Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Essentiality of Zinc
3. Factors Affecting Zinc Digestion, Absorption, Metabolism, Retention, and Excretion
Assessment Category | Measure | Notes |
---|---|---|
Basic | ||
Apparent absorption amount of dietary Zn | Total dietary Zn corrected for total fecal losses or apparent absorption as a percentage of dietary intake | |
Apparent retention amount of Zn | Total dietary Zn intake corrected for total fecal and urinary Zn losses | |
Bone (trabecular bone tissue) Zn | Trabecular bone tissue can be found in the femoral head or tibia | |
Complementary | ||
Serum or plasma Zn | Affected by numerous non-nutritional factors including stress, inflammation, and infection | |
Free Zn-binding capacity in serum or plasma | Percentage of free Zn-binding sites in blood plasma as described by [56] | |
Liver Zn | - | |
Hepatic MT1 gene expression | - | |
Milk Zn | - | |
Jejunal and colonic relative SLC39A4 gene expression | Some data suggest that the main absorption site for Zn shifts from the small intestine to lower intestinal segments under subclinical deficiency conditions as described by [48] | |
Potentially beneficial | ||
Zn-enzyme activities | Alkaline phosphatase, carbonic anhydrase | |
Cell stress signaling pathways for transcription and post-transcription | Regulation of cell stress pathways may provide useful information on the physiological adaptation to Zn deficiency and accumulation in target tissues |
4. Dietary Zinc Sources
5. Dietary Zinc Requirements, Formulation Methods, Laboratory Analysis
6. Zinc Feeding Practices
6.1. Premix Supplementation
Country | Weighted Mean | Mean | Minimum | Median | Maximum |
---|---|---|---|---|---|
United States [69] | |||||
Nursery—Phase 1 (weaning to 7 kg BW) | 3173 | 3032 | 1906 | 2931 | 4002 |
Nursery—Phase 2 (7 to 11 kg BW) | 2340 | 2081 | 75 | 2050 | 3294 |
Nursery—Phase 3 (11 to 23 kg BW) | 673 | 401 | 66 | 120 | 3030 |
Grower (23 to 55 kg BW) | 86 | 99 | 30 | 110 | 150 |
Grower (55 to 100 kg BW) | 78 | 85 | 30 | 89 | 131 |
Finisher (100 kg to market) | 72 | 74 | 30 | 75 | 131 |
Gilt development (20 kg to breeding) | 105 | 122 | 61 | 124 | 174 |
Gestation | 113 | 123 | 57 | 125 | 165 |
Lactation | 113 | 123 | 57 | 125 | 165 |
Boars | 122 | 143 | 84 | 130 | 279 |
Brazil [71] | |||||
Nursing piglets (3 to 20 days of age) | - | 2225 | 120 | 2480 | 3488 |
Nursery—Phase 1 (21 to 35 days of age) | - | 1876 | 90 | 2388 | 3488 |
Nursery—Phase 2 (36 to 49 days of age) | - | 996 | 89 | 150 | 3075 |
Grower (50 to 70 days of age) | - | 448 | 67 | 100 | 3200 |
Grower (71 to 120 days of age) | - | 103 | 44 | 100 | 250 |
Finisher (121 days of age to market) | - | 90 | 10 | 90 | 235 |
Gilt development | - | 119 | 88 | 120 | 170 |
Gestation | - | 111 | 12 | 103 | 195 |
Sow transition diets | - | 121 | 100 | 120 | 144 |
Lactation | - | 110 | 12 | 103 | 220 |
Boars | - | 112 | 12 | 112 | 195 |
China [70] | |||||
Nursing piglets (birth to 8 kg BW) | - | 425 | 23 | 100 | 1980 |
Nursery—Phase 1 (8 to 15 kg BW) | - | 534 | 0.12 | 133 | 1980 |
Nursery—Phase 2 (15 to 25 kg BW) | - | 95 | 0.12 | 77 | 1980 |
Grower (25 to 60 kg BW) | - | 61 | 0.12 | 58 | 275 |
Grower (60 to 90 kg BW) | - | 62 | 0.12 | 59 | 1075 |
Finisher (90 kg to market) | - | 63 | 0.12 | 60 | 1075 |
Gilt development | - | 69 | 30 | 70 | 123 |
Gestation | - | 72 | 0.12 | 70 | 530 |
Lactation | - | 72 | 0.12 | 70 | 460 |
Boars | - | 69 | 30 | 64 | 220 |
6.2. Premix Withdrawal
6.3. Pharmacological Levels Post-Weaning
6.4. Elevated Dietary Zn Levels in Late Gestation
6.5. Comparison of Zn Consumption per Market Hog Produced among Different Feeding Scenarios
7. Effects of Dietary Zn Concentrations and Sources on Pork Quality
8. Environmental Loading of Zinc from Various Feeding Practices and Comparison with Sewage Sludge
9. Zinc Contributions to Ecotoxicity
10. Zinc Contributions to Antimicrobial Resistance
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- CVB. Booklet of Feeding Tables for Pigs. Nutrient Requirements and Feed Ingredient Composition for Pigs; Series No. 64; CVB, 2020; p. 42. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R.F. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements, 3rd ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2017. [Google Scholar]
- NY/T 65-2004; Feeding Standard of Swine. Standardization Administration of the People’s Republic of China (SAPRC). Ministry of Agriculture and Rural Affairs: Beijing, China, 2004.
- Weigand, E.; Kirchgessner, M. Total true efficiency of zinc utilization: Determination and homeostatic dependence upon the zinc supply status in young rats. J. Nutr. 1980, 110, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Brugger, D.; Windisch, W.M. Environmental responsibilities of livestock feeding using trace mineral supplements. Anim. Nutr. 2015, 1, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Brugger, D.; Windisch, W.M. Strategies and challenges to increase the precision in feeding zinc to monogastric livestock. Anim. Nutr. 2017, 3, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Brugger, D.; Windisch, W.M. Review: Zn metabolism of monogastric species and consequences for the definition of feeding requirements and the estimation of feed Zn bioavailability. J. Zhejiang Univ. Sci. B Biomed. Biotechnol. 2019, 20, 617–627. [Google Scholar] [CrossRef]
- Holen, J.P.; Johnston, L.J.; Urriola, P.E.; Garrett, J.E.; Shurson, G.C. Comparative digestibility of polysaccharide-complexed zinc and zinc sulfate in diets for gestating and lactating sows. J. Anim. Sci. 2020, 98, skaa079. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Woodworth, J.C.; Vahl, C.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; DeRouchey, J.M. Assessment of sampling technique from feeders on copper, zinc, calcium, and phosphorus analysis. Kans. Agric. Exp. Stn. Res. Rep. 2017, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Sales, J. Effects of pharmacological concentrations of dietary zinc oxide on growth of post-weaning pigs: A meta-analysis. Biol. Trace Elem. Res. 2013, 152, 343–349. [Google Scholar] [CrossRef]
- Bonetti, A.; Tugnoli, B.; Piva, A.; Grilli, E. Towards zero zinc oxide: Feeding strategies to manage post-weaning diarrhea in piglets. Animals 2021, 11, 642. [Google Scholar] [CrossRef]
- Burrough, E.R.; De Mille, C.; Gabler, N.K. Zinc overload in weaned pigs: Tissue accumulation, pathology, and growth impacts. J. Vet. Diagn. Investig. 2019, 31, 537–545. [Google Scholar] [CrossRef]
- Holen, J.P.; Urriola, P.E.; Schwartz, M.; Jang, J.-C.; Shurson, G.C.; Johnston, L.J. Effects of supplementing late-gestation sow diets with zinc on preweaning mortality of pigs under commercial rearing conditions. Transl. Anim. Sci. 2020, 4, 519–530. [Google Scholar] [CrossRef]
- Jondreville, C.; Revy, P.S.; Dourmad, J.Y. Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livest. Prod. Sci. 2003, 84, 147–156. [Google Scholar] [CrossRef]
- Dourmad, J.-Y.; Jondreville, C.C. Impact of nutrition on nitrogen, phosphorus, Cu and Zn in pig manure, and on emissions of ammonia and odours. Livest. Sci. 2007, 112, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.C.; Lofts, S.; Boxall, A.B.A. Pre-assessment of environmental impact of zinc and copper used in animal nutrition. EFSA Support. Publ. 2010, 7, 74E. [Google Scholar] [CrossRef] [Green Version]
- Poole, K. At the nexus of antibiotics and metals: The impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol. 2017, 25, 820–832. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2016/1095 of 6 July 2016 concerning the authorization of Zinc acetate dihydrate, Zinc chloride anhydrous, Zinc oxide, Zinc sulphate heptahydrate, Zinc sulphate monohydrate, Zinc chelate of amino acids hydrate, Zinc chelate of protein hydrolysates, Zinc chelate of glycine hydrate (solid) and Zinc chelate of glycine hydrate(liquid) as feed additives for all animal species and amending Regulations (EC) No 1334/2003, (EC) No 479/2006, (EU) No335/2010 and Implementing Regulations (EU) No 991/2012 and (EU) No 636/2013. Off. J. Eur. Union 2016, 182, 7–27. [Google Scholar]
- Salgueiro, M.J.; Zubillga, M.; Lysionek, A.; Sarabia, M.I.; Caro, R.; De Paoli, T.; Hager, A.; Weill, R.; Boccio, J. Zinc as an essential micronutrient: A review. Nutr. Res. 2000, 20, 737–755. [Google Scholar] [CrossRef]
- Suttle, N.F. The Mineral Nutrition of Livestock, 4th ed.; CAB Publishing: Oxfordshire, UK, 2010. [Google Scholar]
- Bao, Y.; Choct, M. Trace mineral nutrition for broilers chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- Maret, W. The redox biology of redox-inert zinc ions. Free Radic. Biol. Med. 2019, 134, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Kambe, T.; Weaver, B.P.; Andrews, G.K. The genetics of essential metal homeostasis during development. Genesis 2008, 46, 214–228. [Google Scholar] [CrossRef] [Green Version]
- Reiterer, G.; Toborek, M.; Hennig, B. Peroxisome proliferator activated receptors α and γ require zinc for their anti-inflammatory properties in porcine vascular endothelial cells. J. Nutr. 2004, 134, 1711–1715. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Kloubert, V.; Blaabjerg, K.; Dalgaard, T.S.; Poulsen, H.D.; Rink, L.; Wessels, I. Influence of zinc supplementation on immune parameters in weaned pigs. J. Trace Elem. Med. Biol. 2018, 49, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-T.; Hu, Q.; Faris, R.J.; Guo, J.; Urriola, P.E.; Shurson, G.C.; Chen, C.; Saqui-Salces, M. Analysis of gastrointestinal responses revealed both shared and specific targets of zinc oxide and carbadox in weaned pigs. Antibiotics 2020, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Song, J.; Li, Y.; Luan, Z.; Zhu, K. Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br. J. Nutr. 2013, 110, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.-H.; Ke, Y.-L.; Xiao, K.; Jiao, L.-F.; Hong, Q.-H.; Hu, C.-H. Diosmectite-zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge. J. Anim. Sci. 2015, 93, 1599–1607. [Google Scholar] [CrossRef]
- Long, L.; Chen, J.; Zhang, Y.; Liang, X.; Ni, H.; Zhang, B.; Yin, Y. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weanling piglets. PLoS ONE 2017, 12, e0188587. [Google Scholar] [CrossRef] [Green Version]
- She, Y.; Huang, Q.; Li, D.; Piao, X. Effects of proteinate complex zinc on growth performance, hepatic and splenic trace elements concentrations, antioxidant function and immune functions in weaned piglets. Asian Australas. J. Anim. Sci. 2017, 30, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Brugger, D.; Wagner, B.; Windisch, W.M.; Schenkel, H.; Schulz, K.; Südekum, K.-H.; Berk, A.; Pieper, R.; Kowalczyk, J.; Spolders, M. Review: Bioavailability of trace minerals in farm animals: Definition and practical considerations for improved assess of efficacy and safety. Animal 2022, 16, 100598. [Google Scholar] [CrossRef]
- O’Dell, B.L. Bioavailability of trace elements. Nutr. Rev. 1984, 42, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Houdijk, J.G.; Bosch, M.W.; Tamminga, S.; Verstegen, M.W.; Berenpas, E.B.; Knoop, H. Apparent and total-tract nutrient digestion by pigs as affected by dietary nondigestble oligosaccharides. J. Anim. Sci. 1999, 77, 148–158. [Google Scholar] [CrossRef]
- Rincker, M.J.; Hill, G.M.; Link, J.E.; Meyer, A.M.; Rowntree, J.E. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs. J. Anim. Sci. 2005, 83, 2762–2774. [Google Scholar] [CrossRef]
- Smith, J.W., II; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Richert, B.T. Effects of the interrelationship between zinc oxide and copper sulfate on growth performance of early-weaned pigs. J. Anim. Sci. 1997, 75, 1861–1866. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.M.; Cromwell, G.L.; Crenshaw, T.D.; Dove, C.R.; Ewan, R.C.; Knabe, D.A.; Lewis, A.J.; Libal, G.W.; Mahan, D.C.; Shurson, G.C.; et al. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J. Anim. Sci. 2000, 78, 1010–1016. [Google Scholar] [CrossRef] [Green Version]
- Buff, C.E.; Bollinger, D.W.; Ellersieck, M.R.; Brommelsiek, W.A.; Veum, T.L. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J. Anim. Sci. 2005, 83, 2380–2386. [Google Scholar] [CrossRef]
- Schlegel, P.; Nys, Y.; Jondreville, C. Zinc availability and digestive zinc solubility in piglets and broilers diets varying in their phytate contents, phytase activity and supplemental zinc source. Animal 2010, 4, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Henry, P.R.; Guo, R.; Holwerda, R.A.; Toth, J.P.; Littell, R.C.; Miles, R.D.; Ammerman, C.B. Chemical characteristics and relative bioavailability of supplemental zinc sources for poultry and ruminants. J. Anim. Sci. 2000, 78, 2039–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vohra, P.; Gray, G.A.; Kratzer, F.H. Phytic acid-metal complexes. Proc. Soc. Exp. Biol. Med. 1965, 120, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Erdman, J.W., Jr. Oilseed phytates: Nutritional implications. J. Am. Oil Chem. Soc. 1979, 56, 736–741. [Google Scholar] [CrossRef]
- Ravindran, V.W.; Bryden, W.L.; Kornegay, E.T. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 1995, 6, 125–143. [Google Scholar]
- Windisch, W. Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Anal. Bioanal. Chem. 2001, 372, 421–425. [Google Scholar] [CrossRef]
- Huang, D.; Zhuo, Z.; Fang, S.; Yue, M.; Feng, J. Different zinc sources have diverse impacts on gene expression of zinc absorption related transporters in intestinal porcine epithelial cells. Biol. Trace Elem. Res. 2016, 173, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Lodemann, U.; Bondzio, A.; Gefeller, E.-M.; Vahjen, W.; Aschenbach, J.R.; Zentek, J.; Peiper, R. A high amount of dietary zinc changes the expression of zinc transporters and metallothionein in jejunal epithelial cells in vitro and in vivo but does not prevent zinc accumulation in jejunal tissue of piglets. J. Nutr. 2013, 143, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Brugger, D.; Hanauer, M.; Ortner, J.; Windisch, W. The response of zinc transporter gene expression of selected tissues in a pig model of subclinical zinc deficiency. J. Nutr. Biochem. 2021, 90, 108576. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, A.K.; Yuce, K.; Mogulkoc, R. Zinc metabolism and metallothioneins. Biol. Trace Elem. Res. 2018, 183, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Oberleas, D.; Muhrer, M.E.; O’Dell, B.L. Effects of phytic acid on zinc availability and parakeratosis in swine. J. Anim. Sci. 1962, 21, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Sloup, V.; Jankovská, I.; Nechybová, S.; Peřinková, P.; Langrová, I. Zinc in the animal organism: A review. Sci. Agric. Bohem. 2017, 48, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Benedet, X.; Ku, P.K.; Miller, E.R.; Ullrey, D.E.; Yokoyama, M.T. Supplemental microbial phytase improves bioavailability of dietary zinc in weanling pigs. J. Nutr. 1993, 123, 1117–1123. [Google Scholar] [CrossRef]
- Adeola, O.; Lawrence, B.V.; Sutton, A.L.; Cline, T.R. Phytase-induced changes in mineral utilization in zinc-supplemented diets for pigs. J. Anim. Sci. 1995, 73, 3384–3391. [Google Scholar] [CrossRef] [Green Version]
- Bikker, P.; Jongbloed, A.W.; Thissen, J.T.N.M. Meta-analysis of effects of microbial phytase on digestibility and bioavailability of copper and zinc in growing pigs. J. Anim. Sci. 2012, 90 (Suppl. 4), 134–136. [Google Scholar] [CrossRef]
- Van Riet, M.M.J.; Bos, E.-J.; Ampe, B.; Bikker, P.; Vanhauteghem, D.; Van Bockstaele, F.; Cornillie, P.; Van Broeck, W.D.; Du Laing, G.; Maes, D.; et al. Long-term impact of zinc supplementation in sows: Impact on zinc status biomarkers and performance. J. Swine Health Prod. 2018, 26, 79–94. [Google Scholar]
- Roth, H.P.; Kirchgessner, M. Zn-binding capacity of serum. A parameter for diagnosing marginal Zn deficiency. Res. Exp. Med. 1980, 177, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.J.; Ziemer, C.J.; Weber, T.E.; Trabue, S.L.; Bearson, B.L.; Shurson, G.C.; Whitney, M.H. Comparative sulfur analysis using thermal combustion on inductively coupled plasma methodology and mineral composition of common livestock feeds. J. Anim. Sci. 2008, 86, 2377–2384. [Google Scholar] [CrossRef] [PubMed]
- Boerboom, G.M. Trace Mineral Chelation for Sustainable Animal Nutrition: Enhancing Zinc Availability with L-glutamic Acid, N,N-Diacetic Acid. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Vohra, P.; Kratzer, F. Influence of various chelating agents on the availability of zinc. J. Nutr. 1964, 82, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Kretzel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, E.R. Iron, Copper, Manganese, and Iodine in Swine Nutrition. In Swine Nutrition; Miller, E.R., Ullrey, D.E., Lewis, A.J., Eds.; Butterworth-Heinemann: Stoneham, MA, USA, 1991; pp. 267–287. [Google Scholar]
- Schlegel, P.; Sauvant, D.; Jondreville, C. Bioavailability of zinc sources and their interaction with phytates in broilers and piglets. Animal 2013, 7, 47–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, G.M.; Mahan, D.C.; Joliff, J.S. Comparison of organic and inorganic zinc sources to maximize growth and meet the zinc needs of the nursery pig. J. Anim. Sci. 2014, 92, 1582–1594. [Google Scholar] [CrossRef] [Green Version]
- Swain, P.S.; Rao, S.B.N.; Rajendran, D.; Dominic, G.; Selvaraju, S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016, 2, 134–141. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.M.; Behal, A.; Sushkova, S.N.; Mandzhieva, S.; Singh, R.; Gorovtsov, A.; Tsitsuashvili, V.S.; Purvis, W.O.; Ghazaryan, K.A.; et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnol. Monit. Manag. 2018, 9, 76–84. [Google Scholar] [CrossRef]
- Rauw, W.M.; Mayorga, E.J.; Lei, S.M.; Dekkers, J.C.M.; Patience, J.F.; Gabler, N.K.; Lonergan, S.M.; Baumgard, L.H. Effects of diet and genetics on growth performance of pigs in response to repeated exposure to heat stress. Front. Genet. 2017, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Maes, D.G.D.; Dewulf, J.; Piñeiro, C.; Edwards, S.; Kyriazakis, I. A critical reflection on intensive pork production with an emphasis on animal health and welfare. J. Anim. Sci. 2019, 98 (Suppl. 1), S15–S26. [Google Scholar] [CrossRef]
- Chae, B.S.; Choi, S.C.; Cho, W.T.; Han, I.K.; Sohn, K.S. Effects of inclusion of dietary vitamins and trace minerals on growth performance and pork stability in finishing pigs. Asian Australas. J. Anim. Sci. 2000, 13, 1445–1449. [Google Scholar] [CrossRef]
- Flohr, J.R.; DeRouchey, J.M.; Woodworth, J.C.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S. A survey of current feeding regimens for vitamins and trace minerals in the US swine industry. J. Swine Health Prod. 2016, 24, 290–303. [Google Scholar]
- Yang, P.; Wang, H.K.; Li, L.X.; Ma, Y.X. The strategies for the supplementation of vitamins and trace minerals in pig production: Surveying major producers in China. Anim. Biosci. 2021, 34, 1350–1364. [Google Scholar] [CrossRef]
- Dalto, D.B.; da Silva, C.A. A survey of current levels of trace minerals and vitamins used in commercial diets by the Brazilian pork industry—A comparative study. Transl. Anim. Sci. 2020, 4, txaa195. [Google Scholar] [CrossRef] [PubMed]
- Patience, J.F.; Gillis, D. Removal of Vitamins and Trace Minerals from Finishing Diets; Annual Research Report; Prairie Swine Center, Inc.: Saskatoon, SK, Canada, 1995; pp. 29–31. [Google Scholar]
- Mavromichalis, I.; Hancock, J.D.; Kim, I.H.; Senne, B.W.; Kropf, D.H.; Kennedy, G.A.; Hines, R.H.; Behnke, K.C. Effects of omitting vitamin and trace mineral premixes and(or) reducing inorganic phosphorus additions on growth performance, carcass characteristics, and muscle quality in finishing pigs. J. Anim. Sci. 1999, 77, 2700–2708. [Google Scholar] [CrossRef] [PubMed]
- McGlone, J.J. Deletion of supplemental minerals and vitamins during the late finishing period does not affect pig weight gain and feed intake. J. Anim. Sci. 2000, 77, 2700–2708. [Google Scholar] [CrossRef]
- Park, J.S.; Hancock, J.D.; Gugle, T.L.; Jones, C.L.; Starkey, C.W.; Lee, D.J. Effects of removing vitamin and mineral premixes on growth performance and carcass measurements in finishing pigs. Kans. Agric. Exp. Stn. Res. Rep. 2000, 10, 116–117. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.C.; Chae, B.J.; Han, I.K. Impacts of dietary vitamins and trace minerals on growth and pork quality in finishing pigs. Asian Australas. J. Anim. Sci. 2001, 14, 1444–1449. [Google Scholar] [CrossRef]
- Edmonds, M.S.; Arentson, B.E. Effect of supplemental vitamins and trace minerals on performance and carcass quality in finishing pigs. J. Anim. Sci. 2001, 79, 141–147. [Google Scholar] [CrossRef]
- Tian, J.Z.; Lee, J.H.; Kim, J.D.; Han, Y.K.; Park, K.M.; Han, I.K. Effects of different levels of vitamin-mineral premixes on growth performance, nutrient digestibility, carcass characteristics and meat quality of growing-finishing pigs. Asian Australas. J. Anim. Sci. 2001, 14, 515–524. [Google Scholar] [CrossRef]
- Shaw, D.T.; Rozeboom, D.W.; Hill, G.M.; Booren, A.M.; Link, J.E. Impact of vitamin and mineral supplement withdrawal and wheat middlings inclusion on finishing pig growth performance, fecal mineral concentration, carcass characteristics, and the nutrient content and oxidative stability of pork. J. Anim. Sci. 2002, 80, 2920–2930. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.L.; Southern, L.L.; LeMieux, F.M.; Bidner, T.D.; Page, T.G. Effects of microbial phytase, low calcium and phosphorus, and removing the dietary trace mineral premix on carcass traits, pork quality, plasma metabolites, and tissue mineral content in growing-finishing pigs. J. Anim. Sci. 2004, 82, 2630–2639. [Google Scholar] [CrossRef] [PubMed]
- Gowanlock, D.W.; Mahan, D.C.; Jolliff, J.S.; Moeller, S.J.; Hill, G.M. Evaluating the NRC levels of Cu, Fe, Mn, and Zn using organic minerals for grower-finisher swine. J. Anim. Sci. 2013, 91, 5680–5686. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Lindemann, M.D.; Webb, S.F.; Rentfrow, G. Evaluation of trace mineral source and preharvest deletion of trace minerals from finishing diets on tissue mineral status in pigs. Asian Australas. J. Anim. Sci. 2018, 31, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaRosae, M. Trace Mineral Source and Inclusion Level on Wean-To-Finish Pig Production. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2022. [Google Scholar]
- Poulsen, H.D. Zinc Oxide for Pigs During Weaning; Meddelelse No. 746; Statens Husdrybrugsforsoeq: Copenhagen, Denmark, 1989. [Google Scholar]
- Schweer, W.; Ramirez, A.; Gabler, N. Alternatives to In-Feed Antibiotics for Nursery Pigs. In Proceedings of the XVIII Biennial Congress AMENA 2017, Puerto Vallarta, Mexico, 17–21 October 2017. [Google Scholar]
- Ward, T.L.; Asche, G.L.; Louis, G.F.; Pollmann, D.S. Zinc-methionine improves growth performance of starter pigs. J. Anim. Sci. 1996, 74 (Suppl. 1), 182. [Google Scholar]
- Mavromichalis, I.; Webel, D.M.; Parr, E.N.; Baker, D.H. Growth-promoting efficacy of pharmacological doses of tetrabasic zinc chloride in diets for nursery pigs. Can. J. Anim. Sci. 2001, 81, 387–391. [Google Scholar] [CrossRef]
- Case, C.L.; Carlson, M.S. Effect of feeding organic and inorganic sources of additional zinc on growth and zinc balance in nursery pigs. J. Anim. Sci. 2002, 80, 1917–1924. [Google Scholar] [CrossRef]
- Hollis, G.R.; Carter, S.D.; Cline, T.R.; Crenshaw, T.D.; Cromwell, G.L.; Hill, G.M.; Kim, S.W.; Lewis, A.J.; Mahan, D.C.; Miller, P.S.; et al. Effects of replacing pharmacological levels of dietary zinc oxide with lower dietary levels of various organic zinc sources for weanling pigs. J. Anim. Sci. 2005, 83, 2123–2129. [Google Scholar] [CrossRef]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles-and antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef]
- Szuba-Trznadel, A.; Rząsa, A.; Hikawczuk, T.; Fuchs, B. Effect of zinc source and level on growth performance and zinc status of weaned piglets. Animals 2021, 11, 2030. [Google Scholar] [CrossRef]
- Hansen, S.V.; Nørskov, N.P.; Nørgaard, J.V.; Woyengo, T.A.; Poulsen, H.D.; Nielsen, T.S. Determination of the optimal level of dietary zinc for newly weaned pigs; A dose-response study. Animals 2022, 12, 1552. [Google Scholar] [CrossRef] [PubMed]
- Bruininx, E.M.A.M.; Binnendijk, G.P.; van der Peet-Schwering, C.M.C.; Scharma, J.W.; den Hartog, L.A.; Everts, H.; Beynen, A.C. Effect of creep feed consumption on individual feed intake characteristics and performance of group-housed weanling pigs. J. Anim. Sci. 2002, 80, 1413–1418. [Google Scholar] [CrossRef] [Green Version]
- Bruininx, E.M.A.M.; van der Peet-Schwering, C.M.C.; Scharma, J.W.; Vereijken, P.F.; Vesseur, P.C.; Everts, H.; den Hartog, L.A.; Beynen, A.C. Effects of sex, initial body weight, and body weight distribution within groups. J. Anim. Sci. 2001, 79, 301. [Google Scholar] [CrossRef]
- Wilt, H.D.; Carlson, M.S. Effect of supplementing zinc oxide and biotin with or without carbadox on nursery pig performance. J. Anim. Sci. 2009, 87, 3253–3258. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xie, P.; Liu, L.L.; Dong, X.Y.; Zou, X.T. Use of lower level of capsulated zinc oxide as an alternative to pharmacological dose of zinc oxide for weaned piglets. Asian J. Anim. Vet. Adv. 2012, 7, 1290–1300. [Google Scholar] [CrossRef]
- Oh, H.-J.; Park, Y.-J.; Cho, J.H.; Song, M.-H.; Gu, B.-H.; Yun, W.; Lee, J.-H.; An, J.-S.; Kim, Y.-J.; Lee, J.-S.; et al. Changes in diarrhea score, nutrient digestibility, zinc utilization, intestinal immune profiles, and fecal microbiome in weaned piglets by different forms of zinc. Animals 2021, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.S.; Andrade, C.T.; da Silva, L.C.R.; Cabral, L.M.; Paschoalin, V.M.F.; Aguila, E.M.D. In vitro physiological and antibacterial characterization of ZnO nanoparticle composites in simulated porcine gastric and enteric fluids. BMC Vet. Res. 2017, 13, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, J.D.; Kornegay, E.T.; Thomas, H.R. Comparison of dietary zinc levels for reproducing sows and the effect of dietary zinc and calcium on the subsequent performance of their progeny. J. Anim. Sci. 1976, 43, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, J.; Chavez, E.R. Effect of low dietary zinc during late gestation and early lactation on the sow and neonatal piglets. Can. J. Anim. Sci. 1984, 64, 749–758. [Google Scholar] [CrossRef]
- Pond, W.G.; Jones, J.R. Effect of level of zinc in high-calcium diets on pigs from weaning through one reproductive cycle and on subsequent growth of their offspring. J. Anim. Sci. 1964, 23, 1057–1060. [Google Scholar] [CrossRef]
- Hoekstra, W.G.; Faltin, E.C.; Lin, C.W.; Roberts, H.F.; Grummer, R.H. Zinc deficiency in reproducing gilts fed a diet high in calcium and its effect on tissue zinc and blood serum alkaline phosphatase. J. Anim. Sci. 1967, 26, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.M.; Ku, P.K.; Miller, E.R.; Ullrey, D.E.; Losty, T.A.; O’Dell, B.L. A copper deficiency in neonatal pigs induced by a high zinc maternal diet. J. Nutr. 1983, 113, 867–872. [Google Scholar] [CrossRef]
- Hill, G.M.; Miller, E.R.; Stowe, H.D. Effect of dietary zinc levels on health and productivity of gilts and sows through two parities. J. Anim. Sci. 1983, 57, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.M.; Miller, E.R.; Whetter, P.A.; Ullrey, D.E. Concentrations of minerals in tissues of pigs from dams fed different levels of dietary zinc. J. Anim. Sci. 1983, 57, 130–138. [Google Scholar] [CrossRef]
- Hurley, L.S.; Mutch, P.B. Prenatal and postnatal development after transitory gestational zinc deficiency in rats. J. Nutr. 1973, 103, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Simmer, K.; Thompson, R.P. Maternal zinc and intrauterine growth retardation. Clin. Sci. 1985, 68, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.L.; Bidner, T.D.; Fakler, T.M.; Southern, L.L. Growth and intestinal morphology of pigs from sows fed two zinc sources during gestation and lactation. J. Anim. Sci. 2006, 84, 2141–2149. [Google Scholar] [CrossRef]
- Hostetler, C.E.; Kincaid, R.L.; Mirando, M.A. The role of essential trace elements in embryonic and fetal development in livestock. Vet. J. 2003, 166, 125–139. [Google Scholar] [CrossRef]
- Hostetler, C.E.; Kincaid, R.L. Gestational changes in concentrations of selenium and zinc in the porcine fetus and the effects of maternal intake of selenium. Biol. Trace Elem. Res. 2004, 97, 57–70. [Google Scholar] [CrossRef]
- Vallet, J.L.; Rempel, A.; Miles, J.R.; Webel, S.K. Effect of essential fatty acid and zinc supplementation during pregnancy on birth intervals, neonatal piglet brain myelination, stillbirth, and preweaning mortality. J. Anim. Sci. 2014, 92, 2422–2432. [Google Scholar] [CrossRef]
- Benedet, L.; Dick, D.P.; Brunetto, G.; dos Santos Júnior, E.; Ferreira, G.W.; Lourenzi, C.R.; Comin, J.J. Copper and Zn distribution in humic substances of soil after 10 years of pig manure application in south of Santa Catarina, Brazil. Environ. Geochem. Health 2020, 42, 3281–3301. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, D.; She, L.; Su, W.; He, D.; Wu, G.; Ma, X.; Jiang, S.; Jiang, C.; Ying, G. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ. 2020, 734, 139023. [Google Scholar] [CrossRef]
- Jensen, J.; Kyvsgaard, N.C.; Battisti, A.; Baptiste, K.E. Environmental and public health related risk of veterinary zinc in pig production—Using Denmark as an example. Environ. Int. 2018, 114, 181–190. [Google Scholar] [CrossRef] [PubMed]
- INRAE-CIRAD-AFZ. Feed Tables: Composition and Nutritive Values of Feeds for Cattle, Sheep, Goats, Pigs, Poultry, Rabbits, Horses and Salmonids. Available online: https://www.feedtables.com/ (accessed on 26 September 2022).
- Paulk, C.B.; Burnett, D.D.; Tokach, M.D.; Nelssen, J.L.; Dritz, S.S.; DeRouchey, J.M.; Goodband, R.D.; Hill, G.M.; Haydon, K.D.; Gonzalez, J.M. Effect of added zinc in diets with ractopamine hydrochloride on growth performance, carcass characteristics, and ileal mucosal inflammation mRNA expression of finishing pigs. J. Anim. Sci. 2015, 93, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Feldpausch, J.A.; Amachawadi, R.G.; Tokach, M.D.; Scott, H.M.; Nagaraja, T.G.; Dritz, S.S.; Goodband, R.D.; Woodworth, J.C.; DeRouchey, J.M. Effects of dietary copper, zinc, and ractopamine hydrochloride on finishing pig growth performance, carcass characteristics, and antimicrobial susceptibility of enteric bacteria. J. Anim. Sci. 2016, 95, 3278–3293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cemin, H.S.; Woodworth, J.C.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Goodband, R.D.; Usry, J.L. Effects of increasing dietary zinc on growth performance and carcass characteristics of pigs raised under commercial conditions. Transl. Anim. Sci. 2019, 3, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Cemin, H.S.; Carpenter, C.B.; Woodworth, J.C.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Goodband, R.D.; Usry, J.L. Effects of zinc source and level on growth performance and carcass characteristics of finishing pigs. Transl. Anim. Sci. 2019, 3, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Villagómez-Estrada, S.; Pérez, J.F.; van Kuijk, S.; Melo-Durán, D.; Karimirad, R.; Solà-Oriol, D. Effects of two zinc supplementation levels and two zinc and copper sources with different solubility characteristics on the growth performance, carcass characteristics and digestibility of growing-finishing pigs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 59–71. [Google Scholar] [CrossRef]
- Bučko, O.; Hellová, D.; Debrecéni, O. Effect of organic zinc of pork quality, chemical composition and fatty acid profile of musculus longissimus thoracis in large white breed. Res. Pig Breed. 2013, 7, 2–6. [Google Scholar]
- Holen, J.P.; Rambo, Z.; Hilbrands, A.M.; Johnston, L.J. Effects of dietary zinc source and concentration on performance of growing-finishing pigs reared with reduced floor space. Prof. Anim. Sci. 2018, 34, 133–143. [Google Scholar] [CrossRef]
- Natalello, A.; Khelil-Arfa, H.; Luciano, G.; Zoon, M.; Menci, R.; Scerra, M.; Blanchard, A.; Mangano, F.; Biondi, L.; Priolo, A. Effect of different levels of organic zinc supplementation on pork quality. Meat Sci. 2022, 186, 108731. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Wu, M.Y.; Asio, V.B.; Chen, Z.S. Using a soil quality index to assess the effects of applying swine manure compost on soil quality under a crop rotation system in Taiwan. Soil Sci. 2006, 171, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Asada, K.; Yabushita, Y.; Saito, H.; Nishimura, T. Effect of long-term swine-manure application on soil hydraulic properties and heavy metal behavior. Eur. J. Soil Sci. 2012, 63, 368–376. [Google Scholar] [CrossRef]
- Kumar, R.R.; Park, B.J.; Cho, J.Y. Application and environmental risks of livestock manure. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 497–503. [Google Scholar] [CrossRef]
- Pourret, O.; Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, A.; Laurent, A. Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000–2014. Sci. Total Environ. 2017, 590, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yu, W.; Ma, Q.; Zhou, H. Accumulation of copper and zinc in soil and plant within ten-year application of different pig manure rates. Plant Soil Environ. 2013, 59, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.H.; Tan, C.Y.; Liu, L.; Zhu, P.; Peng, C.; Luo, Y.M.; Christie, P. Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure. Geoderma 2012, 173, 224–230. [Google Scholar] [CrossRef]
- Hsu, J.H.; Lo, S.L. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environ. Pollut. 2001, 114, 119–127. [Google Scholar] [CrossRef]
- Lu, X.; Liu, L.; Fan, R.; Luo, J.; Yan, S.; Rengel, Z.; Zhang, Z. Dynamics of copper and tetracyclines during composting of water hyacinth biomass amended with peat or pig manure. Environ. Sci. Pollut. Res. 2017, 24, 23584–23597. [Google Scholar] [CrossRef]
- Meng, J.; Wang, L.; Zhong, L.; Liu, X.; Brookes, P.C.; Xu, J.; Chen, H. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure. Chemosphere 2017, 180, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Dębski, B. Supplementation of pigs diet with zinc and copper as alternative to conventional antimicrobials. Pol. J. Vet. Sci. 2016, 19, 917–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Chen, Y.; Weng, L.; Ma, J.; Ma, Y.; Li, Y.; Islam, M.S. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Sci. Total Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 2009, 35, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Maisonnave, V.; Montreajaud, V.M.; Bonnin, C.; Revel, J.C. Impact on crops, plants and soils of metal trace elements transfer and flux, after spreading of fertilizers and biosolids. Water Sci. Technol. 2002, 46, 217–224. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Jia, J.; Kong, P.; Tong, Z.; Lu, Y.; Xie, L.; Ma, F.; Giesy, J.P. Effects of pig manure containing copper and zinc on microbial community assess via phospholipids in soils. Environ. Monit. Assess. 2014, 186, 5297–5306. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Q.; Xu, H.; Yu, X.; Chen, L.; Wang, Z.; Feng, J. Selection of copper and zinc dosages in pig diets based on the mutual benefit of animal growth and environmental protection. Ecotoxicol. Environ. Saf. 2021, 216, 112177. [Google Scholar] [CrossRef]
- Jondreville, C.; Hayler, R.; Feuerstein, D. Replacement of zinc sulphate by microbial phytase for piglets fed a maize-soybean meal diet. Anim. Sci. 2005, 81, 77–83. [Google Scholar] [CrossRef]
- White, C.L. Zn in Soils and Plants; Kulwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Nriagu, J.O. A global assessment of natural sources of atmospheric trace metals. Nature 1989, 338, 47–49. [Google Scholar] [CrossRef]
- Imseng, M.; Wiggenhauser, M.; Müller, M.; Keller, A.; Frossard, E.; Wilcke, W.; Bigalke, M. The fate of Zn in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation and soil-plant cycling. Environ. Sci. Technol. 2019, 53, 4140–4149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.; Khan, M.; Sheikh, T.M.M.; Mumtaz, M.Z.; Chohan, T.A.; Shamim, S.; Liu, Y. Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight. Front. Microbiol. 2022, 13, 900740. [Google Scholar] [CrossRef]
- Lichtfouse, E. Organic Farming, Pest Control and Remediation of Soil Pollutants; Sustainable Agriculture Reviews 1; Springer: Dijon, France, 2009. [Google Scholar]
- World Health Organization (WHO). Permissible Limits of Heavy Metals in Soil and Plants; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Natasha, N.; Shahid, M.; Bibi, I.; Iqbal, J.; Khalid, S.; Murtaza, B.; Bakhat, H.F.; Farooq, A.B.U.; Amjad, M.; Hammad, H.M.; et al. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 2022, 808, 152024. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Kour, R.; Bhojiya, A.A.; Meena, R.H.; Singh, A.; Moharty, S.R.; Rajpurohit, D.; Ameta, K.D. Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc mobilization. Sci. Rep. 2020, 10, 13865. [Google Scholar] [CrossRef] [PubMed]
- Gaupp, R.; Ledala, N.; Somerville, G.A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. 2012, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Łukowski, A.; Dec, D. Influence of Zn, Cd, and Cu fractions on enzymatic activity of arable soils. Environ. Monit. Assess. 2018, 190, 278. [Google Scholar] [CrossRef] [Green Version]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Wang, P.F.; Feng, C.L.; Liu, D.Q.; Chen, J.K.; Wu, F.C. Acute toxicity and hazardous concentrations of zinc to native freshwater organisms under different pH values in China. Bull. Environ. Contam. Toxicol. 2019, 103, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Kumar, S.; Pandey, A. Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. J. Environ. Chem. Eng. 2021, 9, 105684. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Yazdankhah, S.; Rudi, K.; Bernhoft, A. Zinc and copper in animal feed—Development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis. 2014, 25, 25862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciesinski, L.; Guenther, S.; Pieper, R.; Kalisch, M.; Bednorz, C.; Wieler, I.H. High dietary zinc feeding promotes persistence of multi-resistant E. coli in the swine gut. PLoS ONE 2018, 13, e0191660. [Google Scholar] [CrossRef]
- Argudín, M.A.; Butaye, P. Heavy metal resistance in bacteria from farm animals. Res. Vet. Sci. 2019, 122, 132–147. [Google Scholar] [CrossRef]
- Cavaco, L.M.; Hasman, H.; Aarestrup, F.M. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet. Microbiol. 2011, 150, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Fard, R.M.; Heuzenroeder, M.W.; Barton, M.D. Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet. Microbiol. 2011, 148, 276–282. [Google Scholar] [CrossRef]
- Holzel, C.S.; Muller, C.; Harms, K.S.; Mikolajewski, S.; Schwaiger, K.; Bauer, J. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. Environ. Res. 2012, 113, 21–27. [Google Scholar] [CrossRef]
- Bednorz, C.; Oelgeschlager, K.; Kinnemann, B.; Hartman, S.; Neumann, K.; Pieper, R.; Bethe, A.; Semmler, T.; Tedin, K.; Schierack, P.; et al. The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int. J. Med. Microbiol. 2013, 303, 396–403. [Google Scholar] [CrossRef]
- Slifierz, M.J.; Friendship, R.; Weese, J.S. Zinc oxide therapy increases prevalence and persistence of methicillin-resistant Staphylococcus in pigs: A randomized controlled trial. Zoonoses Public Health 2014, 62, 301–308. [Google Scholar] [CrossRef]
- Holman, D.B.; Chenier, M.R. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Can. J. Microbiol. 2015, 61, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Argudín, M.A.; Butaye, P. Dissemination of metal resistance genes among animal methicillin-resistant coagulase-negative Staphylococci. Res. Vet. Sci. 2016, 105, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015, 16, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; WHO. Joint FAO/WHO Expert Meeting in Collaboration with OIE on Foodborne Antimicrobial Resistance: Role of the Environment, Crops and Biocides—Meeting Report; Microbiological Risk Assessment Series No. 34; FAO: Rome, Italy, 2019; Available online: https://www.who.int/publications/i/item/9789241516907 (accessed on 7 October 2022).
- Arya, S.; Williams, A.; Reina, S.V.; Knapp, C.W.; Kreft, J.U.; Hobman, J.L.; Stekel, D.J. Towards a general model for predicting minimal metal concentrations co-selecting for antibiotic resistance plasmids. Environ. Pollut. 2021, 275, 116602. [Google Scholar] [CrossRef] [PubMed]
- Rutgersson, C.; Ebmeyer, S.; Lassen, S.B.; Karkman, A.; Fick, J.; Kristiansson, E.; Brandt, K.K.; Flach, C.-F.; Larsson, D.G.J. Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. Environ. Int. 2020, 137, 105339. [Google Scholar] [CrossRef]
- Brinck, J.E.; Lassen, S.B.; Forouzandeh, A.; Pan, T.; Wang, Y.-Z.; Monteiro, A.; Blavi, L.; Solà-Oriol, D.; Stein, H.H.; Su, J.-Q.; et al. Impacts of dietary copper on the swine gut microbiome and antibiotic resistome. Sci. Total Environ. 2022, 857, 159609. [Google Scholar] [CrossRef]
Ingredient, mg/kg DM | [1] | [57] ICP 1 |
---|---|---|
Corn | 19 | 23 |
Wheat | 35 | 39 |
Barley | 31 | 37 |
Sorghum | 17 | 31 |
Soybean meal, dehulled, solvent extracted | 54 | 61 |
Soy protein concentrate | ND | 30 |
Canola meal, solvent extracted | 54 | ND |
Corn DDGS | 58 | 114 |
Wheat midds | 103 | 115 |
Meat and bone meal | 101 | 112 |
Spray dried plasma | 14 | 17 |
Blood meal | 53 | 31 |
Fish meal | 95 | 120 |
Limestone | ND | 18 |
Dicalcium phosphate | ND | 95 |
Monocalcium phosphate | ND | 105 |
Sodium chloride | ND | 36 |
ZnO | 72% | 798,837 |
ZnSO4 | 35.5% | 382,343 |
CuSO4 | ND | 1145 |
Country | Recommended Dietary Zn Concentration, mg/kg |
---|---|
United States [1] | |
Nursery—Phase 1 (5 to 7 kg BW) | 100 |
Nursery—Phase 2 (7 to 11 kg BW) | 100 |
Nursery—Phase 3 (11 to 25 kg BW) | 80 |
Grower (25 to 50 kg BW) | 60 |
Grower (50 to 75 kg BW) | 50 |
Finisher (75 to 100 kg BW) | 50 |
Finisher (100 to 135 kg BW) | 50 |
Gilt development (20 kg to breeding) | - |
Gestation | 100 |
Lactation | 100 |
Boars | 50 |
Brazil [3] | |
Nursing piglets (3 to 20 days of age) | - |
Nursery—Phase 1 (4 to 15 kg BW) | 123 |
Nursery—Phase 2 (15 to 30 kg BW) | 110 |
Grower (30 to 50 kg BW) | 88 |
Grower (50 to 70 kg BW) | 77 |
Finisher (70–100 kg BW) | 66 |
Finisher (100 to 120 kg BW) | 55 |
Gestation 1 | 110 |
Lactation 1 | 110 |
Boars 1 | 110 |
China [4] | |
Nursing piglets (birth to 8 kg BW) | 110 |
Nursery—Phase 1 (8 to 15 kg BW) | 110 |
Nursery—Phase 2 (15 to 25 kg BW) | 70 |
Grower (25 to 60 kg BW) | 60 |
Grower (60 to 90 kg BW) | 50 |
Finisher (90 kg to market) | 50 |
Gilt development | 70 |
Gestation | 45 |
Lactation | 50 |
Boars | 75 |
European Union [2] 2 | |
Weaning to 12 weeks post-weaning | 150 |
Growing pigs (25 to 135 kg BW) | 120 |
Gestation | 150 |
Lactation | 150 |
Reference | Production Phase (Initial BW) | Added Dietary Zn, mg/kg to the Basal Diet | Withdrawal Period | Key Findings |
---|---|---|---|---|
[72] | Finishing pigs (80 kg) | 60 | 100% withdrawal for 3 or 5 wk prior to market | Removing VTM premix had no negative effect on growth performance and carcass yield, lean, and fat |
[73] | Finishing pigs (86 kg) | 110 (based on NRC 1998 recommendations) | 100% withdrawal for 4 wk prior to market | Removing VTM premix had no negative effect on growth performance, gastric morphology, and carcass traits (i.e., yield, longissimus muscle area, longissimus muscle color traits, cooked meat tenderness) |
[74] | Finishing pigs (94 kg)—Exp. 1 Finishing pigs (79 kg)—Exp. 2 | 150 | 100% withdrawal for 30 d | Removing VTM premixes had no negative effect on growth performance, mortality, and behavioral aberrations (i.e., tail biting, ear biting) |
[75] | Finishing pigs (91 kg) | Not reported in VTM premix | 100% withdrawal prior to market | Removing the VTM had no negative effect on growth performance, within-pen variability in final weight, carcass characteristics (i.e., yield, backfat thickness, fat-free lean), and integrity of vertebrae |
[76] | Finishing pigs (85 kg) | 0–100 (0% to 200% of NRC 1998 concentrations) | 50% withdrawal (Exp. 1) or 100% withdrawal (Exp. 2) for 4 wk | Reducing VTM premix by 50% had no negative effects on growth performance while removing 100% of VTM significantly decreased ADG and FCR; 50% or 100% VTM premix withdrawal may decrease pork shelf-life (i.e., increased thiobarbituric acid reactive substances and peroxide value) |
[77] | Growing pigs (54 kg) | 142 | 100% withdrawal for 6 or 12 wk prior to market | Removing VTM for 12 wk had a tendency to decrease poor growth performance but no effects on carcass yield, fat-free lean, backfat depth, loin muscle area, and pH |
[78] | Growing pigs (21 kg) Finishing pigs (54 kg) | 30–120 (50% or 200% of NRC 1998 recommendations) 22.5–90 (50, 100, or 200% of NRC 1998 recommendations) | 50% withdrawal for 6 wk in growing phase 50% withdrawal for 9 wk in finishing phase | Reducing 50% of VTM level suggested by NRC (1998) had no negative effects on growth performance and meat quality (i.e., loin muscle area, pH, drip loss, cooking loss, shear force, tenderness, and flavor) of growing pigs and finishing pigs |
[79] | Weaning to finishing pigs | 100 (based on NRC 1998 recommendations) | 100% withdrawal for 4 wk prior to market | -Removing VTM premixes had no negative effect on growth performance, carcass traits (i.e., yield, loin muscle area, backfat), longissimus dorsi Zn, Cu/Zn superoxide dismutase or glutathione peroxidase activity |
[80] | Growing to finishing pigs (22–109 kg) | 154 | 100% withdrawal in grow-finish phase | Removing VTM premixes had no negative effects on growth performance and pork quality (i.e., color, marbling, shear force, cooking loss) |
[81] | Growing to finishing pigs (24–115 kg) | 0–50 (0, 50, 100% of NRC 1998 recommended concentrations of Cu, Fe, Mn, and Zn) | 50 or 100% withdrawal for 3 growth phases | Reducing VTM premix by 50% or 100% had no effects on growth performance, blood hemoglobin and hematocrit, and carcass traits (i.e., longissimus muscle area, backfat, loin pH, loin color, and drip loss) |
[82] | Weaning to finishing pigs (7–83 kg) | 0–100 (0 or 100% of NRC 1998 concentrations of Zn from inorganic or organic sources) | 100% withdrawal for 0, 2, 4, and 6 wk (80–120 kg BW) | Increased length of deletion period linearly decreased liver Zn and metacarpal bone Zn concentrations; Organic sources had greater deposition in visceral organs than inorganic sources |
[83] | Finishing pigs (85 kg) | 82.5–165 (Met or exceeded NRC 2012 recommendations) | 50% withdrawal during the last two dietary phases prior to market | Reducing VTM premix by 50% had no effect on growth performance, carcass traits (i.e., hot carcass weight, backfat, loin depth, and lean percentage), and serum Zn and Cu concentrations but significantly decreased Zn and Cu excretion in feces |
Feeding Scenario | U.S. | China | Brazil | E.U. |
---|---|---|---|---|
(0) Estimated innate Zn consumption from feed ingredients | 15,433 | 15,590 | 15,366 | 15,433 |
(1) Meet current Zn requirements or guidelines with no safety margin, mg/pig | 34,359 | 33,424 | 39,961 | 55,124 |
(2) As for (1) + feed 2000 mg/kg in Phase 1 and 2 nursery diets | 51,197 (+49%) | 54,725 (+64%) | 63,303 (+58%) | - |
(3) As for (1) + feed increased Zn to gestating sows during the last trimester before farrowing | 37,535 (+9%) | 36,953 (+11%) | 43,073 (+8%) | - |
(4) Combined increases in Zn supplementation in nursery and gestating sows | 54,373 (+58%) | 58,254 (+74%) | 66,415 (+66%) | - |
(5) Relative differences of (4) compared with EU regulations in (1) | −751 (−1.4%) | +3130 (+6%) | +11,291 (20%) | - |
(6) Zn consumption based on average Zn supplementation levels from industry surveys | 69,328 | 41,623 | 105,503 | - |
(7) Relative differences of (6) compared with (4) | 14,955 (+28%) | −16,631 (−29%) | 39,088 (+59%) | - |
(8) As for (6) if VTM premix withdrawn in last phase before market | 59,583 (−14%) | 35,559 (−15%) | 99,054 (−6%) | - |
(9) Zn consumption based on maximum Zn supplementation levels from industry surveys | 146,283 | 310,520 | 309,385 | - |
(10) Relative differences of (9) compared with (4) | 91,910 (+169%) | 252,266 (+433%) | 242,970 (+365%) | - |
Zn Feeding Scenario | ||||
---|---|---|---|---|
Measure | Pharmacological Use of Zn Post-Weaning Followed by 250 mg/kg in Remaining Diets | 250 mg/kg in All Diets | 150 mg/kg Zn in All Diets | Meet Zn Requirements |
Diet Zn concentration, mg/kg | ||||
Phase 1 nursery (8 to 13 kg BW) | 2500 | 250 | 150 | 70 |
Phase 2 nursery (13 to 28 kg BW) | 250 | 250 | 150 | 50 |
Growing-finishing (28 to 110 kg BW) | 250 | 250 | 150 | 30 |
Sows | 250 | 250 | 150 | 70 |
Zn balance (0 to 110 kg BW), g/pig | ||||
Intake 1 | 84.1 | 68.3 | 41.7 | 9.0 |
Excretion 2 | 81.7 | 65.9 | 39.3 | 6.7 |
Manure Zn, mg/kg DM 3 | 2542 | 2128 | 1269 | 284 |
Years to reach 150 mg Zn/kg soil DM 4 | 79 | 95 | 167 | 1160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shurson, G.C.; Urriola, P.E.; Hung, Y.-T. Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals 2022, 12, 3374. https://doi.org/10.3390/ani12233374
Shurson GC, Urriola PE, Hung Y-T. Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals. 2022; 12(23):3374. https://doi.org/10.3390/ani12233374
Chicago/Turabian StyleShurson, Gerald C., Pedro E. Urriola, and Yuan-Tai Hung. 2022. "Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability" Animals 12, no. 23: 3374. https://doi.org/10.3390/ani12233374
APA StyleShurson, G. C., Urriola, P. E., & Hung, Y. -T. (2022). Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals, 12(23), 3374. https://doi.org/10.3390/ani12233374