Effects of Increasing Levels of Palm Kernel Oil in the Feed of Finishing Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets and Animals
2.2. Trial 1—Nutrient Intake, Blood Metabolites, Fatty Acids, and Chemical Diet Analysis
2.3. Trial 2—Nutrient Digestibility, Nitrogen Balance and Ingestive Behavior
2.4. Trial 3—Ruminal Fermentation Parameters Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, X.; Faciola, A.P. Evaluating Strategies to Reduce Ruminal Protozoa and Their Impacts on Nutrient Utilization and Animal Performance in Ruminants—A Meta-Analysis. Front. Microbiol. 2019, 10, 2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal 2020, 14, s78–s86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girón, J.E.P.; Restrepo, M.L.P.; Fornaguera, J.E.C. Supplementation with corn oil and palm kernel oil to grazing cows: Ruminal fermentation, milk yield, and fatty acid profile. Rev. Bras. Zootec. 2016, 45, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Do Prado, A.C.P.; Block, J.M. Palm and Palm Kernel Oil Production and Processing in Brazil. In Palm Oil; Elsevier: Amsterdam, The Netherlands, 2012; pp. 251–274. [Google Scholar]
- Matsue, M.; Mori, Y.; Nagase, S.; Sugiyama, Y.; Hirano, R.; Ogai, K.; Ogura, K.; Kurihara, S.; Okamoto, S. Measuring the Antimicrobial Activity of Lauric Acid against Various Bacteria in Human Gut Microbiota Using a New Method. Cell Transpl. 2019, 28, 1528–1541. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Kao, M.C.; Fang, J.-Y.; Zouboulis, C.C.; Zhang, L.; Gallo, R.L.; Huang, C.-M. Antimicrobial Property of Lauric Acid Against Propionibacterium Acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris. J. Investig. Dermatol. 2009, 129, 2480–2488. [Google Scholar] [CrossRef] [Green Version]
- Nitbani, F.O.; Jumina; Siswanta, D.; Solikhah, E.N. Isolation and Antibacterial Activity Test of Lauric Acid from Crude Coconut Oil (Cocos nucifera L.). Procedia Chem. 2016, 18, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Vander Pol, M.; Agle, M.; Zaman, S.; Schneider, C.; Ndegwa, P.; Vaddella, V.K.; Johnson, K.; Shingfield, K.J.; Karnati, S.K.R. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows. J. Dairy Sci. 2009, 92, 5561–5582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zain, M.; Wijaya Setia Ningrat, R.; Suryani, H.; Jamarun, N. Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds. In Animal Feed Science and Nutrition-Health and Environment; IntechOpen: London, UK, 2021. [Google Scholar]
- Dohme, F.; Machmüller, A.; Sutter, F.; Kreuzer, M. Digestive and metabolic utilization of lauric, myristic and stearic acid in cows, and associated effects on milk fat quality. Arch. Anim. Nutr. 2004, 58, 99–116. [Google Scholar] [CrossRef]
- Faciola, A.P.; Broderick, G.A.; Hristov, A.; Leão, M.I. Effects of lauric acid on ruminal protozoal numbers and fermentation pattern and milk production in lactating dairy cows1. J. Anim. Sci. 2013, 91, 363–373. [Google Scholar] [CrossRef] [Green Version]
- De Souza, J.G.; Ribeiro, C.V.D.M. Ruminal biohidrogenation and main impact on met the fatty acid profile: A review. Res. Soc. Dev. 2021, 10, e28101321039. [Google Scholar] [CrossRef]
- Diaz, H.L.; Karnati, S.K.R.; Lyons, M.A.; Dehority, B.A.; Firkins, J.L. Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids. J. Dairy Sci. 2014, 97, 2231–2243. [Google Scholar] [CrossRef] [PubMed]
- Reveneau, C.; Ribeiro, C.V.D.M.; Eastridge, M.L.; Firkins, J.L. Interaction of unsaturated fat or coconut oil with monensin in lactating dairy cows fed 12 times daily II. Fatty acid flow to the omasum and milk fatty acid profile. J. Dairy Sci. 2012, 95, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Machmüller, A.; Kreuzer, M. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can. J. Anim. Sci. 1999, 79, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.D.X.; Oliveira, R.L.; Macome, F.M.; Bagaldo, A.R.; Silva, M.C.A.; Ribeiro, C.V.D.M.; Carvalho, G.G.P.; Lanna, D.P.D. Meat Quality of Lambs Fed on Palm Kernel Meal, a By-product of Biodiesel Production. Asian-Australas. J. Anim. Sci. 2011, 24, 1399–1406. [Google Scholar] [CrossRef]
- Da Conceição dos Santos, R.; Alves, K.S.; Mezzomo, R.; Oliveira, L.R.S.; Cutrim, D.O.; Gomes, D.I.; Leite, G.P.; Araújo, M.Y.d.S. Performance of feedlot lambs fed palm kernel cake-based diets. Trop. Anim. Health Prod. 2016, 48, 367–372. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10213-1. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Weiss, W.P. Predicting Energy Values of Feeds. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Challenges with fats and fatty acid methods. J. Anim. Sci. 2003, 81, 3250–3254. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Detmann, E.; Silva, L.F.C.; Rocha, G.C.; Palma, M.N.N.; Rodrigues, J.P.P. Métodos para Análise de Alimentos, 2nd ed.; INCT-Ciência Animal: Viçosa, Brazil, 2021. [Google Scholar]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of the Technical Details; University of Aberdeen: Aberdeen, UK, 1992. [Google Scholar]
- Bateson, M.; Martin, P. Measuring Behaviour, 4th ed.; Cambridge University Press: Cambridge, UK, 2021; ISBN 9781108776462. [Google Scholar]
- Polli, V.A.; Restle, J.; Senna, D.B.; Rosa, C.E.; Aguirre, L.F.; Silva, J.H.S. da Comportamento de bovinos e bubalinos em regime de confinamento: I. atividades. Ciência Rural 1995, 25, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Bürger, P.J.; Pereira, J.C.; de Queiroz, A.C.; Coelho da Silva, J.F.; Valadares Filho, S.d.C.; Cecon, P.R.; Casali, A.D.P. Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Dehority, B.A.; Tirabasso, P.A. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J. Anim. Sci. 1998, 76, 2905. [Google Scholar] [CrossRef]
- Allen, M.S. Effects of Diet on Short-Term Regulation of Feed Intake by Lactating Dairy Cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Fat in Lactation Rations: Review. J. Dairy Sci. 1980, 63, 1–14. [Google Scholar] [CrossRef]
- Mertens, D.R. Kinetics of Cell Wall Digestion and Passage in Ruminants. In Forage Cell Wall Structure and Digestibility; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 535–570. [Google Scholar]
- Faciola, A.P.; Broderick, G.A. Effects of feeding lauric acid on ruminal protozoa numbers, fermentation, and digestion and on milk production in dairy cows1. J. Anim. Sci. 2013, 91, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Dohme, F.; Machmüller, A.; Wasserfallen, A.; Kreuzer, M. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can. J. Anim. Sci. 2000, 80, 473–484. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kobayashi, T.; Takenaka, A.; Itabashi, H. Defaunation effects of medium-chain fatty acids and their derivatives on goat rumen protozoa. J. Gen. Appl. Microbiol. 1991, 37, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Lee, H.; Lee, S.; Kim, S.; Choi, K.-H. Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res. Int. 2015, 72, 25–36. [Google Scholar] [CrossRef]
- dos Santos, A.C.R.; de Azevedo, R.A.; Virgínio Júnior, G.F.; Rodriguez, N.M.; Duarte, E.R.; Geraseev, L.C. Effects of macauba cake on profile of rumen protozoa of lambs. Rev. Bras. Zootec. 2017, 46, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, M. do S.M.; Silva, F.F. da; Donato, S.L.R.; Schio, A.R.; de Souza, D.D.; Meneses, M.D.A.; Lédo, A.A. Síntese de proteína microbiana e concentração de ureia em novilhas leiteiras alimentadas com palma forrageira Opuntia. Semin. Ciências Agrárias 2015, 36, 999. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; ISBN 9781501732355. [Google Scholar]
- Marini, J.C.; Klein, J.D.; Sands, J.M.; Van Amburgh, M.E. Effect of nitrogen intake on nitrogen recycling and urea transporter abundance in lambs12. J. Anim. Sci. 2004, 82, 1157–1164. [Google Scholar] [CrossRef]
- Botham, K.M.; Mayes, P. Cholesterol Synthesis, Transport, & Excretion. In Harper’s Illustrated Biochemistry; Rodwell, V.W., Bender, D.A., Botham, K.M., Kennelly, P.J., Weil, P., Eds.; McGraw Hill: New York, NY, USA, 2016. [Google Scholar]
- Mohapatra, E.; Priya, R.; Nanda, R.; Patel, S. Serum GGT and serum ferritin as early markers for metabolic syndrome. J. Fam. Med. Prim. Care 2020, 9, 3458. [Google Scholar] [CrossRef]
- Towers, N.R.; Stratton, G.C. Serum gamma-glutamyltransferase as a measure of sporidesmin-induced liver damage in sheep. N. Z. Vet. J. 1978, 26, 109–112. [Google Scholar] [CrossRef]
- Hrkovic-Porobija, A.; Hodzic, A.; Hadzimusic, N. Functional liver stress in dairy sheep. Indian J. Small Rumin. 2017, 23, 194. [Google Scholar] [CrossRef]
Palm Kernel Oil Levels (% DM Total) | |||||
---|---|---|---|---|---|
0 | 1.3 | 2.6 | 3.9 | 5.2 | |
Ingredients (% Total Diet) | |||||
Hay | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 |
Ground corn | 42.5 | 41.0 | 39.6 | 38.1 | 36.6 |
Soybean meal | 16.0 | 16.2 | 16.3 | 16.5 | 16.7 |
Palm kernel oil | 0.0 | 1.30 | 2.60 | 3.90 | 5.19 |
Mineral mixture 1 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Chemical Composition (% Dry Matter) | |||||
Dry matter (% fresh matter) | 86.8 | 86.9 | 87.1 | 87.3 | 87.5 |
Organic matter | 93.9 | 93.9 | 93.9 | 94.0 | 94.0 |
Crude ash | 6.1 | 6.1 | 6.1 | 6.0 | 6.0 |
Crude protein | 13.9 | 13.9 | 13.8 | 13.8 | 13.7 |
Ether extract | 1.40 | 2.66 | 3.92 | 5.18 | 6.44 |
Neutral Detergent Fiberap | 36.6 | 36.5 | 36.4 | 36.3 | 36.2 |
Acid Detergent Fiber | 17.1 | 17.1 | 17.1 | 17.0 | 17.0 |
Non-Fibrous Carbohydrates 2 | 42.0 | 40.1 | 39.8 | 38.7 | 37.6 |
Fatty Acid Profile (g/100 g Total Fat) | |||||
C 10:0 (Capric) | 0.38 | 2.00 | 2.36 | 2.58 | 2.78 |
C 12:0 (Lauric) | 3.92 | 28.20 | 33.94 | 36.46 | 38.61 |
C 14:0 (Myristic) | 2.84 | 10.62 | 11.77 | 13.00 | 14.20 |
C 16:0 (Palmitic) | 56.00 | 52.70 | 49.05 | 50.70 | 50.80 |
C 16:1 (Palmitoleic) | 0.42 | 0.34 | 0.35 | 0.34 | 0.32 |
C 18:0 (Stearic) | 9.80 | 9.74 | 9.02 | 7.35 | 9.56 |
C 18:1cis9 (Oleic) | 42.17 | 32.67 | 31.17 | 29.27 | 27.57 |
C 18:2cis9 cis12 (Linoleic) | 54.60 | 33.10 | 31.90 | 28.60 | 24.70 |
C 18:3n-3 (Linolenic) | 11.18 | 10.41 | 10.40 | 10.38 | 10.07 |
Others | 6.28 | 9.52 | 9.74 | 11.38 | 11.67 |
Item | Palm Kernel Oil Levels (%DM Dietary Total) | SEM 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1.3 | 2.6 | 3.9 | 5.2 | L | Q | Effect | ||
Nutrient Intake (g/day) | |||||||||
Dry matter | 1113.0 a | 1092.3 a | 861.6 b | 816.9 b | 673.1 c | 37.6 | <0.01 | 0.68 | <0.01 |
Ash | 68.0 a | 65.9 a | 50.9 b | 48.2 b | 39.7 c | 2.31 | <0.01 | 0.94 | <0.01 |
Crude protein | 166.2 a | 161.1 a | 129.6 b | 115.2 bc | 97.9 c | 5.43 | <0.01 | 0.73 | <0.01 |
Ether extract | 17.1 d | 32.1 c | 38.7 b | 49.4 a | 54.4 a | 1.14 | <0.01 | <0.01 | <0.01 |
NDFap 3 | 345.4 a | 344.1 a | 258.1 b | 261.0 b | 187.5 c | 16.8 | <0.01 | 0.39 | <0.01 |
NFC 4 | 516.3 a | 489.2 a | 384.3 b | 343.1 bc | 293.3 c | 14.5 | <0.01 | 0.74 | <0.01 |
TDN 5 | 755.5 a | 808.9 a | 654.7 b | 623.7 bc | 616.7 c | 35.6 | 0.02 | 0.99 | 0.02 |
Nutrient Intake as Body Weight (g/kg BW) | |||||||||
Dry matter | 34.0 a | 31.9 a | 27.2 b | 25.8 b | 20.5 c | 0.93 | <0.01 | 0.32 | <0.01 |
Crude protein | 5.09 a | 4.72 a | 4.10 b | 3.65 b | 2.93 c | 0.14 | <0.01 | 0.37 | <0.01 |
Ether extract | 0.52 e | 0.94 d | 1.21 c | 1.55 b | 1.76 a | 0.04 | <0.01 | 0.03 | <0.01 |
NDFap | 10.5 a | 10.0 ab | 8.09 bc | 8.23 c | 5.75 d | 0.46 | <0.01 | 0.18 | <0.01 |
NFC | 15.8 a | 14.3 b | 12.2 c | 10.9 c | 8.89 d | 0.37 | <0.01 | 0.95 | <0.01 |
TDN | 20.9 a | 21.7 a | 17.3 b | 16.8 b | 14.5 c | 1.28 | <0.01 | 0.65 | <0.01 |
Nutrient Intake by Body Weight (g/kg BW0.75) | |||||||||
Dry matter | 81.3 a | 77.2 a | 64.4 b | 61.2 b | 48.9 c | 2.29 | <0.01 | 0.40 | <0.01 |
Crude Protein | 12.1 a | 11.4 a | 9.71 b | 8.64 b | 7.03 c | 0.34 | <0.01 | 0.45 | <0.01 |
Ether Extract | 1.24 e | 2.26 d | 2.88 c | 3.68 b | 4.16 a | 0.08 | <0.01 | <0.01 | <0.01 |
NDFap 3 | 25.1 a | 24.3 a | 19.3 b | 19.6 b | 13.5 c | 1.12 | <0.01 | 0.22 | <0.01 |
NFC 4 | 37.8 a | 34.6 a | 28.8 b | 25.8 b | 21.3 c | 0.89 | <0.01 | 0.96 | <0.01 |
TDN 5 | 51.3 a | 53.6 a | 42.9 b | 41.5 b | 36.0 c | 3.18 | <0.01 | 0.60 | <0.01 |
Effective Nutrient Intake (g/100g) | |||||||||
Ash | 6.11 | 6.03 | 5.92 | 5.89 | 5.88 | 0.08 | 0.02 | 0.52 | 0.17 |
Crude protein | 14.9 | 14.8 | 15.1 | 14.1 | 14.4 | 0.38 | 0.20 | 0.93 | 0.36 |
Ether extract | 1.53 e | 2.94 d | 4.48 c | 6.02 b | 8.53 a | 0.09 | <0.01 | <0.01 | <0.01 |
NDFap 3 | 30.8 | 31.4 | 29.8 | 31.9 | 27.2 | 1.22 | 0.09 | 0.16 | 0.06 |
NFC 4 | 46.6 a | 44.8 ab | 44.6 ab | 42.0 b | 44.0 ab | 0.78 | <0.01 | 0.14 | <0.01 |
TDN 5 | 67.3 c | 71.7 bc | 76.1 ab | 79.1 ab | 78.7 a | 1.68 | <0.01 | 0.10 | <0.01 |
Nutrient Digestibility Coefficient (%) | |||||||||
Dry matter | 68.9 | 72.3 | 74.5 | 75.5 | 74.1 | 1.78 | 0.04 | 0.13 | 0.28 |
Crude Protein | 69.8 b | 74.3 ab | 77.6 a | 79.6 a | 78.3 a | 1.60 | <0.01 | 0.05 | 0.30 |
Ether Extract | 63.4 d | 81.2 c | 88.4 b | 94.1 a | 94.2 a | 1.12 | <0.01 | <0.01 | <0.01 |
NDFap 3 | 40.6 | 47.2 | 47.1 | 51.7 | 42.2 | 4.03 | 0.21 | 0.26 | 0.45 |
NFC 4 | 88.8 | 89.8 | 90.4 | 89.7 | 88.0 | 0.73 | 0.65 | 0.07 | 0.33 |
TDN 5 | 67.3 c | 71.7 bc | 76.1 ab | 79.1 ab | 76.7 a | 1.67 | <0.01 | 0.10 | <0.01 |
Item | Palm Kernel Oil Levels (%DM Dietary Total) | SEM 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1.3 | 2.6 | 3.9 | 5.2 | L | Q | Effect | ||
Initial body weight (kg) | 25.10 | 26.85 | 26.40 | 26.48 | 23.83 | - | - | - | |
Final body weight (kg) | 40.12 | 42.68 | 37.94 | 37.44 | 39.02 | 1.22 | 0.06 | 0.63 | 0.13 |
Total weight gain (kg) | 14.40 ab | 16.92 a | 12.20 ab | 11.70 b | 13.32 ab | 1.19 | 0.06 | 0.59 | 0.03 |
Average daily gain (kg) | 0.18 ab | 0.21 a | 0.15 ab | 0.14 b | 0.16 ab | 0.01 | 0.06 | 0.59 | 0.03 |
Feed conversion (kg/kg) | 6.91 a | 5.39 ab | 6.40 a | 5.73 ab | 4.05 b | 0.51 | <0.01 | 0.45 | 0.02 |
Item | Palm Kernel Oil Levels (%DM Dietary Total) | SEM 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1.3 | 2.6 | 3.9 | 5.2 | L | Q | Effect | ||
Nitrogen Balance (g/day) | |||||||||
N intake | 26.8 a | 27.0 a | 21.4 ab | 18.3 b | 18.2 b | 1.10 | <0.01 | 0.73 | <0.01 |
N fecal | 8.01 a | 6.93 a | 4.83 b | 3.73 b | 3.67 b | 0.45 | <0.01 | 0.09 | <0.01 |
N urinary | 8.55 | 9.99 | 10.9 | 8.46 | 7.64 | 0.99 | 0.30 | 0.04 | 0.18 |
N retained | 10.3 | 10.1 | 5.72 | 6.07 | 6.77 | 1.86 | 0.08 | 0.37 | 0.24 |
Microbial Protein (g/day) | |||||||||
Production | 38.0 a | 33.5 ab | 28.1 abc | 23.9 bc | 19.8 c | 2.83 | <0.01 | 0.56 | <0.01 |
Efficiency | 45.5 | 41.5 | 43.3 | 38.6 | 37.2 | 3.97 | 0.14 | 0.93 | 0.23 |
Blood Parameters | |||||||||
Proteins (g/dL) | 7.60 | 7.59 | 7.91 | 7.48 | 7.61 | 0.16 | 0.86 | 0.96 | 0.92 |
Albumins (mg/dL) | 3.43 | 3.91 | 3.45 | 3.37 | 3.53 | 0.18 | 0.57 | 0.71 | 0.28 |
Globulins (mg/dL) | 4.17 | 3.68 | 4.24 | 4.11 | 4.08 | 0.24 | 0.74 | 0.79 | 0.51 |
A:G Ratio 3 | 0.83 | 1.14 | 0.91 | 0.84 | 0.88 | 0.12 | 0.59 | 0.40 | 0.35 |
Cholesterol (mg/dL) | 53.7 b | 72.7 ab | 91.5 a | 80.7 ab | 91.5 a | 7.18 | <0.01 | 0.10 | <0.01 |
Triglycerides (mg/dL) | 15.2 | 13.2 | 15.7 | 17.4 | 17.9 | 2.02 | 0.14 | 0.58 | 0.49 |
GGT 4 (UI/L) | 49.2 | 52.2 | 44.7 | 45.5 | 44.4 | 2.49 | 0.04 | 0.99 | 0.15 |
AST 5 (UI/L) | 79.0 | 66.2 | 84.2 | 85.3 | 76.2 | 7.52 | 0.31 | 0.47 | 0.09 |
ALT 6 (UI/L) | 12.4 | 11.5 | 15.3 | 14.8 | 14.4 | 2.07 | 0.23 | 0.23 | 0.31 |
Ruminal Parameters | |||||||||
pH | 6.10 | 5.99 | 5.93 | 6.08 | 6.16 | 0.11 | 0.57 | 0.16 | 0.46 |
N-NH3 | 18.7 | 17.5 | 19.0 | 17.1 | 19.2 | 1.89 | 0.85 | 0.75 | 0.93 |
Protozoa (×106 mL−1) | 8.87 b | 14.3 a | 4.52 c | 3.00 d | 0.72 e | 1.47 | <0.01 | 0.38 | <0.01 |
Item | Palm Kernel Oil Levels (%DM Dietary Total) | SEM 1 | p-Value 2 | ||||||
0 | 1.3 | 2.6 | 3.9 | 5.2 | L | Q | Effect | ||
Intake (g/d) | |||||||||
Dry matter | 1117.1 a | 1127.9 a | 863.5 ab | 789.5 b | 692.4 b | 65.5 | <0.01 | 0.92 | <0.01 |
NDF | 324.9 a | 371.1 a | 259.5 ab | 254.4 ab | 209.5 b | 23.5 | <0.01 | 0.40 | <0.01 |
Ingestive Behavior (min/day) | |||||||||
Feed | 208 | 183 | 219 | 270 | 230 | 21.7 | 0.08 | 0.86 | 0.19 |
Rumination | 475 | 461 | 533 | 483 | 446 | 31.8 | 0.72 | 0.17 | 0.40 |
Idleness | 757 | 796 | 688 | 687 | 798 | 42.2 | 0.84 | 0.13 | 0.22 |
Chewing (Frequency or Number of Events) | |||||||||
No./bolus | 55.2 | 50.0 | 57.7 | 65.3 | 66.5 | 2.81 | 0.07 | 0.59 | 0.31 |
Seg/bolus | 41.4 | 38.9 | 46.1 | 47.9 | 43.8 | 1.69 | 0.28 | 0.56 | 0.43 |
Feed Efficiency (g/h) | |||||||||
Dry matter | 337.8 ab | 338.3 a | 237.1 ab | 177.9 b | 247.8 ab | 37.0 | <0.01 | 0.20 | 0.03 |
NDF | 112.0 ab | 137.9 a | 71.1 ab | 57.2 b | 73.4 ab | 14.3 | 0.02 | 0.60 | 0.02 |
Rumination Efficiency (g/h) | |||||||||
Dry matter | 141.7 a | 148.2 a | 98.3 b | 99.8 b | 92.6 b | 8.57 | <0.01 | 0.46 | <0.01 |
NDF | 45.4 a | 48.8 a | 29.2 b | 32.1 b | 27.7 b | 2.83 | <0.01 | 0.54 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, D.P.V.; Pimentel, P.R.S.; da Silva Júnior, J.M.; Virgínio Júnior, G.F.; de Andrade, E.A.; Barbosa, A.M.; Pereira, E.S.; Ribeiro, C.V.D.M.; Bezerra, L.R.; Oliveira, R.L. Effects of Increasing Levels of Palm Kernel Oil in the Feed of Finishing Lambs. Animals 2022, 12, 427. https://doi.org/10.3390/ani12040427
Castro DPV, Pimentel PRS, da Silva Júnior JM, Virgínio Júnior GF, de Andrade EA, Barbosa AM, Pereira ES, Ribeiro CVDM, Bezerra LR, Oliveira RL. Effects of Increasing Levels of Palm Kernel Oil in the Feed of Finishing Lambs. Animals. 2022; 12(4):427. https://doi.org/10.3390/ani12040427
Chicago/Turabian StyleCastro, Daniela Pionorio Vilaronga, Paulo Roberto Silveira Pimentel, Jarbas Miguel da Silva Júnior, Gercino Ferreira Virgínio Júnior, Ederson Américo de Andrade, Analívia Martins Barbosa, Elzânia Sales Pereira, Claudio Vaz Di Mambro Ribeiro, Leilson Rocha Bezerra, and Ronaldo Lopes Oliveira. 2022. "Effects of Increasing Levels of Palm Kernel Oil in the Feed of Finishing Lambs" Animals 12, no. 4: 427. https://doi.org/10.3390/ani12040427
APA StyleCastro, D. P. V., Pimentel, P. R. S., da Silva Júnior, J. M., Virgínio Júnior, G. F., de Andrade, E. A., Barbosa, A. M., Pereira, E. S., Ribeiro, C. V. D. M., Bezerra, L. R., & Oliveira, R. L. (2022). Effects of Increasing Levels of Palm Kernel Oil in the Feed of Finishing Lambs. Animals, 12(4), 427. https://doi.org/10.3390/ani12040427