The Effects of Replacing Soybean Meal with Rapeseed Meal, Cottonseed Cake, and Fava Beans on the Milk Yield and Quality Traits in Milking Ewes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Milk Sampling and Analyses
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. The Effects of Diet on the Daily and Total Milk Yields and Milk Quality Traits
3.3. The Effects of Other Explanatory Variables on the Daily and Total Milk Yields and Milk Quality Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Park, Y.W.; Haenlein, G.F.W. Handbook of Milk of Non-Bovine Mammals (Google eBook); John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 0470999721. [Google Scholar]
- Haenlein, G.F.W. About the evolution of goat and sheep milk production. Small Rumin. Res. 2007, 68, 3–6. [Google Scholar] [CrossRef]
- Molle, G.; Decandia, M.; Cabiddu, A.; Landau, S.Y.; Cannas, A. An update on the nutrition of dairy sheep grazing Mediterranean pastures. Small Rumin. Res. 2008, 77, 93–112. [Google Scholar] [CrossRef]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef]
- Ibáñez, M.A.; de Blas, C.; Cámara, L.; Mateos, G.G. Chemical composition, protein quality and nutritive value of commercial soybean meals produced from beans from different countries: A meta-analytical study. Anim. Feed Sci. Technol. 2020, 267, 114531. [Google Scholar] [CrossRef]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean trade: Balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- De Visser, C.L.M.; Schreuder, R.; Stoddard, F. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL-Oilseeds Fats 2014, 21. [Google Scholar] [CrossRef] [Green Version]
- Nemecek, T.; von Richthofen, J.S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Renna, M.; Cornale, P.; Lussiana, C.; Malfatto, V.; Fortina, R.; Mimosi, A.; Battaglini, L.M. Use of Pisum sativum (L.) as alternative protein resource in diets for dairy sheep: Effects on milk yield, gross composition and fatty acid profile. Small Rumin. Res. 2012, 102, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.W.; Sun, H.; Yao, X.H.; Wu, Y.F.; Wang, X.; Feng, J. Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.J.L.; Ferreira, M.D.A.; Urbano, S.A.; de Andrade, R.D.P.X.; da Silva, Á.E.M.; de Siqueira, M.C.B.; de Oliveira, J.P.F.; Silva, J.D.L. Performance of lambs fed alternative protein sources to soybean meal. Rev. Bras. Zootec. 2016, 45, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Mordenti, A.L.; Merendi, F.; Fustini, M.; Formigoni, A. Effects of different protein plants in cows diet on milk for Parmigiano Reggiano production. Ital. J. Anim. Sci. 2007, 6, 463–465. [Google Scholar] [CrossRef]
- Volpelli, L.A.; Comellini, M.; Gozzi, M.; Masoero, F.; Moschini, M. Pea (Pisum sativum) and faba beans (Vicia faba) in dairy cow diet: Effect on milk production and quality. Ital. J. Anim. Sci. 2012, 11, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Selmi, H.; Kamoun, M.; Tibaoui, G.; Ben Gara, A.; Rouissi, H. Effects of replacing corn and soya beans with white sorghum and faba beans on milk quality of Sicilo Sarde dairy ewes in Tunisia. Options Méditerranéennes Série A Mediterr. Semin. 2013, 107, 213–218. [Google Scholar]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- Silva, R.V.M.M.; de Carvalho, G.G.P.; Pires, A.J.V.; Pereira, M.L.A.; Pereira, L.; Campos, F.S.; Perazzo, A.F.; de Araújo, M.L.G.M.L.; de Oliveira Nascimento, C.; Santos, S.A.; et al. Cottonseed cake in substitution of soybean meal in diets for finishing lambs. Small Rumin. Res. 2016, 137, 183–188. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Biagi, G.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH and fibre digestibility. Ital. J. Anim. Sci. 2021, 20, 295–303. [Google Scholar] [CrossRef]
- Sobotka, W.; Fiedorowicz-Szatkowska, E. The Effect of Replacing Genetically Modified Soybean Meal with 00-Rapeseed Meal, Faba Bean and Yellow Lupine in Grower-Finisher Diets on Nutrient Digestibility, Nitrogen Retention, Selected Blood Biochemical Parameters and Fattening Performance of Pigs. Animals 2021, 11, 960. [Google Scholar] [CrossRef]
- Zagorakis, K.; Liamadis, D.; Milis, C.; Dotas, V.; Dotas, D. Effects of replacing soybean meal with alternative sources of protein on nutrient digestibility and energy value of sheep diets. S. Afr. J. Anim. Sci. 2018, 48, 489–496. [Google Scholar] [CrossRef]
- Adewole, D.I.; Rogiewicz, A.; Dyck, B.; Slominski, B.A. Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Anim. Feed Sci. Technol. 2016, 222, 17–30. [Google Scholar] [CrossRef]
- Zhang, W.J.; Xu, Z.R.; Pan, X.L.; Yan, X.H.; Wang, Y.B. Advances in gossypol toxicity and processing effects of whole cottonseed in dairy cows feeding. Livest. Sci. 2007, 111, 1–9. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Brand, T.S.; Hoffman, L.C.; Schoon, K.; Cullere, M.; Swart, R. Effect of cottonseed oilcake inclusion on ostrich growth performance and meat chemical composition. Meat Sci. 2013, 93, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Pelagalli, A.; Musco, N.; Trotta, N.; Cutrignelli, M.I.; Di Francia, A.; Infascelli, F.; Tudisco, R.; Lombardi, P.; Vastolo, A.; Calabrò, S. Chemical characterisation and in vitro gas production kinetics of eight faba bean varieties. Animals 2020, 10, 398. [Google Scholar] [CrossRef] [Green Version]
- Kudlinskienė, I.; Gružauskas, R.; Daukšienė, A.; Dovidaitienė, G.; Želvytė, R.; Monkevičienė, I.; Šlyžius, E.; Urbšienė, D.; Racevičiūtė-Stupelienė, A.; Ots, M.; et al. Effect of extrusion on the chemical composition of the faba beans and its influence on lactation performance of dairy cows. Zemdirbyste 2020, 107, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, S295–S309. [Google Scholar] [CrossRef] [Green Version]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Delagarde, R.; Lessire, M.; Lebas, F. Faba bean (Vicia faba). Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. Available online: https://www.feedipedia.org/node/4926 (accessed on 25 October 2021).
- ICAR. Section 16 Guidelines for Performance Recording in Dairy Sheep and Dairy Goats; ICAR: Rome, Italy, 2018. [Google Scholar]
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.X.; Zhai, S.W.; Lai, J.L.; Wu, Y.M. Effects of rumen-degradable-protein to rumen-undegradable-protein ratio on nitrogen conversion of lactating dairy cows. Acta Agric. Scand. A Anim. Sci. 2008, 58, 100–103. [Google Scholar] [CrossRef]
- Brito, A.F.; Broderick, G.A. Effects of different protein supplements on milk production and nutrient utilization in lactating dairy cows. J. Dairy Sci. 2007, 90, 1816–1827. [Google Scholar] [CrossRef] [PubMed]
- Huhtanen, P.; Hetta, M.; Swensson, C. Evaluation of canola meal as a protein supplement for dairy cows: A review and a meta-analysis. Can. J. Anim. Sci. 2011, 91, 529–543. [Google Scholar] [CrossRef]
- Martineau, R.; Ouellet, D.R.; Lapierre, H. Feeding canola meal to dairy cows: A meta-analysis on lactational responses. J. Dairy Sci. 2013, 96, 1701–1714. [Google Scholar] [CrossRef]
- Broderick, G.A.; Faciola, A.P.; Armentano, L.E. Replacing dietary soybean meal with canola meal improves production and efficiency of lactating dairy cows. J. Dairy Sci. 2015, 98, 5672–5687. [Google Scholar] [CrossRef] [PubMed]
- Gidlund, H.; Hetta, M.; Krizsan, S.J.; Lemosquet, S.; Huhtanen, P. Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets. J. Dairy Sci. 2015, 98, 8093–8106. [Google Scholar] [CrossRef] [PubMed]
- Maxin, G.; Ouellet, D.R.; Lapierre, H. Effect of substitution of soybean meal by canola meal or distillers grains in dairy rations on amino acid and glucose availability. J. Dairy Sci. 2013, 96, 7806–7817. [Google Scholar] [CrossRef]
- Fombad, R.B.; Bryant, M.J. An evaluation of the use of cottonseed cake in the diet of growing pigs. Trop. Anim. Health Prod. 2004, 36, 295–305. [Google Scholar] [CrossRef]
- Yehudi Coura de Assis, D.D.; Pinto de Carvalho, D.G.G.; Mauro Santos, D.E.; Almeida de Oliveira, D.F.; Garcia Melo Lopes de Araújo, D.M.L.; dos Santos Pina, D.D.; Alvarenga Santos, D.S.; Marta de Almeida Rufino, D.L. Cottonseed cake as a substitute of soybean meal for goat kids. Ital. J. Anim. Sci. 2019, 18, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Liponi, G.B.; Casini, L.; Martini, M.; Gatta, D. Faba bean (Vicia faba minor) and pea seeds (Pisum sativum) as protein sources in lactating ewes’ diets. Ital. J. Anim. Sci. 2007, 6, 309–311. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Vitale, F.; Alabiso, M.; Giosuè, C.; Mazza, F.; Todaro, M. Legume grain-based supplements in dairy sheep diet: Effects on milk yield, composition and fatty acid profile. Anim. Prod. Sci. 2016, 56, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Sanz Sampelayo, M.R.; Pérez, M.L.; Gil Extremera, F.; Boza, J.J.; Boza, J. Use of different dietary protein sources for lactating goats: Milk production and composition as functions of protein degradability and amino acid composition. J. Dairy Sci. 1999, 82, 555–565. [Google Scholar] [CrossRef]
- Morales, E.R.; Alcaide, E.M.; Sampelayo, M.S. Milk production of dairy goats fed diets with different legume seeds: Effects of amino acid composition of the rumen undegradable protein fraction. J. Sci. Food Agric. 2008, 88, 2340–2349. [Google Scholar] [CrossRef]
- Volpelli, L.A.; Comellini, M.; Masoero, F.; Moschini, M.; Lo Fiego, D.P.; Scipioni, R. Faba beans (Vicia faba) in dairy cow diet: Effect on milk production and quality. Ital. J. Anim. Sci. 2009, 9, 138–144. [Google Scholar] [CrossRef]
- Tufarelli, V.; Khan, R.U.; Laudadio, V. Evaluating the suitability of field beans as a substitute for soybean meal in early-lactating dairy cow: Production and metabolic responses. Anim. Sci. J. 2012, 83, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Selmi, H.; Bahri, A.; Rouissi, H. Nutrition for Lactation of Dairy Sheep. In Lactation in Farm Animals—Biology, Physiological Basis, Nutritional Requirements, and Modelization; IntechOpen: London, UK, 2020; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lunesu, M.F.; Decandia, M.; Molle, G.; Atzori, A.S.; Bomboi, G.C.; Cannas, A. Dietary starch concentration affects dairy sheep and goat performances differently during mid-lactation. Animals 2021, 11, 1222. [Google Scholar] [CrossRef] [PubMed]
- Pulina, G.; Nudda, A.; Battacone, G.; Cannas, A. Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Anim. Feed Sci. Technol. 2006, 131, 255–291. [Google Scholar] [CrossRef]
- Bencini, R.; Stanislao Atzori, A.; Nudda, A.; Battacone, G.; Pulina, G. Improving the Quality and Safety of Sheep Milk; Woodhead Publishing Limited: Cambridge, UK, 2010; ISBN 9781845698065. [Google Scholar]
- Bauman, D.E.; McGuire, M.A.; Harvatine, K.J. Mammary Gland, Milk Biosynthesis and Secretion: Milk Fat. Encycl. Dairy Sci. Second Ed. 2011, 1, 352–358. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Neto, O.B.; Cannas, A.; Helena, A.; Francesconi, D.; Atzori, A.S.; Pulina, G. Invited Review Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev. Bras. Zootec. 2014, 43, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Zeal. J. Agric. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- Caria, M.; Chessa, G.; Murgia, L.; Todde, G.; Pazzona, A. Development and test of a portable device to monitor the health status of Sarda breed sheep by the measurement of the milk electrical conductivity. Ital. J. Anim. Sci. 2016, 15, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Norberg, E.; Hogeveen, H.; Korsgaard, I.R.; Friggens, N.C.; Sloth, K.H.M.N.; Løvendahl, P. Electrical conductivity of milk: Ability to predict mastitis status. J. Dairy Sci. 2004, 87, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Mabrook, M.F.; Petty, M.C. Effect of composition on the electrical conductance of milk. J. Food Eng. 2003, 60, 321–325. [Google Scholar] [CrossRef]
- Romero, G.; Roca, A.; Alejandro, M.; Muelas, R.; Díaz, J.R. Relationship of mammary gland health status and other noninfectious factors with electrical conductivity of milk in Manchega ewes. J. Dairy Sci. 2017, 100, 1555–1567. [Google Scholar] [CrossRef]
Control Ration | Experimental Ration | |
---|---|---|
Composition (%) | ||
Soybean meal | 20.0 | 5.0 |
Rapeseed meal | - | 13.0 |
Cottonseed cake | - | 10.0 |
Fava beans | - | 12.5 |
Barley grain | 13.5 | - |
Corn grain | 50.0 | 52.0 |
Wheat bran | 14.0 | - |
Sugar beet pulp | - | 5.0 |
Vitamins and minerals | 2.5 | 2.5 |
Chemical analysis | ||
Dry matter (%) | 86.73 | 88.18 |
Crude protein (% of DM) | 15.63 | 15.96 |
Ash (% of DM) | 4.32 | 4.91 |
Fat (% of DM) | 3.19 | 3.51 |
NDF (% of DM) | 8.00 | 13.45 |
ADF (% of DM) | 1.76 | 6.74 |
ADL (% of DM) | 0.04 | 1.86 |
Starch (% of DM) | 50.63 | 39.82 |
Calcium (% of DM) | 1.61 | 1.71 |
Phosphorus (% of DM) | 0.52 | 0.45 |
Net energy for lactation † (Mcal per kg DM) | 1.95 | 1.96 |
95% CI | ||||||||
---|---|---|---|---|---|---|---|---|
Dependent Variables | Group C Mean (± SE) | Group E Mean (± SE) | Β | SEM | p-Value | Lower Bound | Upper Bound | |
Model (1) | Daily milk yield (L) | 1.09 (0.28) | 1.09 (0.28) | 0.01 | 0.081 | 0.946 | −0.15 | 0.14 |
Daily fat yield (g) | 67.64 (18.46) | 76.20 (18.44) | 8.55 | 3.945 | 0.032 | 0.73 | 16.38 | |
Daily protein yield (g) | 62.30 (20.61) | 66.11 (20.58) | 3.81 | 4.219 | 0.369 | −12.17 | 4.56 | |
Daily lactose yield (g) | 51.30 (59.3) | 52.44 (59.52) | 1.14 | 3.686 | 0.757 | −8.45 | 6.16 | |
Daily total solids yield (g) | 189.64 (63.53) | 205.04 (63.78) | 15.40 | 12.020 | 0.203 | −39.23 | 8.44 | |
Log of SCC (103/mL) | 5.68 (0.45) | 5.70 (0.45) | −0.02 | 0.092 | 0.824 | −0.02 | 0.16 | |
Log of TBC (cfu × 103/mL) | 4.50 (0.27) | 4.49 (0.27) | −0.02 | 0.066 | 0.783 | −0.11 | 0.15 | |
pH † | 6.60 (0.09) | 6.57 (0.09) | −0.04 | 0.021 | 0.068 | 0.00 | 0.08 | |
Electrical conductivity (mS/cm) † | 3.58 (0.08) | 3.39 (0.08) | −0.20 | 0.054 | 0.000 | −0.31 | −0.09 | |
Refractive index † (brix) | 15.38 (0.57) | 15.25 (0.61) | −0.12 | 0.685 | 0.858 | −1.24 | 1.48 | |
Model (2) | 100-day milk yield (L) | 109.57 (±5.45) | 109.26 (±4.68) | −1.10 | 7.216 | 0.879 | −15.41 | 13.21 |
100-day fat yield (g) | 6863.06 (±266.76) | 7728.33 (±274.00) | 799.96 | 378.095 | 0.037 | 50.35 | 1549.57 | |
100-day protein yield (g) | 6161.33 (±297.23) | 6508.12 (±275.18) | 281.09 | 410.284 | 0.495 | −532.34 | 1094.52 | |
100-day lactose yield (g) | 5070.31 (±268.36) | 5124.32 (±230.58) | 4.47 | 355.361 | 0.990 | −700.66 | 709.61 | |
100-day total solids yield (g) | 18953.30 (±842.55) | 20410.30 (±791.83) | 1261.97 | 1161.835 | 0.280 | −1041.48 | 3565.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalogianni, A.I.; Moschovas, M.; Chrysanthakopoulou, F.; Lazou, T.; Theodorou, G.; Politis, I.; Bossis, I.; Gelasakis, A.I. The Effects of Replacing Soybean Meal with Rapeseed Meal, Cottonseed Cake, and Fava Beans on the Milk Yield and Quality Traits in Milking Ewes. Animals 2022, 12, 274. https://doi.org/10.3390/ani12030274
Kalogianni AI, Moschovas M, Chrysanthakopoulou F, Lazou T, Theodorou G, Politis I, Bossis I, Gelasakis AI. The Effects of Replacing Soybean Meal with Rapeseed Meal, Cottonseed Cake, and Fava Beans on the Milk Yield and Quality Traits in Milking Ewes. Animals. 2022; 12(3):274. https://doi.org/10.3390/ani12030274
Chicago/Turabian StyleKalogianni, Aphrodite I., Marios Moschovas, Foteini Chrysanthakopoulou, Thomai Lazou, Georgios Theodorou, Ioannis Politis, Ioannis Bossis, and Athanasios I. Gelasakis. 2022. "The Effects of Replacing Soybean Meal with Rapeseed Meal, Cottonseed Cake, and Fava Beans on the Milk Yield and Quality Traits in Milking Ewes" Animals 12, no. 3: 274. https://doi.org/10.3390/ani12030274
APA StyleKalogianni, A. I., Moschovas, M., Chrysanthakopoulou, F., Lazou, T., Theodorou, G., Politis, I., Bossis, I., & Gelasakis, A. I. (2022). The Effects of Replacing Soybean Meal with Rapeseed Meal, Cottonseed Cake, and Fava Beans on the Milk Yield and Quality Traits in Milking Ewes. Animals, 12(3), 274. https://doi.org/10.3390/ani12030274