Evaluation of Maternal Genetic Background of Two Hungarian Autochthonous Sheep Breeds Coming from Different Geographical Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. MtDNA Processing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gáspárdy, A. The Tsigai or Hungarian Berke. In Living Heritage: Old Historical Hungarian Livestock, 1st ed.; Bodó, I., Ed.; Agroinform Publishing and Printing Ltd.: Budapest, Hungary, 2000; pp. 60–62. [Google Scholar]
- Koppány, G. The Cikta sheep. In Living Heritage: Old Historical Hungarian Livestock, 1st ed.; Bodó, I., Ed.; Agroinform Publishing and Printing Ltd.: Budapest, Hungary, 2000; pp. 58–59. [Google Scholar]
- Polyak, K.; Li, Y.; Zhu, H.; Lengauer, C.; Willson, J.K.V.; Markowitz, S.D.; Trush, M.A.; Kinzler, K.W.; Vogelstein, B. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 1998, 20, 291–293. [Google Scholar] [CrossRef]
- Kim, Y.S.; Tseveen, K.; Batsukh, B.; Seong, J.; Kong, H.S. Origin-related study of genetic diversity and heteroplasmy of Mongolian sheep (Ovis aries) using mitochondrial DNA. J. Anim. Reprod. Biotechnol. 2020, 35, 198–206. [Google Scholar] [CrossRef]
- Keightley, A.J.; Anitori, R.; Burton, M.D.; Quan, F.; Buist, N.R.M.; Kennaway, N.G. Mitochondrial Encephalomyopathy and Complex III Deficiency Associated with a Stop-Codon Mutation in the Cytochrome b Gene. Am. J. Hum. Genet. 2000, 67, 1400–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, A.; Pal, A.; Banerjee, S.; Batabyala, S.; Chatterjee, P.N. Mutation in Cytochrome B gene causes debility and adverse effects on health of sheep. Mitochondrion 2019, 46, 393–404. [Google Scholar] [CrossRef]
- Castresana, J. Cytochrome b Phylogeny and the Taxonomy of Great Apes and Mammals. Mol. Biol. Evol. 2001, 18, 465–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gissi, C.; Iannelli, F.; Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 2008, 101, 301–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, J. Mitochondrial DNA in mammalian reproduction. Rev. Reprod. 1998, 3, 172–182. [Google Scholar] [CrossRef]
- Tapio, M.; Marzanov, N.; Ozerov, M.; Ćinkulov, M.; Gonzarenko, G.; Kiselyova, T.; Murawski, M.; Viinalass, H.; Kantanen, J. Sheep Mitochondrial DNA Variation in European, Caucasian, and Central Asian Areas. Mol. Biol. Evol. 2006, 23, 1776–1783. [Google Scholar] [CrossRef]
- Zenke, P.; Egyed, B.; Pádár, Z. Wildlife protection: Demonstrability of wildlife crime with forensic DNA analysis Casework applications. Magy. Allatorv. Lapja 2017, 139, 631–639, (In Hungarian with English Summary). [Google Scholar]
- Ingman, M.; Kaessmann, H.; Pääbo, S.; Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 2000, 408, 708–713. [Google Scholar] [CrossRef]
- Dymova, M.A.; Zadorozhnyo, A.V.; Mishukova, O.V.; Khrapov, E.A.; Druzhkova, A.S.; Trifonov, V.A.; Kichigin, I.G.; Tishkin, A.A.; Grushin, S.P.; Filipenko, M.L. Mitochondrial DNA analysis of ancient sheep from Altai. Anim. Genet. 2017, 48, 615–618. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Duanb, Z.-Y.; Sha, T.; Xiangyu, J.; Wu, S.-F.; Zhang, Y.-P. Origin, genetic diversity, and population structure of Chinese domestic sheep. Gene 2006, 376, 216–223. [Google Scholar] [CrossRef]
- Pedrosa, S.; Uzun, M.; Arranz, J.-J.; Gutiérrez-Gil, B.; Primitivo, F.S.; Bayón, Y. Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Proc. R. Soc. B Biol. Sci. 2005, 272, 2211–2217. [Google Scholar] [CrossRef] [Green Version]
- Achilli, A.; Bonfiglio, S.; Olivieri, A.; Malusà, A.; Pala, M.; Kashani, B.H.; Perego, U.A.; Ajmone-Marsan, P.; Liotta, L.; Semino, O.; et al. The Multifaceted Origin of Taurine Cattle Reflected by the Mitochondrial Genome. PLoS ONE 2009, 4, e5753. [Google Scholar] [CrossRef] [Green Version]
- Torroni, A.; Achilli, A.; Macaulay, V.; Richards, M.; Bandelt, H.-J. Harvesting the fruit of the human mtDNA tree. Trends Genet. 2006, 22, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Du, L.X.; Ma, Y.H.; Guan, W.J.; Li, H.B.; Zhao, Q.J.; Li, X.; Rao, S.Q. A novel maternal lineage revealed in sheep (Ovis aries). Anim. Genet. 2005, 36, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Meadows, J.R.S.; Li, K.; Kantanen, J.; Tapio, M.; Sipos, W.; Pardeshi, V.; Gupta, V.; Calvo, J.H.; Whan, V.; Norris, B.; et al. Mitochondrial sequence reveals high levels of gene flow between sheep breeds from Asia and Europe. J. Hered. 2005, 96, 494–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meadows, J.R.S.; Cemal, I.; Karaca, O.; Gootwine, E.; Kijas, J.W. Five Ovine Mitochondrial Lineages Identified from Sheep Breeds of the Near East. Genetics 2007, 175, 1371–1379. [Google Scholar] [CrossRef] [Green Version]
- Demirci, S.; Baştanlar, E.K.; Dağtaş, N.D.; Pişkin, E.; Engin, A.; Özer, F.; Yüncü, E.; Doğan, Ş.A.; Togan, I. Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: New insights on the evolutionary history of sheep. PLoS ONE 2013, 8, e81952. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, M.; Valentini, A.; Marsan, P.A.; Pariset, L. Mitochondrial DNA of seven Italian sheep breeds shows faint signatures of domestication and suggests recent breed formation. Mitochondrial DNA J. DNA Mapp. Seq. Anal. 2013, 24, 577–583. [Google Scholar] [CrossRef]
- Gáspárdy, A.; Berger, B.; Zabavnik-Piano, J.; Kovács, E.; Annus, K.; Zenke, P.; Sáfár, L.; Maróti-Agóts, Á. Comparison of mtDNA control region among descendant breeds of the extinct Zaupel sheep revealed haplogroup C and D in Central Europe. Vet. Med. Sci. 2021, 7, 2330–2338. [Google Scholar] [CrossRef]
- Liu, J.; Ding, X.; Zeng, Y.; Yue, Y.; Guo, X.; Guo, T.; Chu, M.; Wang, F.; Han, J.; Feng, R.; et al. Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on mtDNA D-Loop Sequences. PLoS ONE 2016, 11, e0159308. [Google Scholar] [CrossRef]
- Rafia, P.; Tarang, A. Sequence Variations of Mitochondrial DNA Displacement-Loop in Iranian Indigenous Sheep Breeds. Iran. J. Appl. Anim. Sci. 2016, 6, 363–368. [Google Scholar]
- Agaviezor, B.O.; Adefenwa, M.A.; Peters, S.O.; Yakubu, A.; Adebambo, A.O.; Ozoje, M.O.; Ikeobi, C.O.N.; Ilori, B.M.; Wheto, M.; Okpeku, M.; et al. Mitochondrial D-loop genetic diversity of Nigerian indigenous sheep. Anim. Genet. Resour. Inf. 2012, 50, 13–20. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Lei, C.Z. Genetic diversity and phylogenetic analysis of the mtDNA D-loop region in Tibetan sheep. Asian-Australas. J. Anim. Sci. 2007, 20, 313–315. [Google Scholar] [CrossRef]
- Arora, R.; Yadav, H.S.; Mishra, B.P. Mitochondrial DNA diversity in Indian sheep. Livest. Sci. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Annus, K.; Arkenberg, H.; Prikoszovich, M.; Oláh, J.; Maróti-Agóts, Á.; Gáspárdy, A. Characterisation of the Female Tsigai Population by Use of Hungarian Herd-Book Data. In 25 Years with DAGENE, 1st ed.; Hajas, P., Gáspárdy, A., Eds.; Palatia Printing and Publishing Ltd.: Győr, Hungary, 2015; pp. 108–113. [Google Scholar]
- Posta, J.; Kovács, E.; Tempfli, K.; Sáfár, L.; Gáspárdy, A. Pedigree analysis of a population bottlenecked, the Cikta with special regard to its maternal lineages. Magy. Allatorv. Lapja 2019, 141, 171–180, (In Hungarian with English Summary). [Google Scholar]
- Hiendleder, S.; Lewalski, H.; Wassmuth, R.; Janke, A. The Complete Mitochondrial DNA Sequence of the Domestic Sheep (Ovis aries) and Comparison with the Other Major Ovine Haplotype. J. Mol. Evol. 1998, 47, 441–448. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-Delbarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.X.; Li, W.H. Statistical tests of neutrality of mutations. Genetics 1993, 133, 693–709. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, NY, USA, 1969; Volume 3, pp. 21–132. [Google Scholar]
- Jukes, T.H. How Many Nucleotide Substitutions Actually Took Place? Department of Biophysics and Medical Physics. 1990. Available online: https://garfield.library.upenn.edu/classics1990/A1990CZ67100002.pdf (accessed on 13 May 2020).
- Bandelt, H.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Hiendleder, S.; Kaupe, B.; Wassmuth, R.; Janke, A. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc. R. Soc. B 2002, 269, 893–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusza, S.; Zakar, E.; Budai, C.; Cziszter, L.; Padeanu, I.; Gavojdian, D. Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochim. Pol. 2015, 62, 273–280. [Google Scholar] [CrossRef]
- Dudu, A.; Ghiţă, E.; Costachea, M.; Georgescu, S.E. Origin and genetic diversity of Romanian Racka sheep using mitochondrial markers. Small Rumin. Res. 2016, 144, 276–282. [Google Scholar] [CrossRef]
- Pariset, L.; Mariotti, M.; Gargani, M.; Joost, S.; Negrini, R.; Perez, T.; Bruford, M.; Marsan, P.A.; Valentini, A. Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs). Sci. World J. 2011, 11, 1641–1659. [Google Scholar] [CrossRef] [Green Version]
- Niemi, M.; Bläuer, A.; Iso-Touru, T.; Nyström, V.; Harjula, J.; Taavitsainen, J.-P.; Storå, J.; Lidén, K.; Kantanen, J. Mitochondrial DNA and Y-chromosomal diversity in ancient populations of domestic sheep (Ovis aries) in Finland: Comparison with contemporary sheep breeds. Genet. Sel. Evol. 2013, 45. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Bremer, J.R.; Vinas, J.; Mejuto, J.; Ely, B.; Pla, C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: The combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 2005, 36, 169187. [Google Scholar] [CrossRef]
- William, J.; Ballard, O.; Kreitman, M. Is mitochondrial DNA a strictly neutral marker? Trends Ecol. Evol. 1995, 10, 485–488. [Google Scholar]
- Sulaiman, Y.; Wu, C.; Zhao, C. Phylogeny of 19 Indigenous Sheep Populations in Northwestern China Inferred from Mitochondrial DNA Control Region. Asian J. Anim. Vet. Adv. 2011, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, C.; Ermini, L.; Rizzi, E.; Corti, G.; Luciani, S.; Marota, I.; De Bellis, G.; Rollo, F. Phylogenetic Position of a Copper Age Sheep (Ovis aries) Mitochondrial DNA. PLoS ONE 2012, 7, e33792. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, S.; Bergerbrant, S.; Brandt, L.Ø.; Margaryan, A.; Allentoft, M.E. Approaching sheep herds origins and the emergence of the wool economy in continental Europe during the Bronze Age. Archaeol. Anthropol. Sci. 2019, 11, 4909–4925. [Google Scholar] [CrossRef] [Green Version]
- Lv, F.-H.; Peng, W.-F.; Yang, J.; Zhao, Y.-X.; Li, W.-R.; Liu, M.-J.; Ma, Y.-H.; Zhao, Q.-J.; Yang, G.-L.; Wang, F.; et al. Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian sheep. Mol. Biol. Evol. 2015, 32, 2515–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganbold, O.; Lee, S.-H.; Seo, D.; Paek, W.K.; Manjula, P.; Munkhbayarc, M.; Lee, J.H. Genetic diversity and the origin of Mongolian native sheep. Livest. Sci. 2019, 220, 17–25. [Google Scholar] [CrossRef]
- Schmölcke, U.; Gross, D.; Nikulina, E.A. The history of sheep husbandry in Austria from the Neolithic to the Roman Period. Ann. Nat. Mus. Wien. Ser. A 2018, 120, 101–126. Available online: http://verlag.nhm-wien.ac.at/pdfs/120A_101126_Schmoelcke.pdf (accessed on 18 November 2020).
- Cinkulov, M.; Popovski, Z.; Porcu, K.; Tanaskovska, B.; Hodzić, A.; Bytyqi, H.; Mehmeti, H.; Margeta, V.; Djedović, R.; Hoda, A.; et al. Genetic diversity and structure of the West Balkan Pramenka sheep types as revealed by microsatellite and mitochondrial DNA analysis. J. Anim. Breed. Genet. 2008, 125, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Ferencakovic, M.; Curik, I.; Pérez-Pardal, L.; Royo, L.J.; Cubric-Curik, V.; Fernández, I.; Álvarez, I.; Kostelic, A.; Sprem, N.; Krapinec, K.; et al. Mitochondrial DNA and Y-chromosome diversity in East Adriatic sheep. Anim. Genet. 2013, 44, 184–192. [Google Scholar] [CrossRef]
- Kunelauri, N.; Gogniashvili, M.; Tabidze, V.; Basiladze, G.; Beridze, T. Georgian cattle, sheep, goats: Are they of Near-Eastern origins? Mitochondrial DNA B Resour. 2019, 4, 4006–4009. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Ahlawat, S.; Sharma, H.; Sharma, P.; Panchal, P.; Arora, R.; Tantia, M.S. Microsatellite and mitochondrial DNA analyses unveil the genetic structure of native sheep breeds from three major agro-ecological regions of India. Sci. Rep. 2020, 10, 1–13. Available online: https://www.nature.com/articles/s41598-020-77480-6 (accessed on 31 May 2021).
- Kirikci, K.; Noce, A.; Cam, M.A.; Mercan, L.; Amills, M. The analysis of mitochondrial data indicates the existence of population substructure in Karayaka sheep. Small Rumin. Res. 2018, 162, 25–29. [Google Scholar] [CrossRef]
- Pereira, F.; Davis, S.J.M.; Pereira, L.; McEvoy, B.; Bradley, D.G.; Amorim, A. Genetic Signatures of a Mediterranean Influence in Iberian Peninsula Sheep Husbandry. Mol. Biol. Evol. 2006, 23, 1420–1426. [Google Scholar] [CrossRef]
- Pedrosa, S.; Arranz, J.; Brito, N.; Molina, A.; Primitivo, F.S.; Bayón, Y. Mitochondrial diversity and the origin of Iberian sheep. Genet. Sel. Evol. 2007, 39, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Othman, O.E.; Pariset, L.; Balabel, E.A.; Mariotti, M. Genetic characterization of Egyptian and Italian sheep breeds using mitochondrial DNA. J. Genet. Eng. Biotechnol. 2015, 13, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Ghernouti, N.; Bodinier, N.; Ranebi, M.; Maftah, D.; Petit, D.; Gaouar, S.B.S. Control Region of mtDNA identifies three migration events of sheep breeds in Algeria. Small Rumin. Res. 2017, 155, 66–71. [Google Scholar] [CrossRef]
- Wanjala, G.; Bagi, Z.; Kusza, S. Meta-Analysis of Mitochondrial DNA Control Region Diversity to Shed Light on Phylogenetic Relationship and Demographic History of African Sheep (Ovis aries) Breeds. Biology 2021, 10, 762. [Google Scholar] [CrossRef]
Parameter | Tsigai | Cikta | Total |
---|---|---|---|
Haplotype diversity, Hd | |||
CYTB | 0.839 | 0.858 | 0.866 |
CR | 0.973 | 0.961 | 0.984 |
Average number of nucleotide differences, k | |||
CYTB | 1.782 | 3.384 | 2.422 |
CR | 13.675 | 21.267 | 16.760 |
Nucleotide diversity (Jukes and Cantor), π(JC) | |||
CYTB | 1.57 × 10−3 | 2.98 × 10−3 | 2.13 × 10−3 |
CR | 11.84 × 10−3 | 18.56 × 10−3 | 14.57 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gáspárdy, A.; Zenke, P.; Kovács, E.; Annus, K.; Posta, J.; Sáfár, L.; Maróti-Agóts, Á. Evaluation of Maternal Genetic Background of Two Hungarian Autochthonous Sheep Breeds Coming from Different Geographical Directions. Animals 2022, 12, 218. https://doi.org/10.3390/ani12030218
Gáspárdy A, Zenke P, Kovács E, Annus K, Posta J, Sáfár L, Maróti-Agóts Á. Evaluation of Maternal Genetic Background of Two Hungarian Autochthonous Sheep Breeds Coming from Different Geographical Directions. Animals. 2022; 12(3):218. https://doi.org/10.3390/ani12030218
Chicago/Turabian StyleGáspárdy, András, Petra Zenke, Endre Kovács, Kata Annus, János Posta, László Sáfár, and Ákos Maróti-Agóts. 2022. "Evaluation of Maternal Genetic Background of Two Hungarian Autochthonous Sheep Breeds Coming from Different Geographical Directions" Animals 12, no. 3: 218. https://doi.org/10.3390/ani12030218
APA StyleGáspárdy, A., Zenke, P., Kovács, E., Annus, K., Posta, J., Sáfár, L., & Maróti-Agóts, Á. (2022). Evaluation of Maternal Genetic Background of Two Hungarian Autochthonous Sheep Breeds Coming from Different Geographical Directions. Animals, 12(3), 218. https://doi.org/10.3390/ani12030218