Differences in Weight, Hierarchy, and Incidence of Lameness between Two Groups of Adult Pigs Derived from Assisted Reproductive Technologies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals
2.3. Data Collection
2.4. Blood Sampling, Hematological and Biochemical Data
2.5. Determination of Adenosine Deaminase (ADA) in Saliva
2.6. Lameness Diagnosis
2.7. Statistical Analysis
3. Results
3.1. Incidence of Lameness in AI-Derived and IVP- Derived Pigs of the Colony
3.2. Differences in Weight between Groups (AI- and IVP- Derived Sows) and between Health Status (Healthy and Lame Sows); Correlations between Lameness and Growth Rate
3.3. Differences in the Hierarchy between AI- and IVP-Derived Animals. Correlation with Lameness
3.4. Differences in Adenosine Deaminase Activity (ADA) between AI- and IVP- Derived Animals and Correlation with Lameness, Hierarchy, and Weight
3.5. Differences in Biochemical and Hematological Data from Pigs Derived from AI or IVP at 3.5 Years of Age and Correlation with ADA Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maes, D.; Lopez Rodriguez, A.; Rijsselaere, T.; Vyt, P.; van Soom, A. Artificial Insemination in Pigs. In Artificial insemination in farm animals; In-Tech: London, UK, 2011; pp. 79–94. ISBN 9533073128. [Google Scholar]
- Martinez, E.A.; Martinez, C.A.; Cambra, J.M.; Maside, C.; Lucas, X.; Vazquez, J.L.; Vazquez, J.M.; Roca, J.; Rodriguez-Martinez, H.; Gil, M.A.; et al. Achievements and Future Perspectives of Embryo Transfer Technology in Pigs. Reprod. Domest. Anim. 2019, 54 (Suppl. S4), 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen, M.; Oravainen, J.; Orro, T.; Seppä-Lassila, L.; Ala-Kurikka, E.; Virolainen, J.; Tast, A.; Peltoniemi, O.A.T. Lameness and Fetility of Sows and Gilts in Radomly Selected Loose-Housed Herds in Finland. Vet. Rec. 2006, 159, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Ekman, S.; Carlson, C.S. The Pathophysiology of Osteochondrosis. Vet. Clin. North Am. Small Anim. Pract. 1998, 28, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Ytrehus, B.; Carlson, C.S.; Ekman, S. Etiology and Pathogenesis of Osteochondrosis. Vet. Pathol. 2007, 44, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Lundeheim, N. Genetic Analysis of Osteochondrosis and Leg Weakness in the Swedish Pig Progeny Testing Scheme. Acta Agric. Scand. 1987, 37, 159–173. [Google Scholar] [CrossRef]
- Mote, B.E.; Serenius, T.V.; Supakorn, C.; Stalder, K.J. Genetic Improvement of Sow Longevity and Its Economic Impact on Commercial Pork Production. South Afr. J. Anim. Sci. 2019, 49, 1036–1046. [Google Scholar] [CrossRef]
- Albernaz-Gonçalves, R.; Antillón, G.O.; Hötzel, M.J. Linking Animal Welfare and Antibiotic Use in Pig Farming—A Review. Animals 2022, 12, 216. [Google Scholar] [CrossRef]
- Giergiel, M.; Olejnik, M.; Jabłoński, A.; Posyniak, A. The Markers of Stress in Swine Oral Fluid. J. Vet. Res. 2021, 65, 487–495. [Google Scholar] [CrossRef]
- Ramis, G.; Gómez, S.; Pallarés, F.J.; Muñoz, A. Comparison of the Severity of Esophagogastric, Lung and Limb Lesions at Slaughter in Pigs Reared under Standard and Enriched Conditions. Anim. Welf. 2005, 4, 27–34. [Google Scholar]
- Wolf, T.E.; Mangwiro, N.; Fasina, F.O.; Ganswindt, A. Non-Invasive Monitoring of Adrenocortical Function in Female Domestic Pigs Using Saliva and Faeces as Sample Matrices. PLoS ONE 2020, 15, e0234971. [Google Scholar] [CrossRef]
- Martínez-Miró, S.; Tecles, F.; Ramón, M.; Escribano, D.; Hernández, F.; Madrid, J.; Orengo, J.; Martínez-Subiela, S.; Manteca, X.; Cerón, J.J. Causes, Consequences and Biomarkers of Stress in Swine: An Update. BMC Vet. Res. 2016, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Tecles, F.; Rubio, C.P.; Contreras-Aguilar, M.D.; López-Arjona, M.; Martínez-Miró, S.; Martínez-Subiela, S.; Cerón, J.J. Adenosine Deaminase Activity in Pig Saliva: Analytical Validation of Two Spectrophotometric Assays. J. Vet. Diagn. Investig. 2018, 30, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Bradford, K.L.; Moretti, F.A.; Carbonaro-Sarracino, D.A.; Gaspar, H.B.; Kohn, D.B. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. J. Clin. Immunol. 2017, 37, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Escribano, D.; Contreras-Aguilar, M.D.; Tvarijonaviciute, A.; Martínez-Miró, S.; Martínez-Subiela, S.; Cerón, J.J.; Lamy, E.; Tecles, F. Stability of Selected Enzymes in Saliva of Pigs under Different Storage Conditions: A Pilot Study. J. Vet. Med. Sci. 2018, 80, 1657–1661. [Google Scholar] [CrossRef] [Green Version]
- París-Oller, E.; Matás, C.; Romar, R.; Lopes, J.S.; Gadea, J.; Cánovas, S.; Coy, P. Growth Analysis and Blood Profile in Piglets Born by Embryo Transfer. Res. Vet. Sci. 2022, 142, 43–53. [Google Scholar] [CrossRef]
- Macfadyen, M.A.; Daniel, Z.; Kelly, S.; Parr, T.; Brameld, J.M.; Murton, A.J.; Jones, S.W. The Commercial Pig as a Model of Spontaneously-Occurring Osteoarthritis. BMC Musculoskelet. Disord. 2019, 20, 70. [Google Scholar] [CrossRef]
- Bakoev, S.; Getmantseva, L.; Kolosova, M.; Kostyunina, O.; Chartier, D.R.; Tatarinova, T.V. PigLeg: Prediction of Swine Phenotype Using Machine Learning. PeerJ 2020, 8, e8764. [Google Scholar] [CrossRef]
- París-Oller, E.; Soriano-Úbeda, C.; Belda-Pérez, R.; Sarriás-Gil, L.; Lopes, J.S.; Canha-Gouveia, A.; Gadea, J.; Vieira, L.A.; García-Vázquez, F.A.; Romar, R.; et al. Reproductive Fluids, Added to the Culture Media, Contribute to Minimizing Phenotypical Differences between in Vitro-Derived and Artificial Insemination-Derived Piglets. J. Dev. Orig. Health Dis. 2022, 13, 593–605. [Google Scholar] [CrossRef]
- Perri, A.M.; O’Sullivan, T.L.; Harding, J.C.S.; Wood, R.D.; Friendship, R.M. Hematology and Biochemistry Reference Intervals for Ontario Commercial Nursing Pigs Close to the Time of Weaning. Can. Vet. J. 2017, 58, 371. [Google Scholar]
- Boulbria, G.; Costa, C.T.; Normand, V.; Bachy, V.; Rochel, D.; Brissonnier, M.; Berton, P.; Bouchet, F.; Lebret, A. Haematological Reference Intervals of Sows at End Gestation in Ten French Herds, the Impact of Parity on Haematological Parameters and the Consequences on Reproductive Performance. Porc. Health Manag. 2021, 7, 47. [Google Scholar] [CrossRef]
- Ježek, J.; Starič, J.; Nemec, M.; Plut, J.; Oven, I.G.; Klinkon, M.; Štukelj, M. The Influence of Age, Farm, and Physiological Status on Pig Hematological Profiles. J. Swine Health Prod. 2018, 26, 72–78. [Google Scholar]
- Wilson, E.R.; Johnson, R.K. Comparison of Three-Breed and Backcross Swine for Litter Productivity and Postweaning Performance. J. Anim. Sci. 1981, 52, 18–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaren, D.G.; Buchanan, D.S.; Johnson, R.K. Growth Performance for Four Breeds of Swine: Crossbred Females and Purebred and Crossbred Boars. J. Anim. Sci. 1987, 64, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Cassady, J.P.; Young, L.D.; Leymaster, K.A. Heterosis and Recombination Effects on Pig Growth and Carcass Traits. J. Anim. Sci. 2002, 80, 2286–2302. [Google Scholar] [CrossRef] [PubMed]
- Canovas, S.; Ivanova, E.; Romar, R.; Garcia-Martinez, S.; Soriano-Ubeda, C.; Garcia-Vazquez, F.A.; Saadeh, H.; Andrews, S.; Kelsey, G.; Coy, P. DNA Methylation and Gene Expression Changes Derived from Assisted Reproductive Technologies Can Be Decreased by Reproductive Fluids. Elife 2017, 6, e23670. [Google Scholar] [CrossRef]
- de Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil Migration in Infection and Wound Repair: Going Forward in Reverse. Nat. Rev. Immunol. 2016, 16, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.P. The Origins of the Developmental Origins Theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef]
- Coy, P.; Romar, R.; Romero-Aguirregomezcorta, J. The Embryo Culture Media in the Era of Epigenetics: Is It Time to Go Back to Nature? Anim. Reprod. 2022, 19, e20210132. [Google Scholar] [CrossRef]
- Fernández-Gonzalez, R.; Moreira, P.; Bilbao, A.; Jiménez, A.; Pérez-Crespo, M.; Ramírez, M.A.; de Fonseca, F.R.; Pintado, B.; Gutiérrez-Adán, A. Long-Term Effect of in Vitro Culture of Mouse Embryos with Serum on MRNA Expression of Imprinting Genes, Development, and Behavior. Proc. Natl. Acad. Sci. USA 2004, 101, 5880–5885. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Gonzalez, R.; Ramirez, M.A.; Bilbao, A.; de Fonseca, F.R.; Gutiérrez-Adán, A. Suboptimal in Vitro Culture Conditions: An Epigenetic Origin of Long-Term Health Effects. Mol. Reprod. Dev. 2007, 74, 1149–1156. [Google Scholar] [CrossRef]
- Kaiser, M.; Dahl, J.; Jacobsen, S.; Jacobson, M.; Andersen, P.H.; Bækbo, P.; Escribano, D.; Cerón, J.J.; Tecles, F. Changes of Adenosine Deaminase Activity in Serum and Saliva around Parturition in Sows with and without Postpartum Dysgalactia Syndrome. BMC Vet. Res. 2021, 17, 352. [Google Scholar] [CrossRef] [PubMed]
- Cerón, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Martínez, M.J.; Ortín-Bustillo, A.; Franco-Martínez, L.; Rubio, C.P.; Muñoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the Potential Use of Saliva to Evaluate Stress, Inflammation, Immune System, and Redox Homeostasis in Pigs. BMC Vet. Res. 2022, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Arjona, M.; Rubio, C.P.; Martínez-Subiela, S.; Cerón, J.J.; Tecles, F. Application of a Score for Evaluation of Pain, Distress and Discomfort in Pigs with Lameness and Prolapses: Correlation with Saliva Biomarkers and Severity of the Disease. Res. Vet. Sci. 2019, 126, 155–163. [Google Scholar] [CrossRef] [PubMed]
AI | IVP | |
---|---|---|
N | 11 | 14 |
Weight (kg) | 202.10 ± 4.27 a | 245.64 ± 6.03 b |
Lame | Healthy | |
---|---|---|
N | 13 | 12 |
Weight (kg) | 209.92 ± 5.03 a | 244.42 ± 8.24 b |
AI | IVP | |
---|---|---|
N | 14 | 16 |
ADA (IU/L) | 1552 ± 5922 | 2027 ± 813 |
Variable | AI | IVP |
---|---|---|
N | 14 | 16 |
TP (g/dL) | 7.88 ± 0.19 | 7.98 ± 0.14 |
ALB (g/dL) | 3.46 ± 0.12 | 3.64 ± 0.09 |
GLO (g/dL) | 4.42 ± 0.20 | 4.34 ± 0.17 |
GLU (mg/dL) | 60.47 ± 2.11 | 61.61 ± 2.58 |
Variable | AI | IVP |
---|---|---|
N | 14 | 16 |
HCT (%) | 39.09 ± 1.18 | 37.82 ± 0.98 |
HB (g/dL) | 13.48 ± 0.42 | 13.01 ± 0.35 |
RBC (×109/mL) | 6.29 ± 0.19 | 6.04 ± 0.15 |
WBC (×106/mL) * | 13.25 ± 0.88 | 10.89 ± 0.38 |
NEU (×106/mL) ** | 7.46 ± 0.66 | 5.46 ± 0.36 |
LYM (×106/mL) | 4.26 ± 0.23 | 4.11 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Aguirregomezcorta, J.; Ramírez, L.L.; Ortín, A.; Ramis, G.; Romar, R.; Coy, P. Differences in Weight, Hierarchy, and Incidence of Lameness between Two Groups of Adult Pigs Derived from Assisted Reproductive Technologies. Animals 2022, 12, 3578. https://doi.org/10.3390/ani12243578
Romero-Aguirregomezcorta J, Ramírez LL, Ortín A, Ramis G, Romar R, Coy P. Differences in Weight, Hierarchy, and Incidence of Lameness between Two Groups of Adult Pigs Derived from Assisted Reproductive Technologies. Animals. 2022; 12(24):3578. https://doi.org/10.3390/ani12243578
Chicago/Turabian StyleRomero-Aguirregomezcorta, Jon, Lisette L. Ramírez, Alba Ortín, Guillermo Ramis, Raquel Romar, and Pilar Coy. 2022. "Differences in Weight, Hierarchy, and Incidence of Lameness between Two Groups of Adult Pigs Derived from Assisted Reproductive Technologies" Animals 12, no. 24: 3578. https://doi.org/10.3390/ani12243578
APA StyleRomero-Aguirregomezcorta, J., Ramírez, L. L., Ortín, A., Ramis, G., Romar, R., & Coy, P. (2022). Differences in Weight, Hierarchy, and Incidence of Lameness between Two Groups of Adult Pigs Derived from Assisted Reproductive Technologies. Animals, 12(24), 3578. https://doi.org/10.3390/ani12243578