Different Traits, Different Evolutionary Pathways: Insights from Salamandrina (Amphibia, Caudata)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biometries
2.2. Head Colour Topographical Analysis
3. Results
3.1. Biometries
3.2. Head Colour Topographical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hey, J. On the failure of modern species concepts. Trends Ecol. Evol. 2006, 21, 447–450. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz, K. Species concepts and delimitation. Systematic. Biol. 2007, 56, 879–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, R. Gene trees and species trees are not the same. Trends Ecol. Evol. 2001, 16, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R. Model Based Inference in the Life Science: A primer on Evidence; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Canestrelli, D.; Zangari, F.; Nascetti, G. Genetic evidence for two distinct species within the Italian endemic Salamandrina terdigitata (Bonnaterre, 1789) (Amphibia: Urodela: Salamandridae). Herpetol. J. 2006, 16, 221–227. [Google Scholar]
- Mattoccia, M.; Romano, A.; Sbordoni, V. Mitochondrial DNA sequence analysis of the spectacled salamander, Salamandrina terdigitata (Urodela: Salamandridae), supports the existence of two distinct species. Zootaxa 2005, 995, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hauswaldt, J.S.; Angelini, C.; Pollok, A.; Steinfartz, S. Hybridization of two ancient salamander lineages: Molecular evidence for endemic spectacled salamanders (genus Salamandrina) on the Apennine peninsula. J. Zool. 2011, 4, 248–256. [Google Scholar] [CrossRef]
- Hauswaldt, J.S.; Angelini, C.; Gehara, M.; Benavides, E.; Polok, A.; Steinfartz, S. From species divergence to population structure: A multimarker approach on the most basal lineage of Salamandridae, the spectacled salamanders (genus Salamandrina) from Italy. Mol. Phylogenet. Evol. 2014, 70, 1–12. [Google Scholar] [CrossRef]
- Mattoccia, M.; Marta, S.; Romano, A.; Sbordoni, V. Phylogeography of an Italian endemic salamander (genus Salamandrina): Glacial refugia, postglacial expansions, and secondary contact. Biol. J. Linn. Soc. 2011, 104, 903–922. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.; Mattoccia, M.; Marta, S.; Bogaerts, S.; Pasmans, F.; Sbordoni, V. Distribution and morphological characterization of the endemic Italian salamanders Salamandrina perspicillata (Savi, 1821) and S. terdigitata (Bonnaterre, 1789) (Caudata: Salamandridae). Ital. J. Zool. 2009, 76, 422–432. [Google Scholar] [CrossRef]
- Angelini, C.; Costa, C.; Raimondi, S.; Menesatti, P.; Utzeri, C. Image analysis of the ventral colour pattern discriminates between Spectacled salamanders, Salamandrina perspicillata and S. terdigitata (Amphibia, Salamandridae). Amphibia-Reptilia 2010, 31, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Angelini, C.; Antonelli, D.; Utzeri, C. A multi-year and multi-site population study on the life history of Salamandrina perspicillata (Savi, 1821) (Amphibia, Urodela). Amphibia-Reptilia 2008, 29, 161–170. [Google Scholar]
- Romano, A.; Ficetola, G.F. Ecogeographic variation of body size in the spectacled salamanders (Salamandrina): Influence of genetic structure and local factors. J. Biogeogr. 2010, 37, 2358–2370. [Google Scholar] [CrossRef]
- Rohlf, F.J. Digitalized Landmarks and Outlines, TpsDig Ver. 2.17; Department of Ecology and Evolution, State University of New York at Stony Brook: Stony Brook, NY, USA, 2013. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 29 October 2022).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bartoń, K. MuMIn: Multi-Model Inference, R package version 1.9.13. 2013. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 29 October 2022).
- Antonucci, F.; Boglione, C.; Cerasari, V.; Caccia, E.; Costa, C. External shape analyses in Atherina boyeri (Risso, 1810) from different environments. Ital. J. Zool. 2012, 79, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D.; Fink, W.L. Geometric Morphometrics for Biologists: A Primer; Elsevier: San Diego, CA, USA, 2004. [Google Scholar]
- Rohlf, F.J.; Slice, D.E. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zoo. 1990, 39, 40–59. [Google Scholar] [CrossRef] [Green Version]
- Iovleff, S. MixAll: Clustering and Classification Using Model-Based Mixture Models, R package version 1.5.1. 2019. Available online: https://CRAN.R-project.org/package=MixAll (accessed on 29 October 2022).
- Biernacki, C.; Celeux, G.; Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern. Anal. Mach. Intell. 2000, 22, 719–725. [Google Scholar] [CrossRef]
- Laskov, P.; Düssel, P.; Schäfer, C.; Rieck, K. Learning intrusion detection: Supervised or unsupervised? In International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 50–57. [Google Scholar]
- Antonucci, F.; Costa, C.; Pallottino, F.; Paglia, G.; Rimatori, V.; De Giorgio, D.; Menesatti, P. Quantitative method for shape description of almond cultivars (Prunus amygdalus Batsch). Food. Bioproc. Tech. 2012, 5, 768–785. [Google Scholar] [CrossRef]
- Kwon, B.C.; Eysenbach, B.; Verma, J.; Ng, K.; De Filippi, C.; Stewart, W.F.; Perer, A. Clustervision: Visual supervision of unsupervised clustering. IEEE Trans. Vis. Comput. Graph. 2017, 24, 142–151. [Google Scholar] [CrossRef]
- Albalate, A.; Minker, W. Semi-Supervised and Unsupervised Machine Learning: Novel Strategies; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- McCune, A.R.; Lovejoy, N.R. The relative rate of sympatric and allopatric speciation in fishes: Tests using DNA sequence divergence between sister species and among clades. In Endless Forms: Species and Speciation; Howard, D.J., Berlocher, S.H., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 172–185. [Google Scholar]
- Orr, M.R.; Smith, T.B. Ecology and speciation. Trends Ecol. Evol. 1998, 13, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Schluter, D. Ecology and the origin of species. Trends. Ecol. Evol. 2001, 16, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Bruce, R.C.; Hairston, N.G. Life-history correlates of body-size differences between two population of the salamander, Desmognathus monticola. J. Herpetol. 1990, 24, 124–134. [Google Scholar] [CrossRef]
- Angelini, C.; Sotgiu, G.; Tessa, G.; Bielby, J.; Doglio, S.; Favelli, M.; Garner, T.W.J.; Gazzaniga, E.; Giacoma, C.; Bovero, S. Environmentally determined juvenile growth rates dictate the degree of sexual size dimorphism in the Sardinian brook newt. Evol. Ecol. 2015, 29, 169–184. [Google Scholar] [CrossRef]
- Corsetti, L. Osservazioni sulla ecologia e biologia riproduttiva di Salamandrina terdigitata nei Monti Lepini (Lazio) (Amphibia Salamandridae). Quad. Mus. Stor. Nat. Patrica 1994, 4, 111–130. [Google Scholar]
- Angelini, C.; Vanni, S.; Vignoli, L. Salamandrina terdigitata (Bonnaterre, 1789) Salamandrina perspicillata (Savi, 1821). In Fauna d’Italia; Amphibia; Lanza, B., Andreone, F., Bologna, M.A., Corti, C., Razzetti, E., Eds.; Calderini: Bologna, Italy, 2007; Volume 42, pp. 228–237. [Google Scholar]
- Utzeri, C.; Antonelli, D.; Angelini, C. Notes on the behavior of the Spectacled Salamander Salamandrina terdigitata (Lacépède, 1788). Herpetozoa 2005, 18, 182–185. [Google Scholar]
- Costa, C.; Angelini, C.; Scardi, M.; Menesatti, P.; Utzeri, C. Using image analysis on the ventral colour pattern in Salamandrina perspicillata (Amphibia: Salamandridae) to discriminate among populations. Biol. J. Linn. Soc. 2009, 96, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Ancillotto, L.; Vignoli, L.; Martino, J.; Paoletti, C.; Romano, A.; Bruni, G. Sexual dichromatism and throat display in spectacled salamanders: A role in visual communication? J. Zool. 2002, 318, 75–83. [Google Scholar] [CrossRef]
- Bruni, G.; Romano, A. Courtship behaviour, mating season and male sexual interference in Salamandrina perspicillata (Savi, 1821). Amphibia-Reptilia 2011, 32, 63–76. [Google Scholar] [CrossRef]
- Hoskin, C.; Higgie, M.; McDonald, K.; Moritz, C. Reinforcement drives rapid allopatric speciation. Nature 2005, 437, 1353–1356. [Google Scholar] [CrossRef]
- Albert, C.H.; Thuiller, W.; Yoccoz, N.G.; Douzet, R.; Aubert, S.; Lavorel, S. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 2010, 24, 1192–1201. [Google Scholar]
- Albert, C.H.; Grassein, F.; Schurr, F.M.; Vieilledent, G.; Violle, C. When and how should intraspecific variability be considered in trait-based plant ecology? Perspecti. Plant. Ecolo. Evol. Syst. 2011, 13, 217–225. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Boglione, C.; Menesatti, P.; Vandeputte, M.; Chatain, B. Automated sorting for size, sex and skeletal anomalies of cultured seabass using external shape analysis. Aquacult. Eng. 2013, 52, 58–64. [Google Scholar] [CrossRef]
- De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemometr. Intell. Lab. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Forina, M.; Oliveri, P.; Casale, M.; Lanteri, S. Multivariate range modeling, a new technique for multivariate class modeling: The uncertainty of the estimates of sensitivity and specificity. Anal. Chim. Acta 2008, 622, 85–93. [Google Scholar] [CrossRef]
- Forina, M.; Oliveri, P.; Lanteri, S.; Casale, M. Class-modeling techniques, classic and new, for old and new problems. Chemometr. Intell. Lab. 2008, 93, 132–148. [Google Scholar] [CrossRef]
- Infantino, A.; Aureli, G.; Costa, C.; Taiti, C.; Antonucci, F.; Menesatti, P.; Pallottino, F.; De Felice, S.; D’Egidio, M.G.; Mancuso, S. Potential application of PTR-TOFMS for the detection of deoxynivalenol (DON) in durum wheat. Food Control 2015, 57, 96–104. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Sabatier, R.; Vivein, M.; Amenta, P. Two approaches for discriminant partial least square. In Between Data Science and Applied Data Analysis; Schader, M., Gaul, W., Vichi, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 100–108. [Google Scholar]
- Sjöström, M.; Wold, S.; Söderström, B. PLS discrimination plots. In Pattern Recognition in Practice II; Gelsema, E.S., Kanals, L.N., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 461–470. [Google Scholar]
Species | Site (Code) | Location | Habitat Features | Sampling Year and Size |
---|---|---|---|---|
S. perspicillata | Acqua della chiesa (AC) | Lepini Mountains, Latium | Trough, 900 m a.s.l. | 2007 n = 28 |
S. perspicillata | Ciccopano nuove (CN) | Lepini Mountains, Latium | Rocky spring ponds, 700 m a.s.l. | 2006, 2007 n = 19 |
S. perspicillata | Sant’Angelo (SA) | Lepini Mountains, Latium | Brook, 940 m a.s.l. | 2007 n = 27 |
S. terdigitata | Torrente Cerasuolo (TC) | Picentini Mountains, Campania | Brook, 750 m a.s.l. | 2007 n = 41 |
S. terdigitata | Torrente Rosa (TR) | Pollino, Calabria | Brook, 550 m a.s.l. | 2007 n = 41 |
Model | AICc | W | p-Value |
---|---|---|---|
site typology:population | 609.25 | 0.74 | 0.018 |
species:population | 612.38 | 0.16 | 0.1 |
population | 613.27 | 0.1 | |
site typology | 644.94 | 0 | <0.001 |
species | 668.81 | 0 | <0.001 |
Model | AIC | W | p-Values |
---|---|---|---|
population*AG | 4260.98 | 0.986 | |
species*AG:population | 4270.87 | 0.008 | =0.04 |
site typology*AG:population | 4271.35 | 0.006 | =0.04 |
species*AG | 4448.34 | 0 | <0.001 |
site typology*AG | 4470.28 | 0 | <0.001 |
AG | 4722.57 | 0 | |
population | 4851.38 | 0 | |
site typology:population | 4862.03 | 0 | =0.03 |
species:population | 4863.34 | 0 | =0.14 |
site typology | 5509.29 | 0 | <0.001 |
species | 5718.67 | 0 | <0.001 |
Model | ΔICL | Accuracy |
---|---|---|
unsupervised partition | 0 | 0.97 |
site typology | 32,919 | 0.72 |
species | 44,959 | 0.73 |
population | 116,985 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelini, C.; Antonucci, F.; Aguzzi, J.; Costa, C. Different Traits, Different Evolutionary Pathways: Insights from Salamandrina (Amphibia, Caudata). Animals 2022, 12, 3326. https://doi.org/10.3390/ani12233326
Angelini C, Antonucci F, Aguzzi J, Costa C. Different Traits, Different Evolutionary Pathways: Insights from Salamandrina (Amphibia, Caudata). Animals. 2022; 12(23):3326. https://doi.org/10.3390/ani12233326
Chicago/Turabian StyleAngelini, Claudio, Francesca Antonucci, Jacopo Aguzzi, and Corrado Costa. 2022. "Different Traits, Different Evolutionary Pathways: Insights from Salamandrina (Amphibia, Caudata)" Animals 12, no. 23: 3326. https://doi.org/10.3390/ani12233326
APA StyleAngelini, C., Antonucci, F., Aguzzi, J., & Costa, C. (2022). Different Traits, Different Evolutionary Pathways: Insights from Salamandrina (Amphibia, Caudata). Animals, 12(23), 3326. https://doi.org/10.3390/ani12233326