51 ± 0.56 | 3.92 ± 0.31 | 3.37 ± 1.34 |
Signif. dif. (p ≤ 0.05) | NAS, E, B, SA, O | N, SA | N, SA | N, SA, O | N, NAS, E, B, O | N, B, SA |
GPx (U) | 20.05 ± 2.5 | 36.91 ± 7.95 | 30.19 ± 7.38 | 38.9 ± 10.05 | 55.97 ± 7.89 | 32.1 ± 11.69 |
Signif. dif. (p ≤ 0.05) | NAS, E, B, SA, O | N, E, SA | N, NAS, B, SA | N, E, SA | N, NAS, E, B, O | N, SA |
TAC (U/mL) | 36.32 ± 3.12 | 20.85 ± 5.45 | 21.66 ± 6.24 | 21.93 ± 5.34 | 17.7 ± 0.63 | 23.05 ± 13.15 |
Signif. dif. (p ≤ 0.05) | NAS, E, B, SA, O | N | N | N, SA | N, B | N |
LPO (µmol/L) | 0.15 ± 0.02 | 1.77 ± 0.93 | 1.04 ± 0.32 | 1.01 ± 0.86 | 4.55 ± 0.36 | 1.66 ± 1.42 |
Signif. dif. (p ≤ 0.05) | NAS, E, B, SA, O | N, E, B, SA | N, NAS, SA | N, NAS, SA | N, NAS, E, B, O | N, SA |
NO (µmol/L) | 6.72 ± 2.02 | 30.25 ± 9.83 | 18.52 ± 6.59 | 32.41 ± 7.24 | 40.7 ± 4.37 | 20.8 ± 8.58 |
Signif. dif. (p ≤ 0.05) | NAS, E, B, SA, O | N, E, SA, O | N, NAS, B, SA | N, E, SA, O | N, NAS, E, B, O | N, NAS, B, SA |
8-OHdG (ng/mL) | 1.70 ± 0.34 | 2.82 ± 1.37 | 3.59 ± 1.4 | 2.41 ± 0.71 | 6.36 ± 1.14 | 3.10 ± 1.87 |
Signif. dif. (p ≤ 0.05) | NAS, E, SA, O | N, E, SA | N, NAS, SA | SA | N, NAS, E, B, O | N, SA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novac, C.Ș.; Nadăș, G.C.; Matei, I.A.; Bouari, C.M.; Kalmár, Z.; Crăciun, S.; Fiț, N.I.; Dan, S.D.; Andrei, S. Milk Pathogens in Correlation with Inflammatory, Oxidative and Nitrosative Stress Markers in Goat Subclinical Mastitis. Animals 2022, 12, 3245. https://doi.org/10.3390/ani12233245
Novac CȘ, Nadăș GC, Matei IA, Bouari CM, Kalmár Z, Crăciun S, Fiț NI, Dan SD, Andrei S. Milk Pathogens in Correlation with Inflammatory, Oxidative and Nitrosative Stress Markers in Goat Subclinical Mastitis. Animals. 2022; 12(23):3245. https://doi.org/10.3390/ani12233245
Chicago/Turabian StyleNovac, Cristiana Ștefania, George Cosmin Nadăș, Ioana Adriana Matei, Cosmina Maria Bouari, Zsuzsa Kalmár, Smaranda Crăciun, Nicodim Iosif Fiț, Sorin Daniel Dan, and Sanda Andrei. 2022. "Milk Pathogens in Correlation with Inflammatory, Oxidative and Nitrosative Stress Markers in Goat Subclinical Mastitis" Animals 12, no. 23: 3245. https://doi.org/10.3390/ani12233245
APA StyleNovac, C. Ș., Nadăș, G. C., Matei, I. A., Bouari, C. M., Kalmár, Z., Crăciun, S., Fiț, N. I., Dan, S. D., & Andrei, S. (2022). Milk Pathogens in Correlation with Inflammatory, Oxidative and Nitrosative Stress Markers in Goat Subclinical Mastitis. Animals, 12(23), 3245. https://doi.org/10.3390/ani12233245