Effects of Dietary Rapeseed and Camelina Seed Cakes on Physical–Technological Properties of Goose Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material, Design and Diets
2.2. Physical Analysis
2.2.1. pH Measurements
2.2.2. Colour Measurements
2.2.3. Moisture Losses
2.2.4. Instrumental Evaluation of Texture (It Is Really Instrumental, Not Sensory Evaluation)
2.3. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Geese Used for Meat Quality Evaluation
3.2. Physical Characteristics of Muscles
3.3. Texture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Prache, S.; Adamiec, C.; Astruc, T.; Baéza-Campone, E.; Bouillot, P.E.; Clinquart, A.; Feidt, C.; Fourat, E.; Gautron, J.; Girard, A.; et al. Review: Quality of animal-source foods. Animal 2022, 16, 100376. [Google Scholar] [CrossRef] [PubMed]
- Pingel, H. Waterfowl production for food security. Lohmann Inf. 2011, 46, 32–42. [Google Scholar]
- Nowicka, K.; Przybylski, W. The genetic background of slaughter value and quality of goose meat—A review. Anim. Sci. Pap. Rep. 2018, 36, 245–262. [Google Scholar]
- Utnik-Banaś, K.; Żmija, J. The geese market in Poland. Rocz. Nauk. 2018, XX, 157–163. [Google Scholar] [CrossRef]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef] [PubMed]
- Kuźniacka, J.; Hejdysz, M.; Banaszak, M.; Biesek, J.; Kaczmarek, S.; Grabowicz, M.; Andrzej Rutkowski, A.; Adamski, M. Quality and physicochemical traits of carcasses and meat from geese fed with lupin-rich feed. Animals 2020, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Maiorano, G.; Grabowicz, M.; Adamski, M. The effect of various protein sources in goose diets on meat quality, fatty acid composition, and cholesterol and collagen content in breast muscles. Poult. Sci. 2020, 99, 6278–6286. [Google Scholar] [CrossRef]
- Sari, M.; Onk, K.; Sisman, T.; Tilki, M.; Yakan, A. Effects of different fattening systems on technological properties and fatty acid composition of goose meat. Eur. Poult. Sci. 2015, 79, 1–12. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Zheng, S.; Dai, W.; Shen, X.; Zhang, Y.; Zhao, W.; Chang, G.; Xu, Q.; Chen, G. Effects of forage feeding versus grain feeding on the growth performance and meat quality of Yangzhou geese. Br. Poult. Sci. 2017, 58, 397–401. [Google Scholar] [CrossRef]
- Ran, T.; Fang, Y.; Xiang, H.; Zhao, C.; Zhou, D.; Hou, F.; Niu, Y.D.; Zhong, R. Effects of supplemental feed with different levels of dietary metabolizable energy on growth performance and carcass characteristics of grazing naturalized Swan geese (Anser cygnoides). Animals 2021, 11, 711. [Google Scholar] [CrossRef]
- Liu, Z.L.; Xue, J.J.; Huang, X.F.; Luo, Y.; Liang, M.R.; Li, C.J.; Wang, Q.G.; Wang, C. Effect of feeding frequency on the growth performance, carcass traits, and apparent nutrient digestibility in geese. Poult. Sci. 2020, 99, 4818–4823. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, J.; Auvergne, A.; Dubois, J.P.; Lavigne, F.; Bijja, M.; Bannelier, C.; Fortun-Lamothe, L. Effects of presentation and type of cereals (corn or sorghum) on performance of geese. Poult. Sci. 2012, 91, 2063–2071. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, J.; Brachet, M.; Dubois, J.P.; Lavigne, F.; Molette, C.; Bannelier, C.; Fortun-Lamothe, L. Effect of incorporating sugar beet pulp in the finisher diet on performance of geese. Animal 2015, 9, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Gumulka, M.; Wojtysiak, D.; Kapkowska, E.; Połtowicz, K.; Rabsztyn, A. Microstructure and technological meat quality of geese from conservation flock and commercial hybrids. Ann. Anim. Sci. 2009, 9, 205–213. [Google Scholar]
- Wang, Z.Y.; Yang, H.M.; Lu, J.; Li, W.Z.; Zou, J.M. Influence of whole hulled rice and rice husk feeding on the performance, carcass yield and digestive tract development of geese. Anim. Feed Sci. Technol. 2014, 194, 99–105. [Google Scholar] [CrossRef]
- Lewko, L.; Gornowicz, E.; Pietrzak, M.; Korol, W. The effect of origin, sex and feeding on sensory evaluation and some quality characteristics of goose meat from Polish native flocks. Ann. Anim. Sci. 2017, 17, 1185–1196. [Google Scholar] [CrossRef] [Green Version]
- Lisiak, D.; Janiszewski, P.; Grześkowiak, E.; Borzuta, K.; Lisiak, B.; Samardakiewicz, Ł.; Schwarz, T.; Powałowski, K.; Andres, K. Research on the effects of gender and feeding geese oats and hybrid rye on their slaughter traits and meat quality. Animals 2021, 11, 672. [Google Scholar] [CrossRef]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Adamski, M. The quality of carcass and meat from geese fed diets with or without soybean meal. Animals 2020, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Yang, H.M.; Wan, X.L.; Chen, Y.J.; Yang, Z.; Liu, W.F.; Liang, Y.Q.; Wang, Z.Y. Effects of cottonseed meal on slaughter performance, meat quality, and meat chemical composition in Jiangnan White goslings. Poult. Sci. 2020, 99, 207–213. [Google Scholar] [CrossRef]
- Chen, X.S.; Yang, H.M.; Wang, Z.Y. The effect of different dietary levels of defatted rice bran on growth performance, slaughter performance, serum biochemical parameters, and relative weights of the viscera in geese. Animals 2019, 9, 1040. [Google Scholar] [CrossRef] [Green Version]
- Swiatkiewicz, S.; Arczewska-Włosek, A.; Jozefiak, D. The use of cottonseed meal as a protein source for poultry: An updated review. World Poult. Sci. J. 2016, 72, 473–484. [Google Scholar] [CrossRef]
- Fu, Z.; Su, G.; Yang, H.; Sun, Q.; Zhong, T.; Wang, Z. Effects of dietary rapeseed meal on growth performance, carcass traits, serum parameters, and intestinal development of geese. Animals 2021, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Lushnikov, N.A.; Alekseeva, E.I.; Tovkalo, M.V.; Pozdnyakova, N.A. Use effect of unconventional feed and mineral additives on animal and poultry productivity. IOP Conf. Ser. Earth Environ. Sci. 2021, 720, 012020. [Google Scholar] [CrossRef]
- Small, E. Blossoming Treasures of Biodiversity 41. Camelina—Will this emerging biodiesel benefit biodiversity? Biodiversity 2013, 14, 112–122. [Google Scholar] [CrossRef]
- Razmaitė, V.; Šiukščius, A.; Šveistienė, R.; Jatkauskienė, V. Present Conservation Status and Carcass and Meat Characteristics of Lithuanian Vištinės Goose Breed. Animals 2022, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.B. Drip loss sampling in porcine M. Longissimus dorsi. Meat Sci. 2003, 63, 469–477. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Louwrens, C.; Hoffman, L.C.; Muller, N. The effect of season, sex, and portion on the carcass characteristics, pH, color, and proximate composition of Egyptian Goose (Alopochen aegyptiacus) meat. Poult. Sci. 2013, 92, 3283–3291. [Google Scholar] [CrossRef]
- Murawska, D. The effect of age on the growth rate of tissues and organs and the percentage content of edible and inedible components in Koluda White geese. Poult. Sci. 2013, 92, 1400–1407. [Google Scholar] [CrossRef]
- Uhlířová, L.; Tůmová, E.; Chodová, D.; Vlčková, J.; Ketta, M.; Volek, Z.; Skřivanová, V. The effect of age, genotype and sex on carcass traits, meat quality and sensory attributes of geese. Asian-Australas. J. Anim. Sci. 2018, 31, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Holmes, Z.A.; Hollister, A.; Nakaue, H.S. Studies with Confinement-Reared Goslings. 2. The effect of five diets on cooking losses and eating quality of geese. Poult. Sci. 1984, 63, 538–541. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Hoffman, L.C.; Muller, M. Sensory profiling of Egyptian goose (Alopochen aegyptiacus) meat. Food Res. Int. 2014, 64, 25–33. [Google Scholar] [CrossRef]
- Solé, M.; Peña, F.; Domenech, V.; Clemente, I.; Polvillo, O.; Valera, M.; Verona, J.C.; Rubí, M.; Molina, A. Carcass and meat quality traits in an Embden×Toulouse goose cross raised in organic Dehesa. Asian-Australas. J. Anim. Sci. 2016, 29, 838–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Z.; Guo, L.; Liu, Y.; Zhao, W.; Zhang, J. Effects of dietary supplementation of chitosan on carcass composition and meat quality in growing Huoyan geese. Poult. Sci. 2020, 99, 3079–3085. [Google Scholar] [CrossRef] [PubMed]
- Geldenhuys, G.; Muller, N.; Hoffman, L.C. The influence of post-mortem conditioning on the tenderness of Egyptian goose (Alopochen aegyptiacus) breast meat (M. pectoralis major). J. Sci. Food Agric. 2016, 96, 1828–1835. [Google Scholar] [CrossRef]
- Źmijewski, T.; Pomianowski, J.F.; Tkacz, K. Effect of ageing on technological properties of goose meat. Proc. Nutr. Soc. 2020, 79, E317. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Wereńska, M.; Goluch, Z.; Haraf, G.; Okruszek, A.; Teleszko, M.; Król, B. The selected goose meat quality traits in relation to various types of heat treatment. Poult. Sci. 2020, 99, 7214–7224. [Google Scholar] [CrossRef]
Ingredients, % | Group | |
---|---|---|
1 | 2 | |
Wheat | 31.12 | 32.42 |
Barley | 14 | 14 |
Maize | 10 | 10 |
Peas | 15 | 15 |
Sunflower meal | 11.75 | 10.39 |
Sunflower oil | 1 | 1 |
Rape cake | 10 | - |
Camelina cake | - | 10 |
Brewers’ yeast | 2.4 | 2.4 |
Oyster shell | 0.5 | 0.5 |
Fodder chalk | 1.75 | 1.79 |
Premix “Calvet” | 1 | 1 |
Fodder salt | 0.1 | 0.1 |
Monocalcium phosphate | 1.38 | 1.4 |
Calculated nutritional value of concentrates | ||
Metabolizable energy (ME), MJ/kg | 10.79 | 10.90 |
Crude protein, g/kg | 180.06 | 180.05 |
Lysine, g/kg | 8.44 | 8.28 |
Methionine + cistine, g/kg | 6.05 | 5.87 |
Fibre, g/kg | 58.62 | 60.69 |
Ca, g/kg | 14.72 | 14.74 |
P, g/kg | 8.17 | 8.13 |
Fat, g/kg | 37.67 | 38.32 |
Variables | Group | SED | Sex | SED | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
R n = 15 | C n = 15 | F n = 14 | M n = 16 | G | S | GR | D | |||
Body weight, kg | 4.58 | 4.45 | 0.101 | 4.46 | 4.56 | 0.102 | 0.228 | 0.339 | 0.000 | 0.089 |
Age, days | 88.6 | 89.4 | 0.834 | 89.3 | 88.7 | 0.842 | 0.385 | 0.464 | 0.001 | - |
Daily gain, g | 37.0 | 41.5 | 2.680 | 38.4 | 40.1 | 0.568 | 0.108 | 0.568 | - | 0.001 |
Carcass weight, kg | 2.83 | 2.68 | 0.073 | 2.71 | 2.80 | 0.073 | 0.055 | 0.229 | 0.000 | 0.253 |
Colour Parameters | Group | SED | Sex | SED | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R n = 15 | C n = 15 | F n = 14 | M n = 16 | G | S | GR | D | ||||
Breast | |||||||||||
L* | 42.42 | 41.69 | 2.563 | 43.84 | 40.27 | 2.585 | 0.780 | 0.180 | 0.204 | 0.513 | |
a* | 18.51 | 18.23 | 0.391 | 18.50 | 18.24 | 0.394 | 0.482 | 0.507 | 0.582 | 0.398 | |
b* | 6.14 | 6.34 | 0.423 | 6.81 | 5.67 | 0.426 | 0.648 | 0.014 | 0.625 | 0.173 | |
C | 19.53 | 19.32 | 0.445 | 19.74 | 19.11 | 0.449 | 0.647 | 0.174 | 0.494 | 0.289 | |
h | 18.20 | 19.11 | 1.081 | 20.12 | 17.20 | 1.090 | 0.406 | 0.013 | 0.865 | 0.188 | |
Thigh | |||||||||||
L* | 41.64 | 42.26 | 0.794 | 41.42 | 42.48 | 0.801 | 0.447 | 0.195 | 0.082 | 0.291 | |
a* | 18.57 | 18.40 | 0.303 | 18.79 | 18.18 | 0.305 | 0.571 | 0.058 | 0.422 | 0.538 | |
b* | 5.93 | 6.14 | 0.362 | 6.18 | 5.89 | 0.365 | 0.571 | 0.425 | 0.922 | 0.309 | |
C | 19.51 | 19.41 | 0.364 | 19.79 | 19.12 | 0.368 | 0.800 | 0.081 | 0.480 | 0.434 | |
h | 17.64 | 18.40 | 0.883 | 18.16 | 17.87 | 0.890 | 0.398 | 0.743 | 0.807 | 0.316 |
Variables | Group | SED | Sex | SED | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R n = 15 | C n = 15 | F n = 14 | M n = 16 | G | S | GR | D | ||||
Breast | |||||||||||
pH | 5.88 | 5.86 | 0.033 | 5.85 | 5.89 | 0.034 | 0.628 | 0.295 | 0.596 | 0.749 | |
Drip loss, % | 2.18 | 1.99 | 0.436 | 2.30 | 1.87 | 0.440 | 0.659 | 0.337 | 0.510 | 0.553 | |
Thawing loss, % | 3.98 | 4.13 | 0.663 | 4.13 | 3.99 | 0.668 | 0.824 | 0.836 | 0.077 | 0.567 | |
Cooking loss, % | 41.47 | 38.43 | 0.830 | 41.00 | 38.90 | 0.837 | 0.001 | 0.019 | 0.711 | 0.491 | |
Thigh | |||||||||||
pH | 6.18 | 6.12 | 0.069 | 6.20 | 6.09 | 0.070 | 0.416 | 0.121 | 0.036 | 0.008 | |
Drip loss, % | 0.81 | 1.52 | 0.292 | 1.29 | 1.05 | 0.294 | 0.022 | 0.434 | 0.135 | 0.199 | |
Thawing loss, % | 2.71 | 4.62 | 0.829 | 3.29 | 4.04 | 0.836 | 0.031 | 0.378 | 0.407 | 0.895 | |
Cooking loss, % | 58.53 | 61.57 | 0.830 | 59.00 | 61.10 | 0.837 | 0.001 | 0.019 | 0.711 | 0.491 |
Variables | Group | SED | Sex | SED | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
R n = 15 | C n = 15 | F n = 14 | M n = 16 | G | S | GR | D | |||
Breast | ||||||||||
Shear of force, N | 1.01 | 1.09 | 0.050 | 1.05 | 1.05 | 0.051 | 0.127 | 0.870 | 0.291 | 0.879 |
Toughness, N | 971.42 | 983.32 | 7.057 | 975.98 | 978.77 | 7.117 | 0.105 | 0.699 | 0.436 | 0.168 |
Thigh | ||||||||||
Shear of force, N | 1.40 | 1.57 | 0.136 | 1.45 | 1.52 | 0.137 | 0.213 | 0.591 | 0.651 | 0.256 |
Toughness, N | 969.87 | 972.75 | 15.431 | 983.91 | 958.71 | 15.561 | 0.854 | 0.118 | 0.896 | 0.967 |
TPA Parameters | Group | SED | Sex | SED | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
R n = 15 | C n = 15 | F n = 14 | M n = 16 | G | S | GR | D | |||
Breast | ||||||||||
Cohesiveness | 2.02 | 2.34 | 0.086 | 2.16 | 2.21 | 0.086 | 0.001 | 0.568 | 0.060 | 0.506 |
Gumminess, N | 8.27 | 11.11 | 1.075 | 9.95 | 9.43 | 1.084 | 0.014 | 0.640 | 0.220 | 0.496 |
Hardness N | 16.67 | 26.04 | 2.260 | 21.85 | 20.87 | 2.642 | 0.002 | 0.715 | 0.085 | 0.381 |
Springiness | 0.85 | 0.84 | 0.007 | 0.84 | 0.84 | 0.007 | 0.292 | 0.744 | 0.316 | 0.815 |
Chewiness, N | 7.02 | 9.36 | 0.938 | 8.41 | 7.97 | 0.946 | 0.020 | 0.646 | 0.277 | 0.506 |
Thigh | ||||||||||
Cohesiveness | 2.38 | 2.52 | 0.131 | 2.52 | 2.38 | 0.135 | 0.273 | 0.306 | 0.726 | 0.489 |
Gumminess, N | 7.83 | 6.79 | 1.561 | 5.90 | 8.72 | 1.618 | 0.510 | 0.089 | 0.901 | 0.287 |
Hardness N | 17.99 | 16.62 | 3.319 | 14.90 | 19.72 | 3.439 | 0.682 | 0.169 | 0.977 | 0.517 |
Springiness | 0.82 | 0.83 | 0.007 | 0.82 | 0.83 | 0.007 | 0.692 | 0.067 | 0.676 | 0.173 |
Chewiness, N | 6.44 | 5.63 | 1.297 | 4.81 | 7.26 | 1.344 | 0.535 | 0.076 | 0.911 | 0.264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razmaitė, V.; Šiukščius, A.; Šarauskas, G. Effects of Dietary Rapeseed and Camelina Seed Cakes on Physical–Technological Properties of Goose Meat. Animals 2022, 12, 632. https://doi.org/10.3390/ani12050632
Razmaitė V, Šiukščius A, Šarauskas G. Effects of Dietary Rapeseed and Camelina Seed Cakes on Physical–Technological Properties of Goose Meat. Animals. 2022; 12(5):632. https://doi.org/10.3390/ani12050632
Chicago/Turabian StyleRazmaitė, Violeta, Artūras Šiukščius, and Giedrius Šarauskas. 2022. "Effects of Dietary Rapeseed and Camelina Seed Cakes on Physical–Technological Properties of Goose Meat" Animals 12, no. 5: 632. https://doi.org/10.3390/ani12050632
APA StyleRazmaitė, V., Šiukščius, A., & Šarauskas, G. (2022). Effects of Dietary Rapeseed and Camelina Seed Cakes on Physical–Technological Properties of Goose Meat. Animals, 12(5), 632. https://doi.org/10.3390/ani12050632