Pig Manure Management: A Methodology for Environmentally Friendly Decision-Making
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Large-Scale Pig Farm as an Argoecosystem
- A closed-type large-scale pig farm is a self-sufficient “mono-system” where production and processing take place right on the farm without involving external players. Its characteristic features are sufficient capacity of pig manure processing sites and storages; enough agricultural land within a cost-effective transportation distance to apply all organic fertilisers produced; the owned feed mill and meat-processing facility; and cultivation of crops for the own use for feed and sale, and direct selling of pork and by-products.
- A combined-type large-scale pig farm is a “mono-system” with minimal involvement of external players. In contrast to the closed-type farm, it does not have a feed mill and purchases the feeds. Available agricultural land is not enough to apply all organic fertilisers produced. Therefore, such a farm rents some land for fertiliser application that sometimes leads to uneconomic transportation distances.
- An open-type pig farm is a “mono-system” involving many external players. It differs from the combined-type farm in that the pig manure processing and organic fertiliser field application are passed to third-party organisations.
2.2. Methods, Procedures and Models
2.2.1. Methods for Calculating the Quantity and Quality of the Initial Material for the End Products Production
2.2.2. Methods for Calculating the Quantity and Quality of the End-Products
2.2.3. The Designing Method of Pig Manure Processing Technologies to Obtain the Target End-Products with the Required Quality
The Multi-Stage Processing of the Liquid Fraction of Pig Manure
- —mass of cleaned water, t
- —mass of cleaned water and activated sludge after aeration, t
- —secondary sedimentation time, h
- —mass of cleaned water and activated sludge after aeration, t
- —mass of the liquid fraction of pig manure, t d−1
- —mass of sludge depending upon the primary sedimentation time, kg
- —loss of mass of clear water (supernatant) and activated sludge during aeration, t
- —mass of activated sludge initially added to the aeration tank, kg
- —aeration time, d
- —mass of the liquid fraction of pig manure, t d−1
- —aeration time, d
- —mass of total nitrogen in the cleaned water and activated sludge after aeration, t
- —total nitrogen content in the liquid fraction of pig manure, mg kg−1
- —mass of total nitrogen in the sludge depending on the primary sedimentation time, t
- —mass of total nitrogen initially added with the activated sludge to the aeration tank, t
- —mass of total phosphorus in the cleaned water and activated sludge after aeration, t
- —aeration time, d
- —mass of the liquid fraction of pig manure, t d−1
- —total phosphorus content in the liquid fraction of pig manure, mg kg−1
- —mass of total phosphorus initially added with the activated sludge to the aeration tank, t
- —mass of total phosphorus in the sludge depending on the primary sedimentation time, t.
- —mass distribution on the -th technological operation, t
- —nitrogen distribution on the -th technological operation, t
- —phosphorus distribution on the -th technological operation, t
- —time of the -th operation
- = 1—technological operation of primary sedimentation
- = 2—technological operation of aeration with secondary sedimentation
- = 3—technological operation of long-term storing (maturing)
- , days
- , hours
- , months
- —mass of the liquid fraction of pig manure, t day−1
- —total nitrogen content in the liquid fraction of pig manure, mg kg−1
- —total phosphorus content in the liquid fraction of pig manure, mg kg−1.
The Fermentation of the Solid Fraction of Pig Manure
- —the mass, kg;—fermentation time, d.
- —total phosphorus content in the resulting organic fertiliser, mg·kg−1.
- —total nitrogen content in the resulting organic fertiliser, mg·kg−1.
2.2.4. Calculation Methods for the Distribution of Produced Solid and Liquid Organic Fertilisers by Agricultural Land
2.3. Methodological Approach
2.4. Methodology Testing
3. Results
3.1. Selection of Technological Solutions for a Pilot Pig Farm
- Technology 1—long-term storing (maturing) (LTS (M));
- Technology 2—separation into fractions (SF) + long-term storing (maturing) (LTS (M)) + passive composting (PC);
- Technology 3—separation into fractions (SF) + sedimentation in tanks with stop-logs and treatment in biological ponds (S + BP) + passive composting (PC);
- Technology 4—separation into fractions (SF) + aeration and flocculation (A + F) + passive composting (PC);
- Technology 5—separation into fractions (SF) + aeration and coagulation (A + C) + passive composting (PC);
- Technology 6—separation into fractions (SF) + aeration and sedimentation in batch-type settling tanks (A + S) + passive composting (PC).
3.2. Testing of the Developed Methodology on Pig Farms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intensive Rearing of Pigs. Information and Technical BAT Reference Book. 2017. (In Russian). Available online: http://www.burondt.ru/NDT/NDTDocsDetail.php?UrlId=1138&etkstructure_id=1872 (accessed on 9 September 2021).
- Briukhanov, A.Y.; Vasilev, E.V.; Kozlova, N.P.; Shalavina, E.V.; Subbotin, I.A.; Lukin, S.M. Environmental assessment of livestock farms in the context of BAT system introduction in Russia. J. Environ. Manag. 2019, 246, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Briukhanov, A.Y.; Vasilev, E.V.; Shalavina, E.V.; Kucheruk, O.N. Engineering solutions of environmental problems in organic waste handling. IOP Conf. Ser. Earth Environ. 2017, 87, 042001. [Google Scholar] [CrossRef] [Green Version]
- Briukhanov, A.; Dorokhov, A.; Shalavina, E.; Trifanov, A.; Vorobyeva, E.; Vasilev, E. Digital methods for agro–monitoring and nutrient load management in the Russian part of the Baltic Sea catchment area. IOP Conf. Ser. Earth Environ. 2020, 578, 012011. [Google Scholar] [CrossRef]
- Luostarinen, S.; Grönroos, J.; Hellstedt, M.; Nousiainen, J.; Munther, J. Modeling manure quantity and quality in Finland. Front. Sustain. Food Syst. 2018, 2, 60. [Google Scholar] [CrossRef]
- Luostarinen, S.; Kaasinen, S. Manure Nutrient Content in the Baltic Sea Countries; Natural Resources Institute Finland (Luke): Helsinki, Finland, 2016; 45p, Available online: https://jukuri.luke.fi/handle/10024/537030 (accessed on 17 September 2021).
- Keener, H.M.; Zhao, L.A. Modified mass balance method for predicting NH3 emissions from manure N for livestock and storage facilities. Biosyst. Eng. 2008, 99, 81–87. [Google Scholar] [CrossRef]
- Kaasik, A.; Lund, P.; Poulsen, H.D.; Kuka, K.; Lehn, F. Overview of Calculation Methods for the Quantity and Composition of Livestock Manure in the Baltic Sea Region. 2019. Available online: https://www.luke.fi/manurestandards/wp-content/uploads/sites/25/2019/06/WP3-report_ManureStandards_Final2.pdf (accessed on 17 September 2021).
- Nguyen, T.; Hermansen, J.; Mogensen, L. Fossil energy and GHG saving potentials of pig farming in the EU. Energy Policy 2010, 38, 2561–2571. [Google Scholar] [CrossRef]
- Kwak, Y.; Shin, H.; Kang, M.; Mun, S.-H.; Jo, S.-K.; Kim, S.-H.; Huh, J.-H. Energy modeling of pig houses: A South Korean feasibility study. Energy Strateg. Rev. 2021, 36, 100672. [Google Scholar] [CrossRef]
- Giersberg, M.F.; Meijboom, F.L.B. Smart technologies lead to smart answers? On the claim of smart sensing technologies to tackle animal related societal concerns in Europe over current pig husbandry systems. Front. Vet. Sci. 2021, 7, 1180. [Google Scholar] [CrossRef]
- Gu, M.; Hou, B.; Zhou, J.; Cao, K.; Chen, X.; Duan, C. An industrial internet platform for massive pig farming (IIP4MPF). J. Comput. Commun. 2020, 8, 181–196. [Google Scholar] [CrossRef]
- Racewicz, P.; Ludwiczak, A.; Skrzypczak, E.; Składanowska-Baryza, J.; Biesiada, H.; Nowak, T.; Nowaczewski, S.; Zaborowicz, M.; Stanisz, M.; Slósarz, P. Welfare health and productivity in commercial pig herds. Animals 2021, 11, 1176. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z.; Lelek, Ł.; Kulczycka, J. Comparative analyses of pig farming management systems using the Life Cycle Assessment method. J. Clean. Prod. 2019, 241, 118305. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A thematic review of life cycle assessment (LCA) applied to pig production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Noya, I.; Villanueva-Rey, P.; González-García, S.; Fernandez, M.D.; Rodriguez, M.R.; Moreira, M.T. Life Cycle Assessment of pig production: A case study in Galicia. J. Clean. Prod. 2017, 142, 4327–4338. [Google Scholar] [CrossRef]
- Won, S.; You, B.; Shim, S.; Ahmed, N.; Choi, Y.; Ra, C. Nutrient variations from swine manure to agricultural land. Anim. Biosci. 2018, 31, 763–772. [Google Scholar] [CrossRef]
- Poulsen, H.D.; Kristensen, F.V. Standard Values for Farm Manure; DIAS Report Animal Husbandry no. 7; Danish Institute of Agricultural Sciences, Research Centre Foulum: Tjele, Denmark, 1997; 160p. [Google Scholar]
- Poulsen, H.D.; Lund, P.; Sehested, J.; Hutchings, N.; Sommer, S.G. Quantification of nitrogen and phosphorus in manure in the Danish normative system. In Technology for Recycling of Manure and Organic Residues in a Whole-Farm Perspective, Proceedings of the 12th Ramiran International Conference, Aarhus, 11–13 September 2006; Danish Institute of Agricultural Sciences: Slagelse, Denmark, 2006; Volume 2, pp. 105–107. [Google Scholar]
- Ali, B.M.; van Zanten, H.H.E.; Berentsen, P.; Bastiaansen, J.W.M.; Bikker, P.; Oude Lansink, A. Environmental and economic impacts of using co-products in the diets of finishing pigs in Brazil. J. Clean. Prod. 2017, 162, 247–259. [Google Scholar] [CrossRef]
- EMEP/EEA. 3.B Manure Management. In EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016; European Environmental Agency, Publications Office of the European Union: Luxembourg, 2016; Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook (accessed on 9 September 2021).
- Groenestein, C.M.; Valli, L.; Piñeiro Noguera, C.; Menzi, H.; Bonazzi, G.; Döhler, H.; van der Hoek, K.; Aarnink, A.J.A.; Oenema, O.; Kozlova, N.; et al. Livestock housing. In Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen; Bittman, S., Dedina, M., Howard, C.M., Oenema, O., Sutton, M.A., Eds.; Centre for Ecology and Hydrology: Edinburgh, UK, 2014; pp. 14–25. [Google Scholar]
- Ivanov, Y.; Novikov, N. Digital intelligent microclimate control of livestock farms. E3S Web Conf. 2020, 175, 11012. [Google Scholar] [CrossRef]
- Fangueiro, D.; Hjorth, M.; Gioellic, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Hjorth, M.; Christensen, K.V.; Christensen, M.L.; Sommer, S.G. Solid–liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev. 2010, 30, 153–180. [Google Scholar] [CrossRef] [Green Version]
- Cocolo, G.; Hjorth, M.; Zarebska, A.; Provolo, G. Effect of acidification on solid–liquid separation of pig slurry. Biosyst. Eng. 2016, 143, 20–27. [Google Scholar] [CrossRef]
- Ten Hoeve, M.; Gómez-Muñoz, B.; Jensen, L.S.; Bruun, S. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes—A life cycle assessment. J. Environ. Manag. 2016, 181, 710–720. [Google Scholar] [CrossRef]
- Zhang, R.H.; Westerman, P.W. Solid–liquid separation of annual manure for odor control and nutrient management. Appl. Eng. Agric. 1997, 13, 385–393. [Google Scholar] [CrossRef]
- Donoso, N.; van Oirschot, D.; Jayanta Kumar, B.; Michels, E.; Meers, E. Impact of aeration on the removal of organic matter and nitrogen compounds in constructed wetlands treating the liquid fraction of piggery manure. Appl. Sci. 2019, 9, 4310. [Google Scholar] [CrossRef] [Green Version]
- Fangueiro, D.; Lopes, C.; Surgy, S.; Vasconcelos, E. Effect of the pig slurry separation techniques on the characteristics and potential availability of N to plants in the resulting liquid and solid fractions. Biosyst Eng. 2012, 113, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, S.; Uptmoor, R.; Eichler-Löbermann, B. Phosphorus distribution and availability in untreated and mechanically separated biogas digestates. Sci. Agric. 2016, 73, 9–17. [Google Scholar] [CrossRef]
- Troy, S.M.; Nolan, T.; Kwapinski, W.; Leahy, J.J.; Healy, M.G.; Lawlor, P.G. Effect of sawdust addition on composting of separated raw and anaerobically digested pig manure. J. Environ. Manag. 2012, 111, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Makara, A.; Kowalski, Z. Selection of pig manure management strategies: Case study of Polish farms. J. Clean. Prod. 2018, 172, 187–195. [Google Scholar] [CrossRef]
- Hou, Y.; Velthof, G.L.; Case, S.D.C.; Oelofse, M.; Grignani, C.; Balsari, P.; Zavattaro, L.; Gioelli, F.; Bernal, M.P.; Fangueiro, D.; et al. Stakeholder perceptions of manure treatment technologies in Denmark, Italy, the Netherlands and Spain. J. Clean. Prod. 2018, 172, 1620–1630. [Google Scholar] [CrossRef]
- Yuan, Z.; Pan, X.; Chen, T.; Liu, X.; Zhang, Y.; Jiang, S.; Sheng, H.; Zhang, L. Evaluating environmental impacts of pig slurry treatment technologies with a life-cycle perspective. J. Clean. Prod. 2018, 188, 840–850. [Google Scholar] [CrossRef]
- Kowalski, Z.; Makara, A.; Fijorek, K. Changes in the properties of pig manure slurry. Acta Biochim. Pol. 2013, 60, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Woli, K.P.; Rakshit, S.; Lundvall, J.; Sawyer, J.; Barker, D. On-farm evaluation of liquid swine manure as a nitrogen source for corn production. Agron. J. 2013, 105, 248–262. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Bosch-Serra, À.D.; Antúnez, M.; Boixadera, J. Pig slurry and mineral fertilization strategies’ effects on soil quality: Macroaggregate stability and organic matter fractions. Sci. Total Environ. 2012, 438, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Bittman, S.; Dedina, M.; Howard, C.M.; Oenema, O.; Sutton, M.A. (Eds.) Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen; Centre for Ecology and Hydrology (CEH): Edinburgh, UK, 2014; 82p. [Google Scholar]
- Oenema, O.; Brentrup, F.; Lammel, J.; Bascou, P.; Billen, G.; Dobermann, A.; Erisman, J.W.; Garnett, T.; Hammel, M.; Haniotis, T.; et al. Nitrogen Use Efficiency (NUE)—Guidance Document for Assessing NUE at Farm Level; EU Nitrogen Expert Panel; Wageningen University: Wageningen, The Netherlands, 2016; 49p. [Google Scholar]
- Molinuevo-Salces, B.; Riaño, B.; Vanotti, M.B.; Hernández-González, D. Pilot-scale demonstration of membrane-based nitrogen recovery from swine manure. Membranes 2020, 10, 270. [Google Scholar] [CrossRef]
- Santonja, G.G.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs; Publications Office of the European Union: Luxembourg, 2017; Available online: http://eippcb.jrc.ec.europa.eu/reference/ (accessed on 9 September 2021)ISBN 978–92–79–70214–3.
- Yoon, Y.; Ok, Y.-S.; Kim, D.-Y.; Kim, J.-G. Agricultural recycling of the by-product concentrate of livestock wastewater treatment plant processed with VSEP RO and bio-ceramic SBR. Water Sci. Technol. 2004, 49, 405–412. [Google Scholar] [CrossRef]
- Döhler, H. Endprodukt: Düngepellets und Wasser. Profi 2018, 2, 76–79. Available online: https://www.biogas-wipptal.com/wp-content/uploads/2018_02_-Profienergie_dt-.pdf (accessed on 17 September 2021).
- The Composting Process. In Composting Factsheet; Ministry of Agriculture, Food and Fisheries: Victoria, BC, Canada, 1996. Available online: https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/farm-management/structures-and-mechanization/300-series/382500-2_the_composting_process.pdf (accessed on 17 September 2021).
- Haenel, H.D.; Rösemann, C.; Dämmgen, U.; Döring, U.; Wulf, S.; Eurich-Menden, B.; Osterburg, B. Calculations of Gaseous and Particulate Emissions from German Agriculture 1990–2016: Report on Methods and Data (RMD) Submission 2018; Thünen Report, No. 57; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2018; Available online: https://www.econstor.eu/bitstream/10419/176574/1/1015414141.pdf (accessed on 17 September 2021)ISBN 978–3–86576–181–1.
- Wulf, S.; Jäger, P.; Döhler, H. Balancing of greenhouse gas emissions and economic efficiency for biogas-production through anaerobic co-fermentation of slurry with organic waste. Agr. Ecosyst. Environ. 2006, 112, 178–185. [Google Scholar] [CrossRef]
- Manure Composting Manual; Alberta Agriculture, Food and Rural Development: Edmonton, AB, Canada, 2005; 27p. Available online: https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex8875/$file/400_27-1.pdf (accessed on 17 September 2021).
- Helen, M.; Khoo, C.K.; Khor, S.K.; Yeoh, N.N.; Lim, Y.S.; Syed Hussein, S.A.; Chui, I.; Abu Hassan, M.A. Pig growth performance data using the Loudong Bio-fermentation Waste Treatment Technology in closed house system. Malays. J. Vet. Res. 2012, 3, 55–61. [Google Scholar]
- Novák, P.; Lukešova, D.; Venglovský, J.; Sasáková, N. Storage and Treatment of Farm Animal Excrement from the Hygienic and Ecological Point of View. Available online: http://ramiran.uvlf.sk/doc00/Documents/Session%20III/PO20.pdf (accessed on 17 September 2021).
- Shalavina, E.V.; Briukhanov, A.Y. Mathematical model of advanced processing of liquid fraction of pig manure. Technol. Mach. Equip. Mech. Crop Livest. Prod. 2015, 86, 103–112. (In Russian) [Google Scholar]
- Briukhanov, A.; Shalavina, E.; Vasilev, E.; Uvarov, R.; Valge, A. The behavior of acidity, total nitrogen and total phosphorus in solid organic waste from the pig-rearing complex during its fermentation. In Engineering for Rural Development, Proceedings of the 19th International Scientific Conference, Jelgava, Latvia, 20–22 May 2020; LLU: Jelgava, Latvia, 2020; pp. 645–652. [Google Scholar] [CrossRef]
- Shalavina, E.; Briukhanov, A.; Vasilev, E.; Uvarov, R.; Valge, A. Variation in the mass and moisture content of solid organic waste originating from a pig complex during its fermentation. Agron. Res. 2020, 18, 1479–1486. [Google Scholar]
- HELCOM. Summary Report on the Development of Revised Maximum Allowable Inputs (MAI) and Updated Country Allocated Reduction Targets (CART) of the Baltic Sea Action Plan; HELCOM: Copenhagen, Denmark, 2013; 23p, Available online: https://helcom.fi/media/documents/Summary-report-on-MAI-CART-1.pdf (accessed on 17 September 2021).
- Ehrgott, M. Pareto optimality and efficiency. In Multicriteria Optimization; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Gabitov, I.I.; Insafuddinov, S.Z.; Ivanov, Y.A.; Yunusbaev, N.M.; Abdrazakov, F.G.; Farhutdinov, T.T. Examination of the system of continuous diagnosis and forecasting of mechanical condition of tractors and other farm machinery. J. Appl. Eng. Sci. 2020, 18, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, H.; Prapaspongsa, T.; Vu, V.T.K.; Poulsen, H.D. Models to quantify excretion of dry matter, nitrogen, phosphorus and carbon in growing pigs fed regional diets. J. Anim. Sci. Biotechnol. 2013, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Rigolot, C.; Espagnol, S.; Robin, P.; Hassouna, M.; Béline, F.; Paillat, J.M.; Dourmad, J.Y. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: Effect of animal housing, manure storage and treatment practices. Animal 2010, 4, 1413–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regelink, I.; Ehlert, P.; Smit, G.; Everlo, S.; Prinsen, A.; Schoumans, O. Phosphorus Recovery from Co–Digested Pig Slurry: Development of the RePeat Process; Wageningen Environmental Research report, 2949; Wageningen Environmental Research: Wageningen, The Netherlands, 2019; 65p. [Google Scholar] [CrossRef] [Green Version]
- Velthof, G.L.; Rietra, R.P.J.J. Nitrogen use efficiency and gaseous nitrogen losses from the concentrated liquid fraction of pig slurries. Int. J. Agron. 2019, 1, 9283106. [Google Scholar] [CrossRef]
- Luo, Y.; Stichnothe, H.; Schuchardt, F.; Li, G.; Huaitalla, R.M.; Xu, W. Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm. Waste Manag. Res. 2014, 32, 4–12. [Google Scholar] [CrossRef]
- Pexas, G.; Mackenzie, S.; Wallace, M.; Kyriazakis, I. Environmental impacts of housing conditions and manure management in European pig production systems through a life cycle perspective: A case study in Denmark. J. Clean. Prod. 2020, 253, 120005. [Google Scholar] [CrossRef]
- HELCOM. Calculation of the Fulfilment of the Nutrient Input Ceilings by 2017; Helsinki Commission (HELCOM): Helsinki, Finland, 2017; 10p, Available online: https://helcom.fi/wp-content/uploads/2020/08/Calculation-of-the-fulfillment-of-the-nutrient-input-ceilings-by-2017.pdf (accessed on 17 September 2021).
- HELCOM. Baltic Sea Action Plan—2021 Update; Helsinki Commission (HELCOM): Helsinki, Finland, 2021; 31p, Available online: https://helcom.fi/baltic-sea-action-plan/ (accessed on 17 September 2021).
Indicators | Technology 1 | Technology 2 | Technology 3 | Technology 4 | Technology 5 | Technology 6 |
---|---|---|---|---|---|---|
Electrical energy costs, USD t−1 y−1 | 0.1 | 0.1 | 0.004 | 1.3 | 1.6 | 2.1 |
Fuel costs, USD t−1 y−1 | 12.8 | 11.5 | 8.6 | 7.7 | 8.6 | 6 |
Labour costs, USD t−1 y−1 | 6.4 | 3.8 | 4.3 | 4.8 | 3.4 | 3 |
Specific capital costs, USD t−1 y−1 | 49.4 | 43.9 | 49.1 | 38.2 | 43.8 | 41 |
Specific operational costs, USD t−1 y−1 | 38.5 | 17.3 | 19.2 | 40.9 | 18.8 | 14.4 |
Amount of total nitrogen in the end-products, t y−1 | 265.71 | 208.34 | 120.78 | 196.27 | 175.13 | 214.38 |
Amount of total phosphorus in the end-products, t y−1 | 70.71 | 62.26 | 57.64 | 60.72 | 56.88 | 64.56 |
Liquid organic fertiliser produced, t | 44,331.47 | 43,073.75 | – | – | – | – |
Solid organic fertiliser produced, t | – | 4539.51 | 8231.55 | 10,265.01 | 9744.72 | 14,333.5 |
Cleaned water produced, t | – | – | 34,837.67 | 22,115.75 | 28,425.56 | 28,678.57 |
Indicator | Unit | Direction of Extremum | Technology 1 | Technology 2 | Technology 3 | Technology 4 | Technology 5 | Technology 6 |
---|---|---|---|---|---|---|---|---|
Economic indicator | USD t−1 y−1 | Min | 87.9 | 61.2 | 68.4 | 79.1 | 62.6 | 55.5 |
Ecological indicator | t y−1 | Max | 336.42 | 270.6 | 178.42 | 256.99 | 232.01 | 278.94 |
Equipment | Specifications | Amount Required |
---|---|---|
Covered batch-type settling tank for primary sedimentation | Dimensions—6.5 × 50 × 3 m | 2 |
Front-end loader | The basket volume at least 3 m3 | 2 |
Mixer | Power consumption—5.5 kW h−1 | 1 |
Pump | Throughput—50 t h−1 Power consumption—5.5 kW h−1 | 4 |
Secondary sedimentation tank | Dimensions—5.1 × 50 × 3 m | 1 |
Separator | Throughput—15 t h−1 Power consumption—4 kW h−1 | 1 |
Tractor | Draw-bar capacity—1.4 to 2.0 tf (12.6–27.0 kN) (ISO drawbar category 2) | 2 |
Trailer | Capacity, 10 t | 2 |
Trailer-spreader | Capacity, 10 t | 2 |
Two-section aeration tank | Dimensions of one section—3 × 50 × 3 m Two air blowers | 1 |
Facility (Structure) | Specifications | Amount Required |
---|---|---|
Concrete pad for passive composting of the solid fraction of pig manure | Dimensions—110 × 125 m Technological passages between the compost piles are 5 m wide Technological passages between the pad edge and a pile are 10 m wide | 1 |
Concrete storage for long-term maturing of the sludge and excess activated sludge | Each storage dimensions of 33 × 50 × 3 m One of the storage walls should be inclined for the access of vehicles to unload the ready solid organic fertiliser | 3 |
Concrete storages for accumulation of cleaned water from October to April | With the capacity of 10,000 m3 each will be used | 2 |
Filtration fields | Arranged with the Code 32.13330.2018 “Sewerage. Pipelines and wastewater treatment plants” | 42.5 ha |
Pig Farm | Type of End-Product | Nitrogen Amount in the End-Products, mg/kg | Phosphorus Amount in the End-Products, mg/kg | ||||
---|---|---|---|---|---|---|---|
Average Experimental Data | Average Experimental Data | ||||||
Pig farm 1 | Solid organic fertiliser | 2800 | 2814 | 2786 | – | – | – |
Liquid organic fertiliser | 2100 | 2117.5 | 2082.5 | – | – | – | |
Pig farm 2 | Solid organic fertiliser | 3200 | 3227.3 | 3172.7 | 900 | 912.1 | 900 |
Liquid organic fertiliser | 2200 | 2209.8 | 2190.2 | 700 | 706.4 | 693.6 | |
Pig farm 3 | Solid organic fertiliser | 2900 | 2911.8 | 2888.2 | 850 | 855.4 | 844.6 |
Liquid organic fertiliser | 2157 | 2164.2 | 2149.8 | 730 | 734.7 | 725.3 | |
Aqua ammonia | 56,000 | 56,057.5 | 55,942.5 | 0 | 0 | 0 | |
Effluent for additional fertilisation of grass | 860 | 868.1 | 851.9 | 290 | 295.3 | 284.7 | |
Pig farm 4 | Liquid organic fertiliser | 2500 | 2521.8 | 2478.2 | 710 | 715.2 | 704.8 |
Pig farm 5 | Solid organic fertiliser | 3080 | 3093.4 | 3066.6 | 870 | 877.6 | 862.4 |
Liquid organic fertilisers | 2250 | 2259.9 | 2240.1 | 650 | 656.5 | 643.5 | |
Pig farm 6 | Liquid organic fertiliser | 2290 | 2314.6 | 2275.4 | – | – | – |
Pig farm 7 | Liquid organic fertiliser | 2460 | 2475.7 | 2444.3 | – | – | – |
Pig farm 8 | Liquid organic fertiliser | 1970 | 1989.3 | 1950.7 | 640 | 648.5 | 631.5 |
Pig farm 9 | Solid organic fertiliser | 5400 | 5426.9 | 5373.1 | – | – | – |
Effluent for additional fertilisation of grass | 1500 | 1507.1 | 1492.9 | – | – | – | |
Pig farm 10 | Solid organic fertiliser | 4600 | 4621.7 | 4578.3 | – | – | – |
Liquid organic fertiliser | 1900 | 1909.7 | 1890.3 | – | – | – | |
Pig farm 11 | Liquid organic fertiliser | 2060 | 2066.4 | 2053.6 | 610 | 612.1 | 607.9 |
Pig farm 12 | Liquid organic fertiliser | 2240 | 2251.2 | 2228.8 | 635 | 639.5 | 630.5 |
Pig farm 13 | Liquid organic fertiliser | 2800 | 2816.2 | 2783.8 | 670 | 676.9 | 663.1 |
Pig farm 14 | Solid organic fertiliser | 2700 | 2714.8 | 2685.2 | – | – | – |
Liquid organic fertiliser | 2350 | 2359.3 | 2340.7 | – | – | – | |
Pig farm 15 | Liquid organic fertiliser | 2300 | 2315.6 | 2284.4 | 740 | 747.2 | 732.8 |
Pig Farm | Type of End-Product | Amount of End-Products | Nitrogen Amount in the End-Products | Phosphorus Amount in the End-Products | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Actual, t/y | Calculated, t/y | Difference, % | Actual, t/y | Calculated, t/y | Difference, % | Actual, t/y | Calculated, t/y | Difference, % | ||
Pig farm 1 | Solid and liquid organic fertilisers | 19,174 | 18,019.9 | 6 | 36.5 | 37.7 | 3.3 | – | 14.8 | – |
Pig farm 2 | Solid and liquid organic fertilisers | 19,381.5 | 19,214.5 | 0.9 | 47.1 | 43.2 | 8.3 | 16.7 | 16.1 | 3.6 |
Pig farm 3 | Solid and liquid organic fertilisers, aqua ammonia, effluent for additional fertilisation of grass | 18,2930 | 16,0152.3 | 12.5 | 339.1 | 291.9 | 13.9 | 175.7 | 158.3 | 9.9 |
Pig farm 4 | Liquid organic fertilisers | 44,906.4 | 40,745.5 | 9.3 | 130.2 | 126.6 | 2.8 | 31.4 | 33.3 | 6.1 |
Pig farm 5 | Solid and liquid organic fertilisers | 40,405.5 | 41,919.8 | 3.7 | 128 | 112.4 | 12.2 | 52.6 | 53.5 | 1.7 |
Pig farm 6 | Liquid organic fertilisers | 12,702 | 11,872.5 | 6.5 | 27.4 | 23.7 | 13.4 | – | 7 | – |
Pig farm 7 | Liquid organic fertilisers | 98,700 | 88,850.1 | 10 | 236.9 | 222.7 | 6 | – | 65.9 | – |
Pig farm 8 | Liquid organic fertilisers | 113,127.2 | 114,483.6 | 1.2 | 214.9 | 231.7 | 7.8 | 67.9 | 72.4 | 6.6 |
Pig farm 9 | Solid organic fertilisers and effluent for additional fertilisation of grass | 68,440.4 | 62,356.8 | 8.9 | 128 | 120.3 | 6 | – | 41.8 | – |
Pig farm 10 | Solid and liquid organic fertilisers | 194,780.6 | 184,653.1 | 5.2 | 428.4 | 379.7 | 11.4 | – | 105.9 | – |
Pig farm 11 | Liquid organic fertilisers | 52,438.5 | 51,779.7 | 1.3 | 99.6 | 96.6 | 3 | 31.5 | 33.7 | 7 |
Pig farm 12 | Liquid organic fertilisers | 49,685.7 | 48,447.8 | 2.5 | 124.2 | 117.5 | 5.4 | 29.8 | 28.6 | 4 |
Pig farm 13 | Liquid organic fertilisers | 170,458.6 | 150,144.6 | 11.9 | 473.5 | 430.1 | 9.2 | 85.2 | 78.1 | 8.3 |
Pig farm 14 | Solid and liquid organic fertilisers | 1,025,935.2 | 926,502.1 | 9.7 | 1425.5 | 1293.9 | 9.2 | – | 441.3 | – |
Pig farm 15 | Liquid organic fertilisers | 18,700 | 18,365.6 | 1.8 | 43 | 38.5 | 10.5 | 13.1 | 12.4 | 5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izmaylov, A.; Briukhanov, A.; Shalavina, E.; Vasilev, E. Pig Manure Management: A Methodology for Environmentally Friendly Decision-Making. Animals 2022, 12, 747. https://doi.org/10.3390/ani12060747
Izmaylov A, Briukhanov A, Shalavina E, Vasilev E. Pig Manure Management: A Methodology for Environmentally Friendly Decision-Making. Animals. 2022; 12(6):747. https://doi.org/10.3390/ani12060747
Chicago/Turabian StyleIzmaylov, Andrey, Aleksandr Briukhanov, Ekaterina Shalavina, and Eduard Vasilev. 2022. "Pig Manure Management: A Methodology for Environmentally Friendly Decision-Making" Animals 12, no. 6: 747. https://doi.org/10.3390/ani12060747
APA StyleIzmaylov, A., Briukhanov, A., Shalavina, E., & Vasilev, E. (2022). Pig Manure Management: A Methodology for Environmentally Friendly Decision-Making. Animals, 12(6), 747. https://doi.org/10.3390/ani12060747