Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Review
2.1. Experimental Studies with BCG
2.2. Field Evaluation of the Cattle TB Vaccine
- How and when to vaccinate.
- BCG strain to use.
- For how long to vaccinate.
- Vaccine application route.
- Vaccination dose.
- Differential diagnosis.
2.3. bTB Vaccination Strategies
2.3.1. Whole-Herd Vaccination
2.3.2. Vaccination of Heifers
2.3.3. Calf Vaccination
2.4. Additional Considerations Favorable to the Vaccine
- The vaccine strain is of bovine origin, M. bovis; therefore, its ability to protect should be better in cattle than in humans.
- The natural challenge doses are surely lower than the doses used experimentally [58], so that, with vaccination, the chances of infection and consequent spread of the disease will also be lower.
- Although it is not known precisely, the natural rate of dissemination from infected to susceptible animals in the infected herd is low, and in tuberculin tests, the herd never reaches 100% of reactors; therefore, the vaccine has high chances of competing for the susceptible animals.
- The populations of dairy cattle are very dynamic; the cows’ average productive life is between three to four years of age, that is 2.5 to 3 calving seasons [115], which favors the probability of rapid elimination of animals infected with tuberculosis.
- Only 1% of the infected cows shed the bacillus in milk, and most of this milk goes to pasteurization, so the chances of calf infection through this means are low.
- Although it has not been determined in cattle, it is estimated that the rate of infection after exposure is similar to that observed in humans (≈10%) and of these, only 5% develop the disease.
- The initial prevalence of the disease, determined by the tuberculin or the IFN-gamma tests. The prevalence of the disease may have an impact in the efficacy of the disease; high prevalence means more chances of exposure to infection.
- The quality of the milk used to feed the calves: natural or substitute. As with colostrum, milk for calves should come from healthy animals or powdered substitutes. Although in a low proportion, the digestive tract is a likely route of infection, especially in cases of tuberculous mastitis [121].
- The level of separation between the calf-rearing pens and the corrals for heifers with the corrals of the infected herd of adults. This separation must be sufficient to prevent the passage of infection through close contact or any type of fomite, such as water or food, considering that the main route of infection is respiratory and, to a lesser extent, digestive [121,122].
- Management practices for feed waste between pens. Using this waste to feed heifers and dry cows should be avoided. As in the previous two cases, contaminated food can be a route of infection [122].
- The introduction of TB-free animals as a replacement or using animals from the same herd. It has been shown that the main mechanism of disease entry into a herd is through the entry of infected animals [125].
- Use wisely, and with the purpose of eliminating TB, the decision of voluntary and involuntary culling.
2.5. Vaccination and Biosecurity
- Separate the tuberculin-reacting animals and handle them separately.
- Make real separation between calves’ pens and adults’ settings.
- Use only replacements from the same herd or TB-free if they come from another herd.
- Feed calves with colostrum and milk from healthy cows.
- Milk healthy cows first.
- Avoid giving waste feed from the infected herd to calves, heifers, or dry cows.
- Organize pens and direct the flow of water from the free to infected pens.
- Prevent the entrance of out-of-the-farm vehicles to the animals’ area.
- Take the necessary provisions with cattle that move to fairs and exhibitions to avoid contagion.
2.6. Factors That May Affect Vaccine Efficacy
- The genetic variability of individuals: some vaccinated animals do not generate an appropriate immune response and may present visible TB lesions.
- The vaccine strain used: some BCG strains have been over-attenuated.
- The dose administered: in the case of bTB, high doses are less effective than medium or low doses [31].
- The vaccine protocol, some more successful than others: the use of boosting with proteins has shown better efficacy [26].
- The nutritional and physiological state of the animal: malnourished and pregnant animals may not develop an appropriate immune response [126].
- Pre-immunization with environmental mycobacteria: this can reduce the effectiveness of the BCG vaccine because the animal may have memory cells that are activated when detecting the vaccine antigen [26].
- The consumption of infected milk contaminated with M. bovis or with environmental mycobacteria [121].
- The presence of concurrent diseases.
- The indiscriminate use of medications (corticosteroids).
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, C.J.C.; Foster, C.R.W.; Morris, P.A.; Teverson, R. The transmission of Mycobacterium bovis infection to cattle. Res. Vet. Sci. 2003, 74, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Abalos, P.; Retamal, P. Tuberculosis: Una zoonosis Re-Emergente? Rev. Sci. 2004, 23, 583–594. [Google Scholar] [CrossRef]
- Waters, W.R.; Palmer, M.V.; Buddle, B.M.; Vordermeier, H.M. Bovine tuberculosis vaccine research: Historical perspectives and recent advances. Vaccine 2012, 30, 2611–2622. [Google Scholar] [CrossRef] [PubMed]
- Godfray, C.; Donnelly, C.; Hewinson, G.; Winter, M.; Wood, J. Bovine TB strategy review. Report to Rt Hon Michael gove MP, Secretary of State, Defra; DEFRA: London, UK, 2018. [Google Scholar]
- SAGARPA; Gobierno del Estado de Chihuahua; Comité Técnico Estatal de Evaluación del Estado de Chihuahua; Universidad Autónoma de Chihuahua. Informe de Evaluación 2015–2017. Programa Sanidad e Inocuidad Agroalimentaria. Available online: http://ihacienda.chihuahua.gob.mx/tfiscal/indtfisc/infev2018/irural.pdf (accessed on 5 October 2022).
- SENASICA. Sistema Nacional de Vigilancia Epidemiológica (SIVE) de la Dirección General de Salud Animal. 2020. Available online: https://www.gob.mx/senasica/acciones-y-programas/sistema-nacional-de-vigilancia-epidemiologica-siv (accessed on 5 October 2022).
- de la Rua-Domenech, R. Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis. Tuberculosis 2006, 86, 77–109. [Google Scholar] [CrossRef] [PubMed]
- Thoen, C.; LoBue, P.; De Kantor, I. The importance of Mycobacterium bovis as a zoonosis. Vet. Microbiol. 2006, 112, 339–345. [Google Scholar] [CrossRef]
- Olea-Popelka, F.; Muwonge, A.; Perera, A.; Dean, A.S.; Mumford, E.; Erlacher-Vindel, E.; Forcella, S.; Silk, B.J.; Ditiu, L.; El Idrissi, A. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis: A call for action. Lancet Infect. Dis. 2017, 17, e21–e25. [Google Scholar] [CrossRef] [Green Version]
- Oloya, J.; Muma, J.B.; Opuda-asibo, J.; Djønne, B. Risk factors for herd-level bovine tuberculosis seropositivity in transhumant cattle in Uganda. Prev. Vet. Med. 2007, 80, 318–329. [Google Scholar] [CrossRef]
- Munyeme, M.; Muma, J.B.; Samui, K.L.; Skjerve, E.; Nambota, A.M.; Phiri, I.G.K.; Rigouts, L.; Tryland, M. Prevalence of bovine tuberculosis and animal level risk factors for indigenous cattle under different grazing strategies in the livestock/wildlife interface areas of Zambia. Trop. Anim. Health Prod. 2009, 41, 345–352. [Google Scholar] [CrossRef]
- Dejene, S.W.; Heitkönig, I.M.A.; Prins, H.H.T.; Lemma, F.A.; Mekonnen, D.A.; Alemu, Z.E.; Kelkay, T.Z.; de Boer, W.F. Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia. PLoS ONE 2016, 6, e0159083. [Google Scholar] [CrossRef] [Green Version]
- Arnot, L.F.; Michel, A. Challenges for controlling bovine tuberculosis in South Africa. Onderstepoort. J. Vet. Res. 2020, 87, e1–e8. [Google Scholar] [CrossRef]
- Schiller, I.; Waters, W.R.; Vordermeier, H.M.; Jemmi, T.; Welsh, M.; Keck, N.; Whelan, A.; Gormley, E.; Boschiroli, M.L.; Moyen, J.L.; et al. Bovine tuberculosis in Europe from the perspective of an officially tuberculosis free country: Trade, surveillance and diagnostics. Vet. Microbiol. 2011, 5, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Müller, B.; Dürr, S.; Alonso, S.; Hattendorf, J.; Laisse, C.J.; Parsons, S.D.; van Helden, P.D.; Zinsstag, J. Zoonotic Mycobacterium bovis induced tuberculosis in humans. Emerg. Infect. Dis. 2013, 19, 899–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, A.; van Beest, F.M.; Brook, R.K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: A synthesis of knowledge. Prev. Vet. Med. 2013, 113, 356–363. [Google Scholar] [CrossRef]
- Humphrey, H.M.; Orloski, K.A.; Olea-Popelka, F.J. Bovine tuberculosis slaughter surveillance in the United States 2001–2010: Assessment of its trace back investigation function. BMC Vet. Res. 2014, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Milián-Suazo, F.; Harris, B.; Díaz, C.A.; Romero-Torres, C.; Stuber, T.; Ojeda, G.A.; Loredo, A.M.; Soria, M.P.; Payeur, J.B. Molecular epidemiology of Mycobacterium bovis: Usefulness in international trade. Prev. Vet. Med. 2008, 87, 261–271. [Google Scholar] [CrossRef]
- Perea-Razo, C.A.; Rodríguez-Hernández, E.; Ponce, S.I.R.; Milián-Suazo, F.; Robbe-Austerman, S.; Stuber, T.; Cantó-Alarcón, G.J. Molecular epidemiology of cattle tuberculosis in Mexico through whole-genome sequencing and spoligotyping. PLoS ONE 2018, 13, e0201981. [Google Scholar] [CrossRef]
- Rothel, J.; Jones, S.; Corner, L.; Cox, J.; Wood, P. A sandwich enzyme immunoassay for bovine interferon-gamma and its use for the detection of tuberculosis in cattle. Aust. Vet. J. 1990, 67, 134–137. [Google Scholar] [CrossRef]
- Gormley, E.; Doyle, M.; Fitzsimons, T.; Mcgill, K.; Collins, J. Diagnosis of Mycobacterium bovis infection in cattle by use of the gamma-interferon (Bovigam R) assay. Vet. Microbiol. 2006, 112, 171–179. [Google Scholar] [CrossRef]
- Elnaggar, M.M.; Abdellrazeq, G.S.; Elsisy, A.; Mahmoud, A.H.; Abdelrazeq, S.; Sester, M.; Khaliel, S.A.; Singh, M.; Torky, H.A.; Davis, W.C. Evaluation of antigen specific interleukin-1β as a biomarker to detect cattle infected with Mycobacterium bovis. Tuberculosis 2017, 105, 53–59. [Google Scholar] [CrossRef]
- Cousins, D.V. Mycobacterium bovis infection and control in domestic livestock. Rev. Sci. Technol. 2001, 20, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P. A history of bovine tuberculosis eradication policy in Northern Ireland. Epidemiol. Infect. 2015, 143, 3182–3195. [Google Scholar] [CrossRef] [PubMed]
- Buddle, B.M.; Vordermeier, H.M.; Chambers, M.A.; de Klerk-Lorist, L.M. Efficacy and safety of BCG vaccine for control of tuberculosis in domestic livestock and wildlife. Front. Vet. Sci. 2018, 5, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calmette, A.; Guérin, C. Recherches expérimentales sur la defense del’organisme contre l’infection tuberculose. Ann. Inst. Pasteur 1911, 25, 625–641. [Google Scholar]
- Aldwell, F.E.; Pfeffer, A.; De Lisle, G.W.; Jowett, G.; Heslop, J.; Keen, D.; Thomson, A.; Buddle, B.M. Effectiveness of BCG vaccination in protecting possums against bovine tuberculosis. Res. Vet. Sci. 1995, 58, 90–95. [Google Scholar] [CrossRef]
- Buddle, B.M.; Pollock, J.M.; Skinner, M.A.; Wedlock, D.N. Development of vaccines to control bovine tuberculosis in cattle and relationship to vaccine development for other intracellular pathogens. Int. J. Parasitol. 2003, 33, 555–566. [Google Scholar] [CrossRef]
- Hope, J.C.; Thom, M.L.; McAulay, M.; Mead, E.; Vordermeier, H.M.; Cli_ord, D.; Hewinson, R.G.; Villarreal-Ramos, B. Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. Clin. Vaccine Immun. 2011, 18, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Buddle, B.M.; de Lisle, G.W.; Pfeffer, A.; Aldwell, F.E. Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine 1995, 13, 1123–1130. [Google Scholar] [CrossRef]
- Pérez de Val, B.; López-Soria, S.; Nofrarías, M.; Martín, M.; Vordermeier, H.M.; Villarreal-Ramos, B.; Romera, N.; Escobar, M.; Solanes, D.; Cardona, P.J.; et al. Experimental model of tuberculosis in the domestic goat after endobronchial infection with Mycobacterium caprae. Clin. Vaccine Immunol. 2011, 18, 1872–1881. [Google Scholar] [CrossRef] [Green Version]
- Beltrán-Beck, B.; de la Fuente, J.; Garrido, J.M.; Aranaz, A.; Sevilla, I.; Villar, M.; Boadella, M.; Galindo, R.C.; Pérez de la Lastra, J.M.; Moreno-Cid, J.A.; et al. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis. PLoS ONE 2014, 19, e98048. [Google Scholar] [CrossRef] [Green Version]
- Balseiro, A.; Rodríguez, O.; González-Quirós, P.; Merediz, I.; Sevilla, I.A.; Davé, D.; Dalley, D.J.; Lesellier, S.; Chambers, M.A.; Bezos, J.; et al. Infection of Eurasian badgers (Meles meles) with Mycobacterium bovis and Mycobacterium avium complex in Spain. Vet. J. 2011, 190, e21–e25. [Google Scholar] [CrossRef]
- Ballesteros, C.; Garrido, J.M.; Vicente, J.; Romero, B.; Galindo, R.C.; Minguijón, E.; Villar, M.; Martín-Hernando, M.P.; Sevilla, I.; Juste, I.; et al. First data on Eurasian wild boar response to oral immunization with BCG and challenge with a Mycobacterium bovis field strain. Vaccine 2009, 27, 6662–6668. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.V.; Thacker, T.C.; Waters, W.R. Vaccination of white-tailed deer (Odocoileus virginianus) with Mycobacterium bovis bacillus Calmette Guerín. Vaccine 2007, 25, 6589–6597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, M.V.; Thacker, T.C.; Rabideau, M.M.; Jones, G.J.; Kanipe, C.; Vordermeier, H.M.; Ray Waters, W. Biomarkers of cell-mediated immunity to bovine tuberculosis. Vet. Immunol. Immunopathol. 2020, 220, 109988. [Google Scholar] [CrossRef]
- Chambers, M.A.; Carter, S.P.; Wilson, G.J.; Jones, G.; Brown, E.; Hewinson, R.G.; Vordermeier, M. Vaccination against tuberculosis in badgers and cattle: An overview of the challenges, developments and current research priorities in Great Britain. Vet. Rec. 2014, 175, 90–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balseiro, A.; Prieto, J.M.; Álvarez, V.; Lesellier, S.; Davé, D.; Salguero, F.J.; Sevilla, I.A.; Infantes-Lorenzo, J.A.; Garrido, J.M.; Adriaensen, H.; et al. Protective efect of oral BCG and inactivated Mycobacterium bovis vaccines in European badgers (Meles meles) experimentally infected with M. bovis. Front. Vet. Sci. 2020, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maue, A.C.; Waters, W.R.; Palmer, M.V.; Whipple, D.L.; Minion, F.C.; Brown, W.C.; Estes, D.M. CD80 and CD86, but not CD154, augment DNA vaccine-induced protection in experimental bovine tuberculosis. Vaccine 2004, 23, 769–779. [Google Scholar] [CrossRef]
- López-Valencia, G.; Renteria-Evangelista, T.; Williams, J.J.; Licea-Navarro, A.; Mora-Valle, A.L.; Medina-Basulto, G. Field evaluation of the protective efficacy of Mycobacterium bovis BCG vaccine against bovine tuberculosis. Res. Vet. Sci. 2010, 88, 44–49. [Google Scholar] [CrossRef]
- Ameni, G.; Vordermeier, M.; Aseffa, A.; Young, D.B.; Hewinson, G. Evaluation of the efficacy of Mycobacterium bovis Bacillus Calmette-Guerin against bovine tuberculosis in neonatal calves in Ethiopia. Clin. Vaccine Immunol. 2010, 17, 1533–1538. [Google Scholar] [CrossRef] [Green Version]
- Ábalos, P.; Valdivieso, N.; Pérez de Val, B.; Vordermeier, M.; Benavides, M.B.; Alegría-Morán, R.; Saadi, K.; Wistuba, M.; Ortega, C.; Sánchez, N.; et al. Vaccination of Calves with the Mycobacterium bovis BCG Strain Induces Protection against Bovine Tuberculosis in Dairy Herds under a Natural Transmission Setting. Animals 2022, 12, 1083. [Google Scholar] [CrossRef]
- Vordermeier, H.M.; Chambers, M.A.; Cockle, P.J.; Whelan, A.O.; Simmons, J.; Hewinson, R.G. Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis. Infect. Immun. 2002, 70, 3026–3032. [Google Scholar] [CrossRef] [PubMed]
- Hewinson, R.G.; Vordermeier, H.M.; Buddle, B.M. Use of the bovine model of tuberculosis for the development of improved vaccines and diagnostics. Tuberculosis 2003, 83, 119–130. [Google Scholar] [CrossRef]
- Cantó-Alarcón, G.J.; Rubio-Venegas, Y.; Bojórquez-Narváez, L.; Pizano-Martínez, O.E.; García-Casanova, L.; Sosa-Gallegos, S.; Nava-Vargas, A.; Olvera-Ramírez, A.M.; Milián-Suazo, F. Efficacy of a vaccine formula against tuberculosis in cattle. PLoS ONE 2013, 18, e76418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, S.; Conlan, A.J.K.; Easterling, L.A.; Herrera, C.; Dandapat, P.; Veerasami, M.; Ameni, G.; Jindal, N.; Raj, G.D.; Wood, J.; et al. Meta-Analysis of the Effect of Bacillus Calmette-Guérin Vaccination Against Bovine Tuberculosis: Is Perfect the Enemy of Good? Front. Vet. Sci. 2021, 18, 637580. [Google Scholar] [CrossRef] [PubMed]
- Ameni, G.; Tafess, K.; Zewde, A.; Eguale, T.; Tilahun, M.; Hailu, T.; Sirak, A.; Salguero, F.J.; Berg, S.; Aseffa, A.; et al. Vaccination of calves with Mycobacterium bovis Bacillus Calmette-Guerin reduces the frequency and severity of lesions of bovine tuberculosis under a natural transmission setting in Ethiopia. Transbound. Emerg. Dis. 2018, 65, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugent, G.; Yockney, I.J.; Cross, M.L.; Buddle, B.M. Low-dose BCG vaccination protects free-ranging cattle against naturally acquired bovine tuberculosis. Vaccine 2018, 19, 7338–7344. [Google Scholar] [CrossRef] [PubMed]
- Retamal, P.; Ábalos, P.; Alegría-Morán, R.; Valdivieso, N.; Vordermeier, M.; Jones, G.; Saadi, K.; Pérez-Watt, C.; Salinas, C.; Ávila, C.; et al. Vaccination of Holstein heifers with Mycobacterium bovis BCG strain induces protection against bovine tuberculosis and higher milk production yields in a natural transmission setting. Transbound. Emerg. Dis. 2022, 69, 1419–1425. [Google Scholar] [CrossRef]
- Hope, J.C.; Thom, M.L.; Villarreal-Ramos, B.; Vordermeier, H.M.; Hewinson, R.G.; Howard, C.J. Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. bovis. Clin. Exp. Immunol. 2005, 139, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Young, S.L.; Slobbe, L.; Wilson, R.; Buddle, B.M.; de Lisle, G.W.; Buchan, G.S. Environmental strains of Mycobacterium avium interfere with immune responses associated with Mycobacterium bovis BCG vaccination. Infect. Immun. 2007, 75, 2833–2840. [Google Scholar] [CrossRef] [Green Version]
- De Lisle, G.W.; Wilson, T.; Collins, D.M.; Buddle, B.M. Vaccination of guinea pigs with nutritionally impaired a virulent mutants of Mycobacterium bovis protects against tuberculosis. Infect. Immun. 1999, 67, 2624–2626. [Google Scholar] [CrossRef] [Green Version]
- Vordermeier, H.M.; Whelan, A.; Cockle, P.J.; Farrant, L.; Palmer, N.; Hewinson, R.G. Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin. Diagn. Lab. Immunol. 2001, 8, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Denis, M.; Wedlock, D.N.; McCarthy, A.R.; Parlane, N.A.; Cockle, P.J.; Vordermeier, H.M.; Hewinson, R.G.; Buddle, B.M. Enhancement of the sensitivity of the whole-blood gamma interferon assay for diagnosis of Mycobacterium bovis infections in cattle. Clin. Vaccine Immunol. 2007, 14, 1483–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sopp, P.; Coad, M.; Hewinson, G.; Howard, C.J.; Cheallaigh, C.N.; Keane, J.; Harris, J.; Hope, J.C. Development of a simple, sensitive, rapid test which discriminates BCG-vaccinated from Mycobacterium bovis infected cattle. Vaccine 2008, 26, 5470–5476. [Google Scholar] [CrossRef] [PubMed]
- Wedlock, D.N.; Denis, M.; Skinner, M.A.; Koach, J.; de Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; van Drunen Littel-van den Hurk, S.; Babiuk, L.A.; Hecker, R.; et al. Vaccination of cattle with a CpG oligodeoxynucleotide-formulated mycobacterial protein vaccine and Mycobacterium bovis BCG induces levels of protection against bovine tuberculosis superior to those induced by vaccination with BCG alone. Infect. Immun. 2005, 73, 3540–3546. [Google Scholar] [CrossRef] [Green Version]
- Díez-Delgado, I.; Sevilla, I.A.; Romero, B.; Tanner, E.; Barasona, J.A.; White, A.R.; Lurz, P.W.W.; Boots, M.; de la Fuente, J.; Dominguez, L.; et al. Impact of piglet oral vaccination against tuberculosis in endemic free-ranging wild boar populations. Prev. Vet. Med. 2018, 155, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.; Balcombe, K. Farmer’s Willingness to Pay for a Tuberculosis Cattle Vaccine. J. Agric. Econ. 2011, 63, 408–424. [Google Scholar] [CrossRef]
- Buddle, B.M.; Margot, A.; Skinner, D.; Wedlock, N.; Geoffrey, W.; de Lisle, H.; Vordermeier, H.M.; Glyn-Hewinson, R. Cattle as a model for development of vaccines against human tuberculosis. Tuberculosis 2005, 85, 19–24. [Google Scholar] [CrossRef]
- Bayissa, B.; Sirak, A.; Zewude, A.; Worku, A.; Gumi, B.; Berg, S.; Hewinson, R.G.; Wood, J.L.N.; Jones, G.J.; ETHICOBOTS consortium; et al. Field evaluation of specific mycobacterial protein-based skin test for the differentiation of Mycobacterium bovis infected and Bacillus Calmette Guerin-vaccinated crossbred cattle in Ethiopia. Transbound. Emerg. Dis. 2022, 69, e1–e9. [Google Scholar] [CrossRef]
- Behr, M.A. BCG--different strains, different vaccines? Lancet Infect. Dis. 2002, 2, 86–92. [Google Scholar] [CrossRef]
- Danchuk, S.N.; McIntosh, F.; Jamieson, F.B.; May, K.; Behr, M.A. Bacillus Calmette-Guérin strains with defined resistance mutations: A new tool for tuberculosis laboratory quality control. Clin. Microbiol Infect. 2020, 26, 384.e5–384.e8. [Google Scholar] [CrossRef] [Green Version]
- Skinner, M.A.; Ramsay, A.J.; Buchan, G.S.; Keen, D.L.; Ranasinghe, C.; Slobbe, L.; Collins, D.M.; de Lisle, G.W.; Buddle, B.M. A DNA prime-live vaccine boost strategy in mice can augment IFN-gamma responses to mycobacterial antigens but does not increase the protective efficacy of two attenuated strains of Mycobacterium bovis against bovine tuberculosis. Immunology 2003, 108, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, C.; Bianco, M.V.; Blanco, F.C.; Soria, M.; Gravisaco, M.J.; Montenegro, V.; Vagnoni, L.; Buddle, B.; Garbaccio, S.; Delgado, F.; et al. Vaccination with a BCG Strain Overexpressing Ag85B Protects Cattle against Mycobacterium bovis Challenge. PLoS ONE 2012, 7, e51396. [Google Scholar] [CrossRef] [PubMed]
- Milián-Suazo, F.; Gutiérrez-Pabello, J.A.; Bojórquez-Narváez, L.; Anaya-Escalera, A.M.; Cantó-Alarcón, G.J.; González-Enríquez, J.L.; Campos-Guillén, J. IFN-g response to vaccination against tuberculosis in dairy heifers under commercial settings. Res. Vet. Sci. 2011, 90, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Buddle, B.M.; Wards, F.E.; Aldwell, D.M.; Collins, G.; de Lisle, W. Influence of sensitization to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine 2002, 20, 1126–1133. [Google Scholar] [CrossRef]
- Buddle, B.M.; Denis, M.; Aldwell, F.E.; Vordermeier, H.M.; Glyn-Hewinson, R.; Neil Wedlock, D. Vaccination of cattle with Mycobacterium bovis BCG by a combination of systemic and oral routes. Tuberculosis 2008, 88, 595–600. [Google Scholar] [CrossRef]
- Wedlock, D.N.; Aldwell, F.E.; de Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; Buddle, B.M. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines. Vet. Immunol. Immunopathol. 2011, 144, 220–227. [Google Scholar] [CrossRef]
- Buddle, B.M.; Aldwell, F.E.; de Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Low oral BCG doses fail to protect cattle against an experimental challenge with Mycobacterium bovis. Tuberculosis 2011, 91, 400–405. [Google Scholar] [CrossRef]
- Thom, M.L.; McAulay, M.; Vordermeier, H.M.; Clifford, D.; Hewinson, R.G.; Villarreal-Ramos, B.; Hope, J.C. Duration of immunity against Mycobacterium bovis following neonatal vaccination with bacillus Calmette-Guérin Danish: Significant protection against infection at 12, but not 24, months. Clin. Vaccine Immunol. 2012, 19, 1254–1260. [Google Scholar] [CrossRef] [Green Version]
- Buddle, B.M.; Hewinson, R.G.; Vordermeier, H.M.; Wedlock, D.N. Subcutaneous administration of a 10-fold-lower dose of a commercial human tuberculosis vaccine, Mycobacterium bovis Bacillus Calmette-Guérin Danish, induced levels of protection against bovine tuberculosis and responses in the tuberculin intradermal test similar to those induced by a standard cattle dose. Clin. Vaccine Immunol. 2013, 20, 1559–1562. [Google Scholar]
- Dean, G.S.; Clifford, D.; Whelan, A.O.; Tchilian, E.Z.; Beverley, P.C.; Salguero, F.J.; Xing, Z.; Vordermeier, H.M.; Villarreal-Ramos, B. Protection Induced by Simultaneous Subcutaneous and Endobronchial Vaccination with BCG/BCG and BCG/Adenovirus Expressing Antigen 85A against Mycobacterium bovis in Cattle. PLoS ONE 2015, 6, e0142270. [Google Scholar] [CrossRef] [Green Version]
- Buddle, B.M.; Shu, D.; Parlane, N.A.; Subharat, S.; Heiser, A.; Hewinson, R.G.; Vordermeier, H.M.; Wedlock, D.N. Vaccination of cattle with a high dose of BCG vaccine 3 weeks after experimental infection with Mycobacterium bovis increased the inflammatory response, but not tuberculous pathology. Tuberculosis 2016, 99, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Bhuju, S.; Aranday-Cortes, E.; Villarreal-Ramos, B.; Xing, Z.; Singh, M.; Vordermeier, H.M. Global Gene Transcriptome Analysis in Vaccinated Cattle Revealed a Dominant Role of IL-22 for Protection against Bovine Tuberculosis. PLoS Pathog. 2012, 8, e1003077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buddle, B.M.; Keen, D.; Thomson, A.; Jowett, G.; McCarthy, A.R.; Heslop, J.; De Lisle, G.W.; Stanford, J.L.; Aldwell, F.E. Protection of cattle from bovine tuberculosis by vaccination with BCG by the respiratory or subcutaneous route, but not by vaccination with killed Mycobacterium vaccae, Res. Vet. Sci. 1995, 59, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.; Mihaescu, T. History of BCG Vaccine. Maedica 2013, 8, 53–58. [Google Scholar] [PubMed]
- Abdallah, A.M.; Behr, M.A. Evolution and Strain Variation in BCG. Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology. In Epidemiology and Control; Springer: Cham, Switzerland, 2017; pp. 155–169. [Google Scholar]
- Lagranderie, M.R.; Balazuc, A.M.; Deriaud, E.; Leclerc, C.D.; Gheorghiu, M. Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains. Infect. Immun. 1996, 64, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, M.V.; Thacker, T.C.; Waters, W.R.; Robbe-Austerman, S.; Harris, B.N. Investigations on Deer to Deer and Deer to Cattle Transmission of the Vaccine Mycobacterium bovis Bacillus Calmette-Guérin (BCG). J. Vaccine 2010, 1, 104. [Google Scholar] [CrossRef] [Green Version]
- Villarreal-Ramos, B.; Berg, S.; Chamberlain, L.; McShane, H.; Glyn-Hewinson, R.; Clifford, D.; Vordermeier, M. Development of a BCG challenge model for the testing of vaccine candidates against tuberculosis in cattle. Vaccine 2014, 32, 5645–5649. [Google Scholar] [CrossRef] [Green Version]
- Corona-Gómez, L.; Jaramillo-Meza, L.; Pérez-González, R.; Diosdado-Vargas, F.; Santiago-Cruz, J.; Espitia-Pinzón, C.I.; Lascurain, R.; Díaz-Otero, F. Effect of a low dose of BCG-Phipps vaccine on the development of reactivity to tuberculin skin test in neonatal calves and adult cows. J. Vet. Med. Anim. Health 2017, 9, 290–299. [Google Scholar]
- Contreras-Magallanes, Y.G.; Durán-Aguilar, M.; Sosa-Gallegos, S.L.; Álvarez, Á.H.; Andrade-Santillán, F.A.; Bárcenas-Reyes, I.; González-Ruíz, S.; Rodríguez-Hernández, E.; Cantó-Alarcón, G.J.; Milián-Suazo, F. Prime Vaccination with Chitosan-Coated Phipps BCG and Boosting with CFP-PLGA against Tuberculosis in a Goat Model. Animals 2021, 8, 1046. [Google Scholar] [CrossRef]
- Castillo-Rodal, A.I.; Castañón-Arreola, M.; Hernández-Pando, R.; Calva, J.J.; Sada-Díaz, E.; López-Vidal, Y. Mycobacterium bovisBCG sub strains confer different levels of protection against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary tuberculosis. Infect. Immun. 2006, 74, 1718–1724. [Google Scholar] [CrossRef] [Green Version]
- Aldwell, F.E.; Keen, D.L.; Parlane, N.A.; Skinner, M.A.; de Lisle, G.W.; Buddle, B.M. Oral vaccination with Mycobacterium bovis BCG in a lipid formulation induces resistance to pulmonary tuberculosis in brushtail possums. Vaccine 2003, 22, 70–76. [Google Scholar] [CrossRef]
- Cross, M.L.; Henderson, R.J.; Lambeth, M.R.; Buddle, B.M.; Aldwell, F.E. Lipid-formulated bcg as an oral-bait vaccine for tuberculosis: Vaccine stability, efficacy, and palatability to brushtail possums (Trichosurus vulpecula) in New Zealand. J. Wildl. Dis. 2009, 45, 754–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaden, V.; Lange, E.; Fischer, U.; Strebelow, G. Oral immunisation of wild boar against classical swine fever: Evaluation of the first field study in Germany. Vet. Microbiol. 2000, 73, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Gormley, E.; Corner, L.A.L. Control of tuberculosis in badgers by vaccination: Where next? Vet. J. 2011, 189, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Schellner, H. Untersuchungen uber die Gefarhrdung des Rindes auf Tuberkelbakterien-infizierten Weiden. Mon. Chem. 1956, 8, 179–188. [Google Scholar]
- Rolle, M.; Wiethe, H. Results of BCG vaccination in cattle in Bavaria. Vet. Bull. 1956, 27, 105. [Google Scholar]
- Azad, N.; Rojanasakul, Y. Vaccine delivery--current trends and future. Curr. Drug. Deliv. 2006, 3, 137–146. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Tcchitchek, N.; Joly, C.; Rodríguez-Pozo, A.; Stimmer, L.; Langlois, S.; Hocini, H.; Gosse, L.; Pejoski, D.; Cosma, A.; et al. Vaccine inoculation route modulates early inmmunity and consequently antigen-specific immune response. Front. Immunol. 2021, 12, 645210. [Google Scholar] [CrossRef]
- Mukherjee, S.; Subramaniam, R.; Chen, H.; Smith, A.; Keshava, S.; Shams, H. Boosting efferocytosis in alveolar space using BCG vaccine to protect host against influenza pneumonia. PLoS ONE 2017, 12, e0180143. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Maupome, M.; Vang, D.X.; McGill, J.L. Aerosol vaccination with Bacille Calmette-Guerin induces a trained innate immune phenotype in calves. PLoS ONE 2019, 22, e0212751. [Google Scholar] [CrossRef] [Green Version]
- Laurent, P.E.; Bonnet, S.; Alchas, P.; Regolini, P.; Mikszta, J.A.; Pettis, R.; Harvey, N.G. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine 2007, 25, 8833–8842. [Google Scholar] [CrossRef] [PubMed]
- Fulton, S.; Reba, S.; Martin, T.; Boom, W. Neutrophilmediated mycobactericidal immunity in the lung during Mycobacterium bovis BCG infection in C57/BL6 mice. Infect. Immun. 2002, 70, 5322–5327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abadie, V.; Badell, E.; Douillard, P.; Ensergueix, D.; Pieter, J.M.; Tanguy, M.; Fiette, L.; Saeland, S.; Gicquel, B.; Winter, N. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 2005, 106, 1843–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckerman, J.N. The importance of injecting vaccines into muscle. Different patients need different needle sizes. Br. Med. J. 2000, 18, 1237–1238. [Google Scholar] [CrossRef]
- Groswasser, J.; Kahn, A.; Bouche, B.; Hanquinet, S.; Perlmuter, N.; Hessel, L. Needle length and injection technique for efficient intramuscular vaccine delivery in infants and children evaluated through an ultrasonographic determination of subcutaneous and muscle layer thickness. Pediatrics 1997, 100, 400–403. [Google Scholar] [CrossRef]
- Romani, N.; Flacher, V.; Tripp, C.H.; Sparber, F.; Ebner, S.; Stoitzner, P. Targeting skin dendritic cells to improve intradermal vaccination. Curr. Top. Microbiol. Immunol. 2012, 351, 113–138. [Google Scholar]
- Van Der Heijden, E.M.; Chileshe, J.; Vernooij, J.C.; Gortazar, C.; Juste, R.A.; Sevilla, I.; Crafford, J.E.; Rutten, V.P.; Michel, A.L. Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates. PLoS ONE 2017, 12, e0188448. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.V.; Waters, W.R.; Whipple, D.L. Aerosol delivery of virulent Mycobacterium bovis to cattle. Tuberculosis 2002, 82, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, J.; Zganiacz, A.; Xing, Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect. Immun. 2004, 72, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Derrick, S.C.; Kolibab, K.; Yang, A.; Morris, S.L. Intranasal administration of Mycobacterium bovis BCG induces superior protection against aerosol infection with Mycobacterium tuberculosis in mice. Clin. Vaccine Immunol. 2014, 21, 1443–1451. [Google Scholar] [CrossRef] [Green Version]
- Haring, C.M.; Traum, J.; Hayes, F.M.; Henry, B.S. Vaccination of calves against tuberculosis with Calmette-Guérin culture, BCG. Hilgardia 1930, 4, 307–394. [Google Scholar] [CrossRef]
- Nugent, G.; Yockney, I.J.; Whitford, E.J.; Cross, M.L.; Aldwell, F.E.; Buddle, B.M. Field trial of an aerially-distributed tuberculosis vaccine in a low-density wildlife population of brushtail possums (Trichosurus vulpecula). PLoS ONE 2016, 11, e0167144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonnecke, B.J.; Waters, W.R.; Goff, J.P.; Foote, M.R. Adaptive immunity in the colostrum-deprived calf: Response to early vaccination with Mycobacterium bovis strain bacille Calmette Guerin and ovalbumin. J. Dairy Sci. 2012, 9, 221–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parlane, N.A.; Shu, D.; Subharat, S.; Wedlock, D.N.; Rehm, B.H.; de Lisle, G.W.; Buddle, B.M. Revaccination of cattle with Bacille Calmette-Guérin two years after first vaccination when immunity has waned, boosted protection against challenge with Mycobacterium bovis. PLoS ONE 2014, 9, e106519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vordermeier, H.M.; Jones, G.J.; Buddle, B.M.; Hewinson, R.G. Development of immune-diagnostic reagents to diagnose bovine tuberculosis in cattle. Vet. Immunol. Immunopathol. 2016, 181, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.J.; Konold, T.; Hurley, S.; Holder, T.; Steinbach, S.; Coad, M.; Vordermeier, H. Test performance data demonstrates utility of a cattle DIVA skin test reagent (DST-F) compatible with BCG vaccination. Sci. Rep. 2022, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Skuce, R.A.; Allen, A.R.; McDowell, S.W. Herd-level risk factors for bovine tuberculosis: A literature review. Vet. Med. Int. 2012, 2012, 621210. [Google Scholar] [CrossRef]
- Wedlock, D.N.; Vesosky, B.; Skiner, M.A.; de Lisle, G.W.; Orme, I.A.; Buddle, B.M. Vaccination of Cattle with Mycobacterium bovis Culture Filtrate Proteins and Interleukin-2 for Protection against Bovine Tuberculosis. Infect. Immun. 2000, 68, 5809–5815. [Google Scholar] [CrossRef] [Green Version]
- Broughan, J.; Judge, J.; Ely, E.; Delahay, R.; Wilson, G.; Clifton-Hadley, R.; Goodchild, A.; Bishop, H.; Parry, J.; Downs, S. A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol. Infect. 2016, 144, 2899–2926. [Google Scholar] [CrossRef] [Green Version]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2018, 10, 26–31. [Google Scholar] [CrossRef] [Green Version]
- De Vries, A.; Marcondes, M.I. Review: Overview of factors affecting productive lifespan of dairy cows. Animal 2020, 14, s155–s164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCallan, L.M.; McNair, J.; Skuce, R.; Branch, B. A Review of the Potential Role of Cattle Slurry in the Spread of Bovine Tuberculosis; Agri-food and Biosciences Institute: Belfast, UK, 2014. [Google Scholar]
- Borham, M.; Oreiby, A.; El-Gedawy, A.; Hegazy, Y.; Khalifa, H.O.; Al-Gaabary, M.; Matsumoto, T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022, 11, 715. [Google Scholar] [CrossRef]
- Callan, R.J.; Garry, F.B. Biosecurity and bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Brooks-Pollock, E.; Conlan, A.J.; Mitchell, A.P.; Blackwell, R.; McKinley, T.J.; Wood, J.L. Age-dependent patterns of bovine tuberculosis in cattle. Vet. Res. 2013, 44, 97. [Google Scholar] [CrossRef] [Green Version]
- Cosivi, O.; Grange, J.M.; Daborn, C.J.; Raviglione, M.C.; Fujikura, T.; Cousins, D.; Robinson, R.A.; Huchzermeyer, H.F.; de Kantor, I.; Meslin, F.X. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg. Infect. Dis. 1998, 4, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Tian, L.; Li, Y.; Zhang, X.; Qi, Y.; Jing, Z.; Pan, Y.; Zhang, L.; Fan, X.; Wang, M.; et al. High prevalence of extrapulmonary tuberculosis in dairy farms: Evidence for possible gastrointestinal transmission. PLoS ONE 2021, 30, e0249341. [Google Scholar] [CrossRef] [PubMed]
- Zanini, M.S.; Moreira, E.; Lopes, M.T.; Mota, P.; Salas, C.E. Detection of Mycobacterium bovis in milk by polymerase chain reaction. J. Vet. Med. Ser. B 1998, 45, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Cleaveland, S.; Shaw, D.J.; Mfinanga, S.G.; Shirima, G.; Kazwala, R.R.; Eblate, E.; Sharp, M. Mycobacterium bovis in rural Tanzania: Risk factors for infection in human and cattle populations. Tuberculosis 2007, 87, 30–43. [Google Scholar] [CrossRef]
- Munyeme, M.; Muma, J.B.; Sjkerve, E.; Nambota, A.M.; Phiri, I.G.K.; Samui, K.L.; Dorny, P.; Tryland, M. Risk factor associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia. Prev. Vet. Med. 2008, 85, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Gopal, R.; Goodchild, A.; Hewinson, G.; De la Rua-Domenech, R.; Clifton-Hadley, R. Introduction of bovine tuberculosis to north-east England by boughtin cattle. Vet. Rec. 2006, 159, 265–271. [Google Scholar] [CrossRef]
- Ameni, G.; Aseffa, A.; Engers, H.; Young, D.; Hewinson, G.; Vordermeier, M. Cattle husbandry in Ethiopia is a predominant factor affecting the pathology of bovine tuberculosis and gamma interferon responses to mycobacterial antigens. Clin. Vaccine Immunol. 2006, 13, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
Trial | Country | BCG Strain | Vaccine Dose | Vaccine Route | Age at Vaccination | Challenge (Prevalence = Proportion of Reactors to Immunological Tests) | Efficacy Based on | Efficacy | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | Mexico | Tokyo | 106 | * SC | 1–2 weeks | Infected herd (40% prevalence) | Proportion of positive to three immunological tests | 59.4% | 2010 [41] |
2 | Ethiopia | Danish | 106 | * SC | 2 weeks | 100% prevalence | Proportion with lesions | 56–61% | 2010 [42] |
3 | Ethiopia | Danish | 1–4 × 106 | * SC | 2 weeks | 100% prevalence | Proportion with lesions | 23–28% | 2018 [48] |
4 | New Zealand | Danish | 108 | Oral | 6–30 months | 5–10% prevalence | Pathology score Proportion with lesions | 67.4% | 2018 [49] |
5 | Chile | Russia | 2–8 × 105 | * SC | 11 months | 24% prevalence | 66.5% | 2022 [50] | |
6 | Chile | Russia | 2–5 × 105 | * SC | 40 days | Seven herds included with 15–75% prevalence | ** IFN release + antigens *** ESAT-6, **** CFP-10 and Rv3615c | 22.4% | 2022 [43] |
Trial | Country | BCG Strain | Dose | Vaccination Route | Significant Vaccine Protective Effect for Pathological Damage, Vaccinated vs. Controls | Reference |
---|---|---|---|---|---|---|
1 | New Zealand | Pasteur Attenuated M. bovis WAg500 Attenuated M. bovis WA501 | 1 × 105 1 × 106 2 × 106 | SC | Yes Yes Yes | 2002 [67] |
2 | New Zealand | Pasteur | 106 8 ** h of birth 106 8 h of birth 106 6 w of birth | SC | Yes Yes Yes | 2003 [29] |
3 | United Kingdom | Pasteur | 106 | SC | Yes | 2005 [51] |
4 | New Zealand | Danish Pasteur | 106 | SC | Yes Yes | 2005 [57] |
5 | New Zealand | Pasteur | 106 SC 109 106 SC + 109 | SC Oral/SC Oral/Oral | Yes Yes Yes Yes No significant better effect by using both routes | 2008 [68] |
6 | Mexico | Tokyo | 1 × 106 | SC | Yes | 2010 [41] |
7 | New Zealand | UK | 2 × 107 2 × 107 + CFP CFP + emulsigen 108 106 | Oral Nasal SC Oral SC | Yes No No No Yes Yes | 2011 [69] |
8 | United Kingdom | Pasteur Danish | 2 × 106 2 × 106 | SC SC | Yes Yes | 2011 [30] |
9 | New Zealand | Danish | 108 Oral 107 Oral 106 106 SC | Oral SC | 108 Oral, yes 107 Oral, no 106 Oral, no 106 SC, yes | 2011 [70] |
10 | United Kingdom | Danish | 1 × 106 4 × 106 | SC | At 12 months, yes At 24 months, no | 2012 [71] |
11 | New Zealand | Danish | 1 × 105 to 4 × 105 or 1 × 106 to 4 × 106 | SC | Yes | 2013 [72] |
12 | United Kingdom | Danish | 106 106 5 × 105 BCG + 5 × 105 BCG SSI 106 BCG SSI + 2 × 109 *** Ad85A | SC EB SC + EB * simultaneous SC + EB * simultaneous | No No Yes Yes | 2015 [73] |
13 | Mexico | Phipps | 1 × 106 | SC | Yes | 2013 [46] |
14 | New Zealand | Danish | 105 with no revaccination 105 with revaccination | SC | No Yes | 2013 [72] |
15 | New Zealand | Danish | 1 × 106 | SC | No | 2016 [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milián-Suazo, F.; González-Ruiz, S.; Contreras-Magallanes, Y.G.; Sosa-Gallegos, S.L.; Bárcenas-Reyes, I.; Cantó-Alarcón, G.J.; Rodríguez-Hernández, E. Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals 2022, 12, 3377. https://doi.org/10.3390/ani12233377
Milián-Suazo F, González-Ruiz S, Contreras-Magallanes YG, Sosa-Gallegos SL, Bárcenas-Reyes I, Cantó-Alarcón GJ, Rodríguez-Hernández E. Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals. 2022; 12(23):3377. https://doi.org/10.3390/ani12233377
Chicago/Turabian StyleMilián-Suazo, Feliciano, Sara González-Ruiz, Yesenia Guadalupe Contreras-Magallanes, Susana Lucía Sosa-Gallegos, Isabel Bárcenas-Reyes, Germinal Jorgé Cantó-Alarcón, and Elba Rodríguez-Hernández. 2022. "Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds" Animals 12, no. 23: 3377. https://doi.org/10.3390/ani12233377
APA StyleMilián-Suazo, F., González-Ruiz, S., Contreras-Magallanes, Y. G., Sosa-Gallegos, S. L., Bárcenas-Reyes, I., Cantó-Alarcón, G. J., & Rodríguez-Hernández, E. (2022). Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals, 12(23), 3377. https://doi.org/10.3390/ani12233377