Horse Racing as a Model to Study the Relationship between Air Pollutants and Physical Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todd, E.T.; Ho, S.Y.W.; Thomson, P.C.; Ang, R.A.; Velie, B.D.; Hamilton, N.A. Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. Sci. Rep. 2018, 8, 6167. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.C.; Rogers, C.W.; Firth, E.C. The association of 2-year-old training milestones with career length and racing success in a sample of Thoroughbred horses in New Zealand. Equine Vet. J. 2013, 45, 20–24. [Google Scholar] [CrossRef]
- Jones, J.H.; Ohmura, H.; Stanley, S.D.; Hiraga, A. Energetic cost of locomotion on different equine treadmills. Equine Vet. J. Suppl. 2006, 36, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Gramkow, H.L.; Evans, D.L. Correlation of race earnings with velocity at maximal heart rate during a field exercise test in thoroughbred racehorses. Equine Vet. J. Suppl. 2006, 36, 118–122. [Google Scholar] [CrossRef]
- Gramm, M.; Marksteiner, R. The effect of age on thoroughbred racing performance. J. Equine Sci. 2010, 21, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, A.J.; Thurman, A.S.; Maher, M.J.; Wilson, A.M. Speed, pacing strategy and aerodynamic drafting in Thoroughbred horse racing. Biol. Lett. 2012, 8, 678–681. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution: REVIHAAP Project: Technical Report. 2021. Available online: https://apps.who.int/iris/handle/10665/341712 (accessed on 13 March 2022).
- Ryter, S.W.; Ma, K.C.; Choi, A.M.K. Carbon monoxide in lung cell physiology and disease. Am. J. Physiol. Cell Physiol. 2018, 314, C211–C227. [Google Scholar] [CrossRef] [PubMed]
- Ivester, K.M.; Couëtil, L.L.; Zimmerman, N.J. Investigating the link between particulate exposure and airway inflammation in the horse. J. Vet. Intern. Med. 2014, 28, 1653–1665. [Google Scholar] [CrossRef] [Green Version]
- Santos, U.P.; Arbex, M.A.; Braga, A.L.F.; Mizutani, R.F.; Cançado, J.E.D.; Terra-Filho, M.; Chatkin, J.M. Environmental air pollution: Respiratory effects. J. Bras. Pneumol. 2021, 47, e20200267. [Google Scholar] [CrossRef]
- Seltzer, J.; Bigby, B.G.; Stulbarg, M.; Holtzman, M.J.; Nadel, J.A.; Ueki, I.F.; Leikauf, G.D.; Goetzl, E.J.; Boushey, H.A. O3-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J. Appl. Physiol. 1986, 60, 1321–1326. [Google Scholar] [CrossRef]
- Linn, W.S.; Venet, T.G.; Shamoo, D.A.; Valencia, L.M.; Anzar, U.T.; Spier, C.E.; Hackney, J.D. Respiratory effects of sulfur dioxide in heavily exercising asthmatics. A dose-response study. Am. Rev. Respir. Dis. 1983, 127, 278–283. [Google Scholar]
- Marr, L.C.; Ely, M.R. Effect of air pollution on marathon running performance. Med. Sci. Sports Exerc. 2010, 42, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Gates, M. The influence of air pollution on Thoroughbred race performance. Equine Comp. Exerc. Physiol. 2007, 4, 79–88. [Google Scholar] [CrossRef]
- Flash, M.L.; Renwick, M.; Gilkerson, J.R.; Stevenson, M.A. Descriptive analysis of Thoroughbred horses born in Victoria, Australia, in 2010; barriers to entering training and outcomes on exiting training and racing. PLoS ONE 2020, 15, e0241273. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- WHO (World Health Organization). Air Pollution. Available online: https://www.who.int/health-topics/air-pollution (accessed on 21 February 2022).
- Franck, U.; Leitte, A.M.; Suppan, P. Multifactorial airborne exposures and respiratory hospital admissions—The example of Santiago de Chile. Sci. Total Environ. 2015, 502, 114–121. [Google Scholar] [CrossRef]
- Riihimäki, M.; Raine, A.; Elfman, L.; Pringle, J. Markers of respiratory inflammation in horses in relation to seasonal changes in air quality in a conventional racing stable. Can. J. Vet. Res. 2008, 72, 432–439. [Google Scholar] [PubMed]
- Couetil, L.L.; Hoffman, A.M.; Hodgson, J.; Buechner-Maxwell, V.; Viel, L.; Wood, J.L.N.; Lavoie, J.-P. Inflammatory airway disease in horses, ACVIM consensus statement. J. Vet. Intern. Med. 2007, 21, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Brankston, G.; Greer, A.L.; Marshall, Q.; Lang, B.; Moore, K.; Hodgins, D.; Hennessey, J.T.G.; Beeler-Marfisi, J. Increased Weekly Mean PM2.5, and NO2 Are Associated with Increased Proportions of Lower Airway Granulocytes in Ontario Horses. Front. Vet. Sci. 2020, 7, 185. [Google Scholar] [CrossRef]
- Mullins, J.T. Ambient air pollution and human performance: Contemporaneous and acclimatization effects of ozone exposure on athletic performance. Health Econ. 2018, 27, 1189–1200. [Google Scholar] [CrossRef]
- Araneda, O.F.; Kosche-Cárcamo, F.; Verdugo-Marchese, H.; Tuesta, M. Pulmonary Effects Due to Physical Exercise in Polluted Air: Evidence from Studies Conducted on Healthy Humans. Appl. Sci. 2021, 11, 2890. [Google Scholar] [CrossRef]
- Lee, L.Y.; Widdicombe, J.G. Modulation of airway sensitivity to inhaled irritants: Role of inflammatory mediators. Environ. Health Perspect. 2001, 109 (Suppl. S4), 585–589. [Google Scholar] [PubMed] [Green Version]
- Adams, W.C. Effects of ozone exposure at ambient air pollution episode levels on exercise performance. Sports Med. 1987, 4, 395–424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [Green Version]
- Daigle, C.C.; Chalupa, D.C.; Gibb, F.R.; Morrow, P.E.; Oberdörster, G.; Utell, M.J.; Frampton, M.W. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 2003, 15, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Hoek, G.; Breugelmans, O.; Leentvaar, M. Respiratory effects of low-level photochemical air pollution in amateur cyclists. Am. J. Respir. Crit. Care Med. 1994, 150, 962–966. [Google Scholar] [CrossRef]
- Balmes, J.R.; Chen, L.L.; Scannell, C.; Tager, I.; Christian, D.; Hearne, P.Q.; Kelly, T.; Aris, R.M. Ozone-induced decrements in FEV1 and FVC do not correlate with measures of inflammation. Am. J. Respir. Crit. Care Med. 1996, 153, 904–909. [Google Scholar] [CrossRef]
- Rundell, K.W.; Slee, J.B.; Caviston, R.; Hollenbach, A.M. Decreased lung function after inhalation of ultrafine and fine particulate matter during exercise is related to decreased total nitrate in exhaled breath condensate. Inhal. Toxicol. 2008, 20, 1–9. [Google Scholar] [CrossRef]
- Rondinelli, R.C.; Koenig, J.Q.; Marshall, S.G. The effects of sulfur dioxide on pulmonary function in healthy nonsmoking male subjects aged 55 years and older. Am. Ind. Hyg. Assoc. J. 1987, 48, 299–303. [Google Scholar] [CrossRef]
- Araneda, O.F.; Guevara, A.J.; Contreras, C.; Lagos, N.; Berral, F.J. Exhaled breath condensate analysis after long distance races. Int. J. Sports Med. 2012, 33, 955–961. [Google Scholar] [CrossRef]
- Bonsignore, M.R.; Morici, G.; Riccobono, L.; Insalaco, G.; Bonanno, A.; Profita, M.; Paternò, A.; Vassalle, C.; Mirabella, A.; Vignola, A.M. Airway inflammation in nonasthmatic amateur runners. Am. J. Physiol. Lung Cell Mol. Physiol. 2001, 281, L668–L676. [Google Scholar] [CrossRef]
- Ivester, K.M.; Couëtil, L.L.; Moore, G.E. An observational study of environmental exposures, airway cytology, and performance in racing thoroughbreds. J. Vet. Intern. Med. 2018, 32, 1754–1762. [Google Scholar] [CrossRef]
- Giles, L.V.; Brandenburg, J.P.; Carlsten, C.; Koehle, M.S. Physiological responses to diesel exhaust exposure are modified by cycling intensity. Med. Sci. Sports Exerc. 2014, 46, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Rundell, K.W.; Hoffman, J.R.; Caviston, R.; Bulbulian, R.; Hollenbach, A.M. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal. Toxicol. 2007, 19, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Cutrufello, P.T.; Rundell, K.W.; Smoliga, J.M.; Stylianides, G.A. Inhaled whole exhaust and its effect on exercise performance and vascular function. Inhal. Toxicol. 2011, 23, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Aronow, W.S.; Cassidy, J. Effect of carbon monoxide on maximal treadmill exercise. A study in normal persons. Ann. Intern. Med. 1975, 83, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szarska, E.; Szczepaniak, J.; Nowak, Z.; Winnicka, A.; Cywińska, A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals 2019, 9, 616. [Google Scholar] [CrossRef] [Green Version]
- Witkowska-Piłaszewicz, O.; Pingwara, R.; Winnicka, A. The Effect of Physical Training on Peripheral Blood Mononuclear Cell Ex Vivo Proliferation, Differentiation, Activity, and Reactive Oxygen Species Production in Racehorses. Antioxidants 2020, 9, 1155. [Google Scholar] [CrossRef]
- McIlwraith, C.W.; Frisbie, D.D.; Kawcak, C.E. The horse as a model of naturally occurring osteoarthritis. Bone Jt. Res. 2012, 1, 297–309. [Google Scholar] [CrossRef]
- Patterson-Kane, J.C.; Becker, D.L.; Rich, T. The pathogenesis of tendon microdamage in athletes: The horse as a natural model for basic cellular research. J. Comp. Pathol. 2012, 147, 227–247. [Google Scholar] [CrossRef] [Green Version]
- Sarrafian, T.L.; Garcia, T.C.; Dienes, E.E.; Murphy, B.; Stover, S.M.; Galuppo, L.D. A nonterminal equine mandibular model of bone healing. Vet. Surg. 2015, 44, 314–321. [Google Scholar] [CrossRef]
- Brehm, W.; Burk, J.; Delling, U. Application of stem cells for the treatment of joint disease in horses. Methods Mol. Biol. 2014, 1213, 215–228. [Google Scholar] [PubMed]
- Horohov, D.W. The equine immune responses to infectious and allergic disease: A model for humans? Mol. Immunol. 2015, 66, 89–96. [Google Scholar] [CrossRef] [PubMed]
Handicap | Conditional | p-Value/ | |
---|---|---|---|
Cohen’s d | |||
Races (n) | 214 | 95 | |
Speed (km/h) | 62.36 ± 0.89 | 62.25 ± 0.91 | 0.32 |
62.43 (1.22) | 62.19 (1.37) | ||
PM10 (µg/m3) | 90.42 ± 31.61 | 92.25 ± 31.04 | |
86.50 (44.25) | 84.30 (37.00) | 0.94 | |
PM2.5 (µg/m3) | 24.97 ± 12.47 | 29.25 ± 15.10 | |
21.35 (16.05) | 23.90 (18.10) | 0.0247/0.25 | |
Ozone (ppb) | 25.66 ± 12.69 | 28.68 ± 13.23 | |
27.80 (22.28) | 31.70 (23.60) | 0.086 | |
CO (ppm) | 0.44 ± 0.29 | 0.56 ± 0.44 | |
0.35 (0.40) | 0.30 (0.40) | 0.033/0.23 | |
NO2 (ppb) | 26.15 ± 21.33 | 28.61 ± 24.46 | |
17.60 (37.75) | 16.50 (28.10) | 0.14 | |
NO (ppb) | 16.12 ± 28.07 | 33.34 ± 46.64 | |
4.65 (18.88) | 10.90 (35.50) | <0.0001/0.48 | |
SO2 (ppb) | 2.73 ± 1.25 | 3.17 ± 1.56 | |
2.30 (1.12) | 2.60 (2.00) | 0.044/0.23 |
1000 m | 1100 m | 1200 m | Total | |
---|---|---|---|---|
Races (n) | 33 | 148 | 32 | 214 |
PM10 | −0.65 0.000037 | −0.25 0.0019 | −0.25 0.16 | −0.32 0.0000015 |
PM2.5 | −0.63 0.000060 | −0.25 0.0019 | −0.34 0.059 | −0.31 0.0000026 |
Ozone | 0.44 0.012 | 019 0.024 | 0.20 0.28 | 0.20 0.0038 |
CO | −0.42 0.014 | −0.39 0.0000010 | −0.26 0.16 | −0.37 0.000000018 |
NO2 | −0.64 0.000048 | −0.35 0.000011 | −0.30 0.099 | −0.40 0.0000000021 |
NO | −0.58 0.00034 | −0.38 0.0000019 | −0.18 0.32 | −0.38 0.0000000096 |
SO2 | −0.67 0.000013 | −0.27 0.00082 | −0.18 0.32 | −0.33 0.00000061 |
1000 m | 1100 m | 1200 m | Total | |
---|---|---|---|---|
Races (n) | 17 | 55 | 23 | 95 |
PM10 | 0.045 0.86 | −0.15 0.27 | −0.21 0.34 | −0.04 0.67 |
PM2.5 | −0.46 0.063 | −0.07 0.63 | −0.25 0.24 | −0.16 0.13 |
Ozone | 0.48 0.050 | −0.05 0.73 | 0.07 0.76 | 0.03 0.79 |
CO | −0.59 0.015 | −0.28 0.038 | −0.06 0.78 | −0.23 0.023 |
NO2 | −0.42 0.093 | −0.22 0.10 | −0.17 0.44 | −0.26 0.010 |
NO | −0.56 0.020 | −0.19 0.18 | −0.23 0.30 | −0.23 0.024 |
SO2 | −0.62 0.010 | −0.35 0.010 | −0.17 0.43 | −0.32 0.0015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araneda, O.F. Horse Racing as a Model to Study the Relationship between Air Pollutants and Physical Performance. Animals 2022, 12, 1139. https://doi.org/10.3390/ani12091139
Araneda OF. Horse Racing as a Model to Study the Relationship between Air Pollutants and Physical Performance. Animals. 2022; 12(9):1139. https://doi.org/10.3390/ani12091139
Chicago/Turabian StyleAraneda, Oscar F. 2022. "Horse Racing as a Model to Study the Relationship between Air Pollutants and Physical Performance" Animals 12, no. 9: 1139. https://doi.org/10.3390/ani12091139
APA StyleAraneda, O. F. (2022). Horse Racing as a Model to Study the Relationship between Air Pollutants and Physical Performance. Animals, 12(9), 1139. https://doi.org/10.3390/ani12091139