Fluctuations of Physiological Variables during Conditioning of Lipizzan Fillies before Starting under Saddle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Test Protocol and Physical Activity
2.3. Measurements and Equipment
2.4. Laboratory Analyses
2.5. Data Analysis
3. Results
3.1. Gait Speeds during Exercise
3.2. Rectal Temperature, Respiratory Rate, and Heart Rate
3.3. Body Surface Temperatures
3.4. Biochemistry and Hematology
4. Discussion
4.1. Gait Speeds
4.2. Rectal Temperature (RT), Respiratory Rate (RR), and Heart Rate (HR)
4.3. Body Surface Temperature (BST)
4.4. Biochemistry and Hematology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, S.L.; Irvine, C.H.G. The effect of social stress on adrenal axis activity in horses: The importance of monitoring corticosteroid-binding globulin capacity. J. Endocrinol. 1998, 157, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Marc, M.; Parvizi, N.; Ellendorff, F.; Kallweit, E.; Elsaesser, F. Plasma cortisol and ACTH concentrations in the warmblood horse in response to a standardized treadmill exercise test as physiological markers for evaluation of training status. J. Anim. Sci. 2000, 78, 1936–1946. [Google Scholar] [CrossRef] [PubMed]
- Rivera, E.; Benjamin, S.; Nielsen, B.; Shelle, J.; Zanella, A.J. Behavioral and physiological responses of horses to initial training: The comparison between pastured versus stalled horses. Appl. Anim. Behav. Sci. 2002, 78, 235–252. [Google Scholar] [CrossRef]
- Cayado, P.; Munoz-Escassi, B.; Dominguez, C.; Manley, W.; Olabarri, B.; Sanchez de la Muela, M.; Castejon, F.; Maranon, G.; Vara, E. Hormone response to training and competition in athletic horses. Equine Vet. J. Suppl. 2006, 36, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Berghold, P.; Möstl, E.; Aurich, C. Effects of reproductive status and management on cortisol secretion and fertility of oestrous horse mares. Anim. Reprod. Sci. 2007, 102, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Jörg, A.; Möstl, E.; Müller, J.; Aurich, C. Changes in cortisol release and heart rate and heart rate variability during the initial training of 3-year-old sport horses. Horm. Behav. 2010, 58, 628–636. [Google Scholar] [CrossRef]
- Erber, R.; Wulf, M.; Aurich, J.; Rose-Meierhöfer, S.; Hoffmann, G.; von Lewinski, M.; Möstl, E.; Aurich, C. Stress Response of Three-year-old Horse Mares to Changes in Husbandry System During Initial Equestrian Training. J. Equine Vet. Sci. 2013, 33, 1088–1094. [Google Scholar] [CrossRef]
- Heleski, C.R.; Shelle, A.C.; Nielsen, B.D.; Zanella, A.J. Influence of Housing on Behavior in Weanling Horses. In Proceedings of the 16th Equine Nutrition Physiology Symposium, Raleigh, NC, USA, 2–5 June 1999; pp. 249–250. [Google Scholar]
- Warren-Smith, A.K.; McGreevy, P.D. Equestrian Coaches’ Understanding and Application of Learning Theory in Horse Training. Anthrozöos 2008, 21, 153–162. [Google Scholar] [CrossRef]
- McLean, A.; McGreevy, P. Reducing Wastage in the Trained Horse: Training Principles that Arise from Learning Theory. In Proceedings of the Second International Equitation Science Symposium, Milano, Italy, 19–20 September 2006; p. 22. [Google Scholar]
- Visser, E.K.; VanDierendonck, M.; Ellis, A.D.; Rijksen, C.; Van Reenen, C.G. A comparison of sympathetic and conventional training methods on responses to initial horse training. Vet. J. 2009, 181, 48–52. [Google Scholar] [CrossRef]
- Harris, P.; Marlin, D.J.; Davidson, H.; Rodgerson, J.; Gregory, A.; Harrison, D. Practical assessment of heart rate response to exercise under field conditions. Equine Comp. Exerc. Physiol. 2007, 1, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Munsters, C.C.; Van De Broek, J.; Van Weeren, R.; Van Oldruitenborgh-Oosterbaan, M.M.S. A prospective study on fitness, workload and reasons for premature training ends and temporary training breaks in two groups of riding horses. Prev. Vet. Med. 2013, 108, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Munsters, C.C.B.M.; van Iwaarden, A.; van Weeren, R.; van Oldruitenborgh-Oosterbaan, M.M.S. Exercise testing in Warmblood sport horses under field conditions. Vet. J. 2014, 202, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Soroko, M.; Śpitalniak-Bajerska, K.; Zaborski, D.; Poźniak, B.; Dudek, K.; Janczarek, I. Exercise-induced changes in skin temperature and blood parameters in horses. Arch. Anim. Breed. 2019, 62, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Hinchcliff, K.W.; Geor, R.J.; Kaneps, A.J. Equine Exercise Physiology, 1st ed.; Elsevier Saunders: Philadelphia, PA, USA, 2008. [Google Scholar]
- Kȩdzierski, W.; Pluta, M.; Kędzierski, W. The Welfare of Young Polish Konik Horses Subjected to Agricultural Workload. J. Appl. Anim. Welf. Sci. 2003, 16, 35–46. [Google Scholar] [CrossRef]
- De Bruijn, C.M.; Houterman, W.; Ploeg, M.; Ducro, B.; Boshuizen, B.; Goethals, K.; Verdegaal, E.-L.; Delesalle, C. Monitoring training response in young Friesian dressage horses using two different standardised exercise tests (SETs). BMC Vet. Res. 2017, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Čebulj-Kadunc, N.; Frangež, R.; Žgajnar, J.; Kruljc, P. Cardiac, respiratory and thermoregulation parameters following graded exercises in Lipizzaner horses. Vet. Arh. 2019, 89, 11–23. [Google Scholar] [CrossRef]
- Dovc, P.; Kavar, T.; Sölkner, H.; Achmann, R. Development of the Lipizzan Horse Breed. Reprod. Domest. Anim. 2006, 41, 280–285. [Google Scholar] [CrossRef]
- Lipica. Available online: https://www.lipica.org/en/stable/stud-farm/breeding-programme (accessed on 24 February 2021).
- Hodgson, D.R.; McKeever, K.H.; McGowan, C.M. The Athletic Horse: Principles and Practice of Equine Sports Medicine, 2nd ed.; Saunders Elsevier: St. Louis, MO, USA, 2014. [Google Scholar]
- Mukai, K.; Takahashi, T.; Eto, D.; Ohmura, H.; Tsubone, H.; Hiraga, A. Heart Rates and Blood Lactate Response in Thoroughbred Horses during a Race. J. Equine Sci. 2007, 18, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Aerts, J.-M.; Gebruers, F.; Van Camp, E.; Berckmans, D. Controlling horse heart rate as a basis for training improvement. Comput. Electron. Agric. 2008, 64, 78–84. [Google Scholar] [CrossRef]
- Jodkowska, E.; Dudek, K.; Przewozny, M. The maximum temperatures (Tmax) distribution on the body surface of sport horses. J. Life Sci. 2011, 5, 291–297. [Google Scholar]
- Padalino, B.; Zaccagnino, P.; Celi, P. The Effect of Different Types of Physical Exercise on the Behavioural and Physiological Parameters of Standardbred Horses Housed in Single Stalls. Vet. Med. Int. 2014, 2014, 875051. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, V.; Bergero, D.; Zucca, E.; Ferrucci, F.; Costa, L.N.; Crosta, L.; Luzi, F. Use of Thermography Techniques in Equines: Principles and Applications. J. Equine Vet. Sci. 2014, 34, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Wallsten, H.; Olsson, K.; Dahlborn, K. Temperature regulation in horses during exercise and recovery in a cool environment. Acta Vet. Scand. 2012, 54, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargreaves, B.J.; Kronfeld, D.S.; Naylor, J.R.J. Ambient temperature and relative humidity influenced packed cell volume, total plasma protein and other variables in horses during an incremental submaximal field exercise test. Equine Vet. J. 1999, 31, 314–318. [Google Scholar] [CrossRef]
- Allen, K.J.; Young, L.E.; Franklin, S.H. Evaluation of heart rate and rhythm during exercise. Equine Vet. Educ. 2016, 28, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.G.; Evans, D.L.; Hodgson, J.L. Heart rate and blood lactate responses during exercise in preparation for eventing competition. Equine Vet. J. 2002, 34, 135–139. [Google Scholar] [CrossRef]
- Vincent, T.L.; Newton, J.R.; Deaton, C.M.; Franklin, S.H.; Biddick, T.; McKeever, K.H.; McDonough, P.; Young, L.E.; Hodgson, D.R.; Marlin, D.J. Retrospective study of predictive variables for maximal heart rate (HRmax) in horses undergoing strenuous treadmill exercise. Equine Vet. J. 2006, 36, 146–152. [Google Scholar] [CrossRef]
- Simon, E.L.; Gaughan, E.M.; Epp, T.; Spire, M. Influence of exercise on the thermographically determined surface temperatures of thoracic and pelvic limbs in horses. J. Am. Vet. Med. Assoc. 2006, 299, 1940–1944. [Google Scholar] [CrossRef]
- Wilk, I.; Wnuk-Pawlak, E.; Janczarek, I.; Kaczmarek, B.; Dybczyńska, M.; Przetacznik, M. Distribution of Superficial Body Temperature in Horses Ridden by Two Riders with Varied Body Weights. Animals 2020, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Autio, E.; Neste, R.; Airaksinen, S.; Heiskanen, M.-L. Measuring the Heat Loss in Horses in Different Seasons by Infrared Thermography. J. Appl. Anim. Welf. Sci. 2006, 9, 211–221. [Google Scholar] [CrossRef]
- Morgan, K. Thermoneutral zone and critical temperatures of horses. J. Therm. Biol. 1998, 23, 59–61. [Google Scholar] [CrossRef]
- Jodkowska, E.; Dudek, K. Study on symmetry of body surface temperature of race horses. Przegl. Nauk Literat. Zootech. 2000, 50, 307–319. [Google Scholar]
- Jodkowska, E. Body surface temperature as a criterion of the horse predisposition to effort. Zesz. Nauk Akad. Rolniczej Wrocl. 2005, 511, 7–114. [Google Scholar]
- Hovey, M.R.; Davis, A.; Chen, S.; Godwin, P.; Porr, C.S. Evaluating Stress in Riding Horses: Part One—Behavior Assessment and Serum Cortisol. J. Equine Vet. Sci. 2021, 96, 103297. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Matsuura, A.; Yamazaki, Y.; Sakai, W.; Watanabe, K.; Nakanowatari, T.; Kobayashi, H.; Irimajiri, M.; Hodate, K. Influence of riders’ skill on plasma cortisol levels of horses walking on forest and field trekking courses. Anim. Sci. J. 2017, 88, 1629–1635. [Google Scholar] [CrossRef]
- Cravana, C.; Medica, P.; Prestopino, M.; Fazio, E.; Ferlazzo, A. Effects of competitive and noncompetitive showjumping on total and free iodothyronines, b-endorphin, ACTH and cortisol levels of horses. Equine Vet. J. 2010, 42, 179–184. [Google Scholar] [CrossRef]
- Kang, O.-D.; Lee, W.-S. Changes in Salivary Cortisol Concentration in Horses during Different Types of Exercise. Asian-Australas. J. Anim. Sci. 2016, 29, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Franklin, R.P.; Peloso, J.G. Review of the clinical use of lactate. Am. Assoc. Equine Pract. Proc. 2006, 52, 305–309. [Google Scholar]
- Henderson, I.S.F. Diagnostic and prognostic use of L-lactate measurement in equine practice. Equine Vet. Educ. 2013, 25, 468–475. [Google Scholar] [CrossRef]
- Lindner, A.; Mosen, H.; Kissenbeck, S.; Fuhrmann, H.; Sallmann, H.P. Effect of blood lactate-guided conditioning of horses with exercises of differing durations and intensities on heart rate and biochemical blood variables. J. Anim. Sci. 2009, 87, 3211–3217. [Google Scholar] [CrossRef] [Green Version]
- Kang, O.-D.; Park, Y.-S. Effect of age on heart rate, blood lactate concentration, packed cell volume and hemoglobin to exercise in Jeju crossbreed horses. J. Anim. Sci. Technol. 2017, 59, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N.C. Essentials of Veterinary Hematology; Lea & Febiger: Philadelphia, PA, USA, 1993. [Google Scholar]
- Cebulj-Kadunc, N.; Bozic, M.; Kosec, M.; Cestnik, V. The Influence of Age and Gender on Haematological Parameters in Lipizzan Horses. J. Vet. Med. Ser. A 2002, 49, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Cebulj-Kadunc, N.; Kosec, M.; Cestnik, V. The Variations of White Blood Cell Count in Lipizzan Horses. J. Vet. Med. Ser. A 2003, 50, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Satué, K.; Hernández, A.; Muñoz, A. Physiological factors in the Interpretation of Equine Hematological Profile. In Hematology: Science and Practice; Lawrie, C., Ed.; InTech: Rijeka, Croatia, 2012; pp. 573–596. Available online: http://www.intechopen.com/books/hematology-science-and-practice/haematologicalprofile-of-the-horse-phisiological-factors-influencing-equine-haematology (accessed on 13 October 2021).
Phase of the Test | Duration of Activity (min) | Activity | Recordings and Samplings * |
---|---|---|---|
BEx | 10 | Rest | BST, RT, RR, HR, VP |
Ex | 5 | Lunging (walk) | HR, Va |
5 | Lunging (trot) | HR, Va | |
5 | Lunging (canter) | HR, Va | |
AEx | 10 | Rest | BST, RT, RR, HR, VP |
Parameter | ExT-1 | ExT-2 | ExT-3 | ExT-4 |
---|---|---|---|---|
Temperature (°C) | 6.7 ± 1.1 | 8.0 ± 0.5 | 10.6 ± 0.4 | 11.1 ± 0.5 |
Humidity (%) | 46.9 ± 5.1 | 75.4 ± 2.2 | 39.3 ± 1.9 | 65.4 ± 1.5 |
Phase of the Test | Speed (km/h) | |||
---|---|---|---|---|
ExT-1 | ExT-2 | ExT-3 | ExT-4 | |
Walk | 5.2 ± 0.4 a | 4.7 ± 0.2 b,c | 4.8 ± 0.3 d,e | 5.2 ± 0.2 b,d |
Trot | 6.7 ± 0.6 A,B | 7.8 ± 0.5 b | 9.3 ± 0.5 d,A | 9.3 ± 0.9 b,B |
Canter | 8.9 ± 1.2 a | 6.9 ± 0.7 c,A | 10.6 ± 0.6 e,A | 10.0 ± 0.7 d |
Parameter | Phase of the Test | ExT-1 | ExT-2 | ExT-3 | ExT-4 |
---|---|---|---|---|---|
RT (°C) | BEx | 37.6 ± 0.1 a | 37.8 ± 0.2 A | 37.4 ± 0.0 b | 37.3 ± 0.1 a,A |
AEx | 38.5 ± 0.1 a,B | 38.2 ± 0.1 | 38.0 ± 0.1 b,B | 38.0 ± 0.1 a | |
RR (/min) | BEx | 17.5 ± 1.3 b | 25.0 ± 2.6 c | 16.8 ± 1.2 b | 16.1 ± 1.3 a |
AEx | 39.6 ± 5.6 b | 44.0 ± 6.5 c | 38.2 ± 3.6 b | 46.6 ± 7.3 a |
Body Region | Temperature Difference (°C) | |||
---|---|---|---|---|
ExT-1 | ExT-2 | ExT-3 | ExT-4 | |
Neck | 7.3 ± 2.3 | 6.7 ± 1.2 b,d | 9.5 ± 0.9 a,b | 8,1 ± 1.5 c,d |
Chest | 5.1 ± 1.8 | 6.1 ± 1.5 a,c | 8,8 ± 0.9 c,d | 7.6 ± 1.3 a,b |
Back | 5.1 ± 1.7 | 3.4 ± 0.9 | 5.4 ± 1.2 | 6.2 ± 1.7 e,f |
Croup | 4.1 ± 1.7 | 2.4 ± 0.8 | 4.4 ± 1.0 | 3.5 ± 1.1 |
Buttocks | 3.8 ± 1.5 | 2.3 ± 1.0 | 3.6 ± 0.9 | 3.0 ± 1.0 |
Mecarpus | 2.4 ± 1.0 | 1.2 ± 0.6 d,c | 0.9 ± 0.4 b,d | 0.3 ± 0.9 b,d,f |
Metarsus | 3.2 ± 1.0 | 0.5 ± 0.7 a,b | −0.4 ± 0.7 a,c | 0.3 ± 0.8 a,c,e |
Parameter | Phase of the Test | ExT-1 | ExT-2 | ExT-3 | ExT-4 |
---|---|---|---|---|---|
Cortisol (nmol/L) | BEx | 54.60 ± 3.35 a | 63.26 ± 5.55 b | 54.05 ± 3.92 c | 49.05 ± 4.84 d |
AEx | 87.89 ± 4.66 a | 82.81 ± 5.47 b | 97.51 ± 4.39 c, A | 71.96 ± 4.32 d, A | |
Lactate (mmol/L) | BEx | 1.0 ± 0.2 | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.6 ± 0.1 |
AEx | 1.8 ± 0.7 | 0.8 ± 0.1 | 0.6 ± 0.9 | 0.9 ± 0.2 |
Parameter (Units) | Phase of Test | ExT-1 | ExT-2 | ExT-3 | ExT-4 |
---|---|---|---|---|---|
WBC (×109/L) | BEx | 9.4 ± 0.2 A | 7.3 ± 0.6 A, B, G | 9.3 ± 0.3 B | 8.8 ± 0.2G |
AEx | 9.2 ± 0.2 H | 7.8 ± 0.6 C, F, H | 9.7 ± 0.3 C | 9.3 ± 0.2 F | |
RBC (×1012/L) | BEx | 10.2 ± 0.2 A, B, C, a | 8.6 ± 0.2 A, a | 8.8 ± 0.2 B, a | 8.6 ± 0.2 C, a |
AEx | 9.8 ± 0.1 G, a | 8.9 ± 0.3 a | 9.1 ± 0.2 a | 8.6 ± 0.9 G, a | |
HGB (g/L) | BEx | 166.9 ± 3.6 A, B, C | 140.8 ± 2,9 A | 141.5 ± 2.8 B | 138.9 ± 3.0 C |
AEx | 161.3 ± 1.6 D, E | 146.0 ± 4.4 D | 146.3 ± 2.9 E | 154.3 ± 2.7 | |
HCT (L/L) | BEx | 0.46 ± 0.01 A, B, C | 0.38 ± 0.01 A | 0.38 ± 0.01 B | 0.38 ± 0.01 C, a |
AEx | 0.45 ± 0.01 D, E | 0.40 ± 0.01 E | 0.39 ± 0.01 D | 0.42 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čebulj-Kadunc, N.; Frangež, R.; Kruljc, P. Fluctuations of Physiological Variables during Conditioning of Lipizzan Fillies before Starting under Saddle. Animals 2022, 12, 836. https://doi.org/10.3390/ani12070836
Čebulj-Kadunc N, Frangež R, Kruljc P. Fluctuations of Physiological Variables during Conditioning of Lipizzan Fillies before Starting under Saddle. Animals. 2022; 12(7):836. https://doi.org/10.3390/ani12070836
Chicago/Turabian StyleČebulj-Kadunc, Nina, Robert Frangež, and Peter Kruljc. 2022. "Fluctuations of Physiological Variables during Conditioning of Lipizzan Fillies before Starting under Saddle" Animals 12, no. 7: 836. https://doi.org/10.3390/ani12070836
APA StyleČebulj-Kadunc, N., Frangež, R., & Kruljc, P. (2022). Fluctuations of Physiological Variables during Conditioning of Lipizzan Fillies before Starting under Saddle. Animals, 12(7), 836. https://doi.org/10.3390/ani12070836