ESBL-Producing Moellerella wisconsensis—The Contribution of Wild Birds in the Dissemination of a Zoonotic Pathogen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation, Identification and Antimicrobial Resistance Phenotype of Moellerella wisconsensis
2.3. Phylogenetic Analysis
2.4. Phenotypic Evaluation and Molecular Confirmation of ESBL Production
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Biochemical Reaction | WB73 | WB186 | WB290 | WB316 |
---|---|---|---|---|
Probability of correct identification | 99% | 99% | 99% | 99% |
Ala-Phe-Pro-Arylamidase | - | - | - | - |
Adonitol | + | + | + | + |
L−Pyrrolydonyl−Arylamidase | - | - | - | - |
L−Arabitol | - | - | - | - |
D−Cellobiose | - | - | - | - |
Beta−Galactosidase | + | + | + | + |
H2S Production | - | - | - | - |
Beta−N−Acetyl−Glucosaminidase | - | - | - | - |
Glutamyl Arylamidase pNA | - | - | - | - |
D−Glucose | + | + | + | + |
Gamma−Glutamyl−Transferase | - | - | - | - |
Fermentation/Glucose | + | + | + | + |
Beta−Glucosidase | - | + | (-) | + |
D−Maltose | - | - | - | - |
D−Mannitol | - | - | - | - |
D−Mannose | + | + | + | + |
Beta−Xylosidase | - | - | - | - |
BETA−Alanine arylamidase pNA | - | - | - | - |
L−Proline Arylamidase | - | - | - | - |
Lipase | - | - | - | - |
Palatinose | - | - | - | - |
Tyrosine Arylamidase | + | + | + | + |
Urease | - | - | - | - |
D−Sorbitol | - | - | - | - |
Saccharose/Sucrose | + | + | + | + |
D−Tagatose | - | - | - | - |
D−Trehalose | - | - | - | - |
Citrate (Sodium) | + | + | + | + |
Malonate | - | - | - | - |
5−Keto−D−Gluconate | - | - | - | - |
L−Lactate Alkalinisation | - | - | - | - |
Alpha−Glucosidase | - | - | - | - |
Succinate alkalinisation | + | + | + | + |
Beta−N−Acetyl−Galactosaminidase | - | - | - | - |
Alpha−Galactosidase | (+) | + | + | + |
Phosphatase | + | (-) | (+) | + |
Glycine Arylamidase | - | - | - | - |
Ornithine Decarboxylase | - | - | - | - |
Lysine Decarboxylase | - | - | - | - |
L−Histidine assimilation | - | - | - | - |
Coumarate | + | + | + | + |
Beta−Glucoronidase | - | - | - | - |
O/129 Resistance (comp.vibrio.) | - | + | + | - |
Glu−Gly−Arg−Arylamidase | - | - | - | - |
L−Malate assimilation | - | - | - | - |
Ellman | - | - | - | - |
L−Lactate assimilation | - | - | - | - |
References
- Hickman-Brenner, F.W.; Huntley-Carter, G.P.; Saitoh, Y.; Steigerwalt, A.G.; Farmer, J.J.; Brenner, D.J. Moellerella wisconsensis, a New Genus and Species of Enterobacteriaceae Found in Human Stool Specimens. J. Clin. Microbiol. 1984, 19, 460–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardentey-Reyes, A.; Jacobs, F.; Struelens, M.J.; Rodriguez-Villalobos, H. First Case of Bacteremia Caused by Moellerella Wisconsensis: Case Report and a Review of the Literature. Infection 2009, 37, 544. [Google Scholar] [CrossRef] [PubMed]
- Wittke, J.-W.; Aleksić, S.; Wuthe, H.-H. Isolation of Moellerella wisconsensis from an Infected Human Gallbladder. Eur. J. Clin. Microbiol. 1985, 4, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Aller, A.I.; Castro, C.; Medina, M.J.; González, M.T.; Sevilla, P.; Morilla, M.D.; Corzo, J.E.; Martín-Mazuelos, E. Isolation of Moellerella wisconsensis from Blood Culture from a Patient with Acute Cholecystitis. Clin. Microbiol. Infect. 2009, 15, 1193–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, A.-G.; Malandain, D.; Duchalais, É.; Meurette, G.; Corvec, S. Accurate MALDI-TOF Mass Spectrometry Identification of a Colistin-Resistant Moellerella wisconsensis Strain. Med. Mal. Infect. 2016, 46, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Wallet, F.; Fruchart, A.; Bouvet, P.J.M.; Courcol, R.J. Isolation of Moellerella wisconsensis from Bronchial Aspirate. Eur. J. Clin. Microbiol. Infect. Dis. 1994, 13, 182–183. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Monrreal, M.G.; Arenas-Hernández, M.M.P.; Barrios-Villa, E.; Juarez, J.; Álvarez-Ainza, M.L.; Taboada, P.; De la Rosa-López, R.; Bolado-Martínez, E.; Valencia, D. Bacterial Morphotypes as Important Trait for Uropathogenic E. coli Diagnostic; A Virulence-Phenotype-Phylogeny Study. Microorganisms 2021, 9, 2381. [Google Scholar] [CrossRef]
- Zambarbieri, J.; Grilli, G.; Vitiello, T.; Scarpa, P. Urinary Tract Infection by Atypical Uropathogens in Dogs. Vet. Ital. 2021, 57, 89–92. [Google Scholar] [CrossRef]
- Casalinuovo, F.; Musarella, R. Isolation of Moellerella wisconsensis from the Lung of a Goat. Vet. Microbiol. 2009, 138, 401–402. [Google Scholar] [CrossRef]
- Sandfort, R.F.; Murray, W.; Janda, J.M. Moellerella wisconsensis Isolated from the Oral Cavity of a Wild Raccoon (Procyon lotor). Vector Borne Zoonotic Dis. 2002, 2, 197–199. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Kwiecińska-Piróg, J.; Białucha, A.; Wałecka-Zacharska, E.; Grudlewska-Buda, K.; Kraszewska, Z.; Gospodarek-Komkowska, E. Flies as a Potential Vector of Selected Alert Pathogens in a Hospital Environment. Int. J. Environ. Health Res. 2021, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.B.; Dergousoff, S.J.; Brzezowska, V.; Trost, C.N.; Dunlop, D.R. American Dog Ticks (Dermacentor variabilis) as Biological Indicators of an Association between the Enteric Bacterium Moellerella wisconsensis and Striped Skunks (Mephitis mephitis) in Southwestern Manitoba, Canada. J. Wildl. Dis. 2020, 56, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Stock, I.; Falsen, E.; Wiedemann, B. Moellerella wisconsensis: Identification, Natural Antibiotic Susceptibility and Its Dependency on the Medium Applied. Diagn. Microbiol. Infect. Dis. 2003, 45, 1–11. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; US Department of Health and Human Services, Centres for Disease Control and Prevention: Atlanta, GA, USA, 2019. [CrossRef] [Green Version]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-Spectrum Beta-Lactamases Producing E. coli in Wildlife, yet Another Form of Environmental Pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldman, K.; van Tulden, P.; Kant, A.; Testerink, J.; Mevius, D. Characteristics of Cefotaxime-Resistant Escherichia Coli from Wild Birds in The Netherlands. Appl. Environ. Microbiol. 2013, 79, 7556–7561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamborova, I.; Dolejska, M.; Zurek, L.; Townsend, A.K.; Clark, A.B.; Ellis, J.C.; Papousek, I.; Cizek, A.; Literak, I. Plasmid-Mediated Resistance to Cephalosporins and Quinolones in Escherichia Coli from American Crows in the USA. Environ. Microbiol. 2017, 19, 2025–2036. [Google Scholar] [CrossRef] [PubMed]
- Bonnedahl, J.; Järhult, J.D. Antibiotic Resistance in Wild Birds. Upsala J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athanasakopoulou, Z.; Reinicke, M.; Diezel, C.; Sofia, M.; Chatzopoulos, D.C.; Braun, S.D.; Reissig, A.; Spyrou, V.; Monecke, S.; Ehricht, R.; et al. Antimicrobial Resistance Genes in ESBL-Producing Escherichia Coli Isolates from Animals in Greece. Antibiotics 2021, 10, 389. [Google Scholar] [CrossRef]
- Skrodenyte-Arbaciauskiene, V.; Sruoga, A.; Butkauskas, D. Assessment of Microbial Diversity in the River Trout Salmo trutta fario L. Intestinal Tract Identified by Partial 16S RRNA Gene Sequence Analysis. Fish. Sci. 2006, 72, 597–602. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G.; Martinez-Martinez, L.; Cantón Spain, R.; Stefani, S.; Skov, R.; Glupczynski, Y.; Nordmann, P.; Wootton, M.; Miriagou, V.; Skov Simonsen, G.; et al. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance; EUCAST: Basel, Switzerland, 2017. [Google Scholar]
- Dandachi, I.; Salem Sokhn, E.; Najem, E.; Azar, E.; Daoud, Z. Carriage of Beta-Lactamase-Producing Enterobacteriaceae among Nursing Home Residents in North Lebanon. Int. J. Infect. Dis. 2016, 45, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangert, R.L.; Ward, A.C.S.; Stauber, E.H.; Cho, B.R.; Widders, P.R. A Survey of the Aerobic Bacteria in the Feces of Captive Raptors. Avian Dis. 1988, 32, 53. [Google Scholar] [CrossRef]
- Foti, M.; Siclari, A.; Mascetti, A.; Fisichella, V. Study of the Spread of Antimicrobial-Resistant Enterobacteriaceae from Wild Mammals in the National Park of Aspromonte (Calabria, Italy). Environ. Toxicol. Pharmacol. 2018, 63, 69–73. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-Spectrum β-Lactamase/AmpC- and Carbapenemase-Producing Enterobacteriaceae in Animals: A Threat for Humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Palmeira, J.D.; Cunha, M.V.; Carvalho, J.; Ferreira, H.; Fonseca, C.; Torres, R.T. Emergence and Spread of Cephalosporinases in Wildlife: A Review. Animals 2021, 11, 1765. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The Role of Wildlife (Wild Birds) in the Global Transmission of Antimicrobial Resistance Genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef] [Green Version]
- Tufa, T.B.; Fuchs, A.; Wienemann, T.; Eggers, Y.; Abdissa, S.; Schneider, M.; Jensen, B.-E.O.; Bode, J.G.; Pfeffer, K.; Häussinger, D.; et al. Carriage of ESBL-Producing Gram-Negative Bacteria by Flies Captured in a Hospital and Its Suburban Surroundings in Ethiopia. Antimicrob. Resist. Infect. Control 2020, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Peirano, G.; Pitout, J.D.D. The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppé, É.; Woerther, P.-L.; Barbier, F. Mechanisms of Antimicrobial Resistance in Gram-Negative Bacilli. Ann. Intensive Care 2015, 5, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaufler, K.; Semmler, T.; Wieler, L.H.; Wöhrmann, M.; Baddam, R.; Ahmed, N.; Müller, K.; Kola, A.; Fruth, A.; Ewers, C.; et al. Clonal Spread and Interspecies Transmission of Clinically Relevant ESBL-Producing Escherichia Coli of ST410—Another Successful Pandemic Clone? FEMS Microbiol. Ecol. 2016, 92, fiv155. [Google Scholar] [CrossRef] [Green Version]
- Kagalou, I.; Tsimarakis, G.; Bezirtzoglou, E. Inter-Relationships between Bacteriological and Chemical Variations in Lake Pamvotis—Greece. Microb. Ecol. Health Dis. 2002, 14, 37–41. [Google Scholar] [CrossRef] [Green Version]
Target | Primer Sequence (5′-3′) | Amplicon Size (bp) | Annealing Temperature (°C) |
---|---|---|---|
Moellerella wisconsensis 16S rDNA | F: CTC GTT GCG GGA CTT AAC | 760 | 60 |
R: ACT CCT ACG GGA GGC AGC A | |||
blaCTX-M | F: ATG TGC AGY ACC AGT AAR GTK ATG GC | 593 | 60 |
R: TGG GTR AAR TAR GTS ACC AGA AYC AGC GG | |||
blaSHV | F: CTT TAT CGG CCC TCA CTC AA | 327 | 60 |
R: AGG TGC TCA TCA TGG GAA AG | |||
blaTEM | F: CGC CGC ATA CAC TAT TCT CAG AAT GA | 445 | 62 |
R: ACG CTC ACC GGC TCC AGA TTT AT |
Strain ID | Wild Bird Species | Region | Regional Unit | Antimicrobial Resistance Phenotype | ESBL Genotype |
---|---|---|---|---|---|
WB73 | Common pheasant (Phasianus colchicus) | Atalanti island | Fthiotida | CEX, PMB | - |
WB186 | Eurasian magpie (Pica pica) | Lake Karla | Magnesia | AMP, CEX, CF, CEP, CEF, CEQ, TET, PMB | blaCTX-M-1 |
WB290 | Eurasian magpie (Pica pica) | Lake Karla | Magnesia | AMP, CEX, CF, CEP, CEF, CEQ, GEN, TET, PMB, SXT | blaCTX-M-1 |
WB316 | Great white-fronted goose (Anser albifrons) | Lake Pamvotis | Ioannina | AMP, CEX, CF, CEP, CEF, CEQ, GEN, NEO *, TET, PMB | blaCTX-M-1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasakopoulou, Z.; Sofia, M.; Giannakopoulos, A.; Papageorgiou, K.; Chatzopoulos, D.C.; Spyrou, V.; Petridou, E.; Petinaki, E.; Billinis, C. ESBL-Producing Moellerella wisconsensis—The Contribution of Wild Birds in the Dissemination of a Zoonotic Pathogen. Animals 2022, 12, 340. https://doi.org/10.3390/ani12030340
Athanasakopoulou Z, Sofia M, Giannakopoulos A, Papageorgiou K, Chatzopoulos DC, Spyrou V, Petridou E, Petinaki E, Billinis C. ESBL-Producing Moellerella wisconsensis—The Contribution of Wild Birds in the Dissemination of a Zoonotic Pathogen. Animals. 2022; 12(3):340. https://doi.org/10.3390/ani12030340
Chicago/Turabian StyleAthanasakopoulou, Zoi, Marina Sofia, Alexios Giannakopoulos, Konstantinos Papageorgiou, Dimitris C. Chatzopoulos, Vassiliki Spyrou, Evanthia Petridou, Efthymia Petinaki, and Charalambos Billinis. 2022. "ESBL-Producing Moellerella wisconsensis—The Contribution of Wild Birds in the Dissemination of a Zoonotic Pathogen" Animals 12, no. 3: 340. https://doi.org/10.3390/ani12030340
APA StyleAthanasakopoulou, Z., Sofia, M., Giannakopoulos, A., Papageorgiou, K., Chatzopoulos, D. C., Spyrou, V., Petridou, E., Petinaki, E., & Billinis, C. (2022). ESBL-Producing Moellerella wisconsensis—The Contribution of Wild Birds in the Dissemination of a Zoonotic Pathogen. Animals, 12(3), 340. https://doi.org/10.3390/ani12030340