Evaluation of the Timing of Use of Phosphatidic Acid in the Diet on Growth Performance and Breast Meat Yield in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Husbandry
2.2. Growth, Feed Conversion, Processing Parameters
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbut, S.; Sosnicki, A.; Lonergan, S.; Knapp, T.; Ciobanu, D.; Gatcliffe, L.; Huff-Lonergan, E.; Wilson, E. Progress in reducing the pale, soft and exudative (pse) problem in pork and poultry meat. Meat Sci. 2008, 79, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Tallentire, C.W.; Leinonen, I.; Kyriazakis, I. Breeding for efficiency in the broiler chicken: A review. Agron. Sustain. Dev. 2016, 36, 66. [Google Scholar]
- Shad, B.J.; Smeuninx, B.; Atherton, P.J.; Breen, L. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. Appl. Physiol. Nutr. Metab. 2015, 40, 1233–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiaffino, S.; Dyar, K.A.; Ciciliot, S.; Blaauw, B.; Sandri, M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013, 280, 4294–4314. [Google Scholar] [CrossRef]
- You, J.-S.; Lincoln, H.C.; Kim, C.-R.; Frey, J.W.; Goodman, C.A.; Zhong, X.-P.; Hornberger, T.A. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mtor) signaling and skeletal muscle hypertrophy. J. Biol. Chem. 2014, 289, 1551–1563. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fang, Y.; Chen, J.; Prestwich, G.D. Activation of mtor signaling by novel fluoromethylene phosphonate analogues of phosphatidic acid. Bioorgan. Med. Chem. Lett. 2004, 14, 1461–1464. [Google Scholar] [CrossRef]
- Lehman, N.; Ledford, B.; Di Fulvio, M.; Frondorf, K.; McPhail, L.C.; Gomez-Cambronero, J. Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. FASEB J. 2007, 21, 1075–1087. [Google Scholar] [CrossRef]
- Sobotik, E.B.; Lee, J.T.; Hagerman, S.; Archer, G.S. Evaluation of the use of phosphatidic acid in the diet on growth performance and breast meat yield in broilers. Animals 2018, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, C.; Friedli, C.; Canas, R. The growth curve of animals. Agric. Syst. 1983, 10, 133–147. [Google Scholar] [CrossRef]
- Stockdale, F.E.; Holtzer, H. DNA synthesis and myogenesis. Exp. Cell Res. 1961, 24, 508–520. [Google Scholar] [CrossRef]
- Moss, F.P.; LeBlond, C.P. Satellite cells are the source of nuclei in muscles of growing rates. Anat. Rec. 1971, 170, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Larrauri, A.; Gangoiti, P.; Presa, N.; Dominguez-Herrera, A.; Donati, C.; Bruni, P.; Trueba, M.; Gomez-Muñoz, A.; Ouro, A. Phosphatidic acid stimulates myoblast proliferation through interaction with LPA1 and LPA2 receptors. Int. J. Mol. Sci. 2021, 22, 1452. [Google Scholar] [CrossRef] [PubMed]
- Moss, F.P.; Simmonds, R.A.; McNary, H.W. The growth and composition of skeletal muscle in the chicken: 2. The relationship between muscle weight and the number of nuclei. Poult. Sci. 1964, 43, 1086–1091. [Google Scholar] [CrossRef]
- Scheuermann, G.N.; Bilgili, S.F.; Hess, J.B.; Mulvaney, D.R. Breast muscle development in commercial broiler chickens. Poult. Sci. 2003, 82, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Reiling, J.; Sabatini, D. Stress and mtor signaling. Oncogene 2006, 25, 6373–6383. [Google Scholar] [CrossRef] [Green Version]
- Scott, B.A.; Avidan, M.S.; Crowder, C.M. Regulation of hypoxic death in c. Elegans by the insulin/igf receptor homolog daf-2. Science 2002, 296, 2388–2391. [Google Scholar] [CrossRef]
- Holzenberger, M.; Dupont, J.; Ducos, B.; Leneuve, P.; Géloën, A.; Even, P.C.; Cervera, P.; Le Bouc, Y. Igf-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J. Akt/mtor pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Fang, Y.; Vilella-Bach, M.; Bachmann, R.; Flanigan, A.; Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001, 294, 1942–1945. [Google Scholar] [CrossRef]
- Joy, J.M.; Gundermann, D.M.; Lowery, R.P.; Jäger, R.; McCleary, S.A.; Purpura, M.; Roberts, M.D.; Wilson, S.M.; Hornberger, T.A.; Wilson, J.M. Phosphatidic acid enhances mtor signaling and resistance exercise induced hypertrophy. Nutr. Metab. 2014, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tang, B.; Han, H.; Mao, D.; Chen, J.; Zeng, Y.; Xiong, M. Retracted: miR-155 Affects Osteosarcoma MG-63 Cell Autophagy Induced by Adriamycin through Regulating PTEN-PI3K/AKT/mTOR Signaling Pathway. Cancer Biother. Radiopharm. 2018, 33, 32–38. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Morito, K.; Kinoshita, M.; Ohmoto, M.; Urikura, M.; Satouchi, K.; Tokumura, A. Orally administered phosphatidic acids and lysophosphatidic acids ameliorate aspirin-induced stomach mucosal injury in mice. Dig. Dis. Sci. 2013, 58, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.D.; Pollizzi, K.N.; Heikamp, E.B.; Horton, M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012, 30, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choct, M. Managing gut health through nutrition. Br. Poult. Sci. 2009, 50, 9–15. [Google Scholar] [CrossRef]
- Virden, W.S.; Kidd, M.T. Physiological stress in broilers: Ramifications on nutrient digestibility and responses. J. Appl. Poult. Res. 2009, 18, 338–347. [Google Scholar] [CrossRef]
- Waldroup, P.W.; Mitchell, R.J.; Payne, J.R.; Hazen, K.R. Performance of chicks fed diets formulated to minimize excess levels of essential amino acids. Poult. Sci. 1976, 55, 243–253. [Google Scholar] [CrossRef]
- Ghadban, G.S. Probiotics in broiler production—A review. Arch. Geflügelkd. 2002, 66, 49–58. [Google Scholar]
- Sobotik, E.B.; Nelson, J.R.; Pavlidis, H.O.; Archer, G.S. Evaluating the effects of supplementing Saccharomyces cerevisiae in the feed or drinking water on stress susceptibility of broilers. J. Appl. Poult. Res. 2022, 31, 100220. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Jozefiak, D. The efficacy of organic minerals in poultry nutrition: Review and implications of recent studies. World’s Poult. Sci. J. 2014, 70, 475–486. [Google Scholar] [CrossRef]
- Baker, D.H. Advances in protein–amino acid nutrition of poultry. Amino Acids 2009, 37, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.K.; Choi, Y.A.; Park, W.; Lee, T.; Ryu, S.H.; Kim, S.-Y.; Kim, J.-R.; Kim, J.-H.; Baek, S.-H. Phosphatidic acid regulates systemic inflammatory responses by modulating the akt-mammalian target of rapamycin-p70 s6 kinase 1 pathway. J. Biol. Chem. 2003, 278, 45117–45127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halevy, O.; Biran, I.; Rozenboim, I. Various light source treatments affect body and skeletal muscle growth by affecting skeletal muscle satellite cell proliferation in broilers. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 120, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Halevy, O.; Krispin, A.; Leshem, Y.; McMurtry, J.P.; Yahav, S. Early-age heat exposure affects skeletal muscle satellite cell proliferation and differentiation in chicks. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2001, 281, R302–R309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, K.; Sunde, M.L.; Swick, R.W. Growth and muscle protein turnover in the chick. Biochem. J. 1978, 176, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hentges, E.J.; Marple, D.N.; Roland, A., Sr.; Pritchett, J.F. Growth and in vitro protein synthesis in two strains of chickens. J. Anim. Sci. 1983, 57, 320–327. [Google Scholar] [CrossRef]
- Jones, S.J.; Aberle, E.D.; Judge, M.D. Skeletal muscle turnover in broiler and layer chicks. J. Anim. Sci. 1986, 62, 1576–1583. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.W.; Sunde, M.L.; Swick, R.W. Characteristics of growth and protein turnover in skeletal muscle of turkey poults. Poult. Sci. 1985, 64, 380–387. [Google Scholar] [CrossRef]
Treatment | Day 0 | Day 14 | Day 28 | Day 42 |
---|---|---|---|---|
Control | 0.046 | 0.529 | 1.799 | 3.636 a |
PAA | 0.046 | 0.527 | 1.813 | 3.725 b |
PAGF | 0.046 | 0.526 | 1.798 | 3.692 a |
PAF | 0.046 | 0.526 | 1.812 | 3.709 a |
Pooled SEM | 0.000 | 0.004 | 0.007 | 0.014 |
Treatment | FCR d0–14 | FCR d0–28 | FCR d0–42 |
---|---|---|---|
Control | 1.178 | 1.449 a | 1.609 a |
PAA | 1.161 | 1.423 b | 1.535 b |
PAGF | 1.160 | 1.434 a | 1.556 b |
PAF | 1.182 | 1.442 a | 1.576 ab |
Pooled SEM | 0.008 | 0.004 | 0.009 |
Treatment | Carcass Weight | Breast Weight | Tender Weight | Wing Weight | Leg Quarter Weight |
---|---|---|---|---|---|
Control | 2.736 | 0.743 a | 0.131 | 0.287 | 0.857 |
PAA | 2.779 | 0.772 b | 0.133 | 0.295 | 0.845 |
PAGF | 2.729 | 0.735 a | 0.131 | 0.286 | 0.853 |
PAF | 2.743 | 0.744 a | 0.130 | 0.285 | 0.860 |
Pooled SEM | 0.022 | 0.010 | 0.002 | 0.005 | 0.008 |
Treatment | Carcass Yield | Breast Yield | Tender Yield | Wing Yield | Leg Quarter Yield |
---|---|---|---|---|---|
Control | 75.88 a | 27.18 | 4.81 | 10.52 | 31.39 a |
PAA | 77.48 b | 27.77 | 4.80 | 10.61 | 30.44 b |
PAGF | 76.18 a | 26.93 | 4.79 | 10.51 | 31.31 a |
PAF | 76.66 a | 27.10 | 4.77 | 10.41 | 31.36 a |
Pooled SEM | 0.31 | 0.22 | 0.05 | 0.17 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Archer, G.S.; Sobotik, E.B. Evaluation of the Timing of Use of Phosphatidic Acid in the Diet on Growth Performance and Breast Meat Yield in Broilers. Animals 2022, 12, 3446. https://doi.org/10.3390/ani12243446
Archer GS, Sobotik EB. Evaluation of the Timing of Use of Phosphatidic Acid in the Diet on Growth Performance and Breast Meat Yield in Broilers. Animals. 2022; 12(24):3446. https://doi.org/10.3390/ani12243446
Chicago/Turabian StyleArcher, Gregory S., and Eric B. Sobotik. 2022. "Evaluation of the Timing of Use of Phosphatidic Acid in the Diet on Growth Performance and Breast Meat Yield in Broilers" Animals 12, no. 24: 3446. https://doi.org/10.3390/ani12243446
APA StyleArcher, G. S., & Sobotik, E. B. (2022). Evaluation of the Timing of Use of Phosphatidic Acid in the Diet on Growth Performance and Breast Meat Yield in Broilers. Animals, 12(24), 3446. https://doi.org/10.3390/ani12243446