Administration of a Multi-Genus Synbiotic to Broilers: Effects on Gut Health, Microbial Composition and Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Management
2.3. Synbiotic Administration
2.4. Bacterial Enteritis (BE) Scoring
2.5. Histology
2.6. Recording of Performance Parameters
2.7. Evaluation of Enteric Microbiota
2.8. Statistical Analyses
3. Results
3.1. Bacterial Enteritis and Histopathological Lesion Scores
3.2. Evaluation of Intestinal Villi and Crypts
3.3. Performance Parameters
3.4. Evaluation of Enteric Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hafez, H.M.; El-Adawy, H. Foodborne diseases of poultry and related problems. J. Food Nutr. Metabol. 2019, 1, 4–5. [Google Scholar]
- Thames, H.T.; Sukumaran, A.T. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods 2020, 9, 776. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.H.; Sarker, S.; Islam, M.S.; Islam, M.A.; Karim, M.R.; Kayesh, M.E.H.; Shiddiky, M.J.A.; Anwer, M.S. Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective. Biology 2020, 9, 411. [Google Scholar] [CrossRef] [PubMed]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Rondón, E.O. Holistic view of intestinal health in poultry. Anim. Feed Sci. Technol. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.A.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-kott, A.F.M.; et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 4. [Google Scholar] [CrossRef]
- Khomayezi, R.; Adewole, D. Probiotics, prebiotics, and synbiotics: An overview of their delivery routes and effects on growth and health of broiler chickens. World’s Poult. Sci. J. 2022, 78, 57–81. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Böhm, J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 2009, 88, 49–56. [Google Scholar] [CrossRef]
- Mohnl, M.; Acosta Aragón, Y.; Acosta Ojeda, A.; Rodríguez Sánchez, B.; Pasteiner, S. Effect of synbiotic feed additive in comparison to antibiotic growth promoter on performance and health status of broilers. Poult. Sci. 2007, 86, 217. [Google Scholar]
- Hu, J.Y.; Mohammed, A.A.; Murugesan, G.R.; Cheng, H.W. Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poult. Sci. 2022, 101, 101769. [Google Scholar] [CrossRef]
- Madej, J.P.; Bednarczyk, M. Effect of in ovo-delivered prebiotics and synbiotics on the morphology and specific immune cell composition in the gut-associated lymphoid tissue. Poult. Sci. 2016, 95, 19–29. [Google Scholar] [CrossRef]
- Dibaji, S.M.; Seidavi, A.; Asadpour, L.; da Silva, F.M. Effect of a synbiotic on the intestinal microflora of chickens. J. Appl. Poult. Res. 2014, 23, 1–6. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. Comparative evaluation on the effect of coccidiostate and synbiotic preparations on prevention of Clostridium perfringens in broiler chickens. Glob. Vet. 2010, 5, 324–333. [Google Scholar]
- Baffoni, L.; Gaggìa, F.; Garofolo, G.; Di Serafino, G.; Buglione, E.; Di Giannatale, E.; Di Gioia, D. Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration. Int. J. Food Microbiol. 2017, 251, 41–47. [Google Scholar] [CrossRef]
- Sobotik, E.B.M.; Ramirez, S.; Roth, N.; Tacconi, A.; Pender, C.; Murugesan, R.; Archer, G.S. Evaluating the effects of a dietary synbiotic or synbiotic plus enhanced organic acid on broiler performance and cecal and carcass Salmonella load. Poult. Sci. 2021, 100, 101508. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Adams, D.; Selvaraj, R.K. Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods 2022, 11, 1401. [Google Scholar] [CrossRef]
- Applegate, T.J.; Klose, V.; Steiner, T.; Ganner, A.; Schatzmayr, G. Probiotics and phytogenics for poultry: Myth or reality? J. Appl. Poult. Res. 2010, 19, 194–210. [Google Scholar] [CrossRef]
- Prentza, Z.; Castellone, F.; Legnardi, M.; Antlinger, B.; Segura-Wang, M.; Kefalas, G.; Fortomaris, P.; Argyriadou, A.; Papaioannou, N.; Stylianaki, I.; et al. Effects of a Multi-genus Synbiotic (PoultryStar® sol) on Gut Health and Performance of Broiler Breeders. J. World Poult. Res. 2022, 12, 212–229. [Google Scholar] [CrossRef]
- Ross Broiler Handbook. 2018. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf (accessed on 10 December 2022).
- Ross Broiler Nutrition Specifications. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerNutritionSpecifications2022-EN.pdf (accessed on 10 December 2022).
- De Gussem, M. Macroscopic scoring system for bacterial enteritis in broiler chickens and turkeys. In Proceedings of the WVPA Meeting, Merelbeke, Belgium, 1 March 2010. [Google Scholar]
- Teirlynck, E.; De Gussem, M.; Dewulf, J.; Haesebrouck, F.; Dycatelle, R.; Van Immerseel, F. Morphometric evaluation of “dysbacteriosis” in broilers. Avian Pathol. 2011, 40, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Hoerr, F.J. Intestinal integrity in Broilers. In Proceedings of the XII International Seminar in Avian Pathology and Production, University of Georgia and AMEVEA Colombia, Athens, Georgia, 26–30 April 2001. [Google Scholar]
- Kraieski, A.L.; Hayashi, R.M.; Sanches, A.; Almeida, G.C.; Santin, E. Effect of aflatoxin experimental ingestion and Eimeira vaccine challenges on intestinal histopathology and immune cellular dynamic of broilers: Applying an Intestinal Health Index. Poult. Sci. 2017, 96, 1078–1087. [Google Scholar] [CrossRef]
- Gava, M.S.; Moraes, L.B.; Carvalho, D.; Chitolina, G.Z.; Fallavena, L.C.B.; Moraes, H.L.S.; Herpich, J.; Salle, C.T.P. Determining the best sectioning method and intestinal segment for morphometric analysis in broilers. Braz. J. Poult. Sci. 2015, 17, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glockner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, 643–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing (v. 3.3. 2, 2016). In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- Fan, Y.; Croom, J.; Christensen, V.; Black, B.; Bird, A.; Daniel, L.; McBride, B.; Eisen, E. Jejunal glucose uptake and oxygen consumption in turkey poults selected for rapid growth. Poult. Sci. 1997, 76, 1738–1745. [Google Scholar] [CrossRef]
- Samanya, M.; Yamauchi, K.E. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. Mol. Integr. Physiol. 2002, 133, 95–104. [Google Scholar] [CrossRef]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef]
- Calik, A.; Ceylan, A.; Ekim, B.; Adabi, S.G.; Dilber, F.; Bayraktaroglu, A.G.; Sacakli, P. The effect of intra-amniotic and posthatch dietary synbiotic administration on the performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult. Sci. 2017, 96, 169–183. [Google Scholar] [CrossRef]
- Markazi, A.; Luoma, A.; Shanmugasundaram, R.; Mohnl, M.; Murugesan, G.R.; Selvaraj, R. Effects of drinking water synbiotic supplementation in laying hens challenged with Salmonella. Poult. Sci. 2018, 97, 3510–3518. [Google Scholar] [CrossRef]
- Villagrán-de la Mora, Z.; Nuño, K.; Vázquez-Paulino, O.; Avalos, H.; Castro-Rosas, J.; Gómez-Aldapa, C.; Villarruel-López, A. Effect of a synbiotic mix on intestinal structural changes, and Salmonella Typhimurium and Clostridium perfringens colonization in broiler chickens. Animals 2019, 9, 777. [Google Scholar] [CrossRef] [Green Version]
- Kridtayopas, C.; Rakangtong, C.; Bunchasak, C.; Loongyai, W. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poult. Sci. 2019, 98, 4595–4605. [Google Scholar] [CrossRef]
- Jiang, S.; Mohammed, A.A.; Jacobs, J.A.; Cramer, T.A.; Cheng, H.W. Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress. Poult. Sci. 2020, 99, 142–150. [Google Scholar] [CrossRef]
- Sobolewska, A.; Bogucka, J.; Dankowiakowska, A.; Elminowska-Wenda, G.; Stadnicka, K.; Bednarczyk, M. The impact of synbiotic administration through in ovo technology on the microstructure of a broiler chicken small intestine tissue on the 1st and 42nd day of rearing. J. Anim. Sci. Biotechnol. 2017, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.A.; Jacobs, J.A.; Murugesan, G.R.; Cheng, H.W. Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress. Poult. Sci. 2018, 97, 1101–1108. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.; Hammad, S.; Khalaphallah, R.; Salem, W.M.; Lohakare, J. Synbiotic as eco-friendly feed additive in diets of chickens under hot climatic conditions. Poult. Sci. 2019, 98, 4575–4583. [Google Scholar] [CrossRef]
- Śliżewska, K.; Markowiak-Kopeć, P.; Żbikowski, A.; Szeleszczuk, P. The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Sci. Rep. 2020, 10, 4281. [Google Scholar] [CrossRef] [Green Version]
- Flickinger, E.A.; Loo, J.V.; Fahey, G.C. Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: A review. Crit. Rev. Food Sci. Nutr. 2003, 43, 19–60. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Zhong, T.; Pandya, Y.; Joerger, R.D. 16S rRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens. Appl. Environ. Microbiol. 2002, 68, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Bjerrum, L.; Engberg, R.M.; Leser, T.D.; Jensen, B.B.; Finster, K.; Pedersen, K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult. Sci. 2006, 85, 1151–1164. [Google Scholar] [CrossRef]
- Richards, P.; Fothergill, J.; Bernardeau, M.; Wigley, P. Development of the caecal microbiota in three broiler breeds. Front. Vet. Sci. 2019, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Fisinin, V.I.; Il’ina, L.A.; Iyldyrym, E.A.; Nikonov, I.N.; Filippova, V.A.; Laptev, G.Y.; Novikova, N.I.; Grozina, A.A.; Lenkova, T.N.; Makunyan, V.A.; et al. Broiler chicken cecal microbiocenoses depending on mixed fodder. Microbiology 2016, 85, 493–499. [Google Scholar] [CrossRef]
- Luo, Y.H.; Peng, H.W.; Wright, A.D.G.; Bai, S.P.; Ding, X.M.; Zeng, Q.F.; Li, H.; Zheng, P.; Su, Z.W.; Cui, R.-Y.; et al. Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries. Poult. Sci. 2013, 92, 2358–2366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Li, S.; Wang, X.F.; Xing, T.; Li, J.L.; Zhu, X.D.; Zhang, L.; Gao, F. Microbiota populations and short-chain fatty acids production in cecum of immunosuppressed broilers consuming diets containing γ-irradiated Astragalus polysaccharides. Poult. Sci. 2021, 100, 273–282. [Google Scholar] [CrossRef]
- Lysko, S.B.; Baturina, O.A.; Naumova, N.B.; Lescheva, N.A.; Pleshakova, V.I.; Kabilov, M.R. No-Antibiotic-Pectin-Based Treatment Differently Modified Cloaca Bacteriobiome of Male and Female Broiler Chickens. Agriculture 2021, 12, 24. [Google Scholar] [CrossRef]
- Pineda-Quiroga, C.; Borda-Molina, D.; Chaves-Moreno, D.; Ruiz, R.; Atxaerandio, R.; Camarinha-Silva, A.; García-Rodríguez, A. Microbial and Functional Profile of the Ceca from Laying Hens Affected by Feeding Prebiotics, Probiotics, and Synbiotics. Microorganisms 2019, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Such, N.; Farkas, V.; Molnár, A.; Csitári, G.; Pál, L.; Rawash, M.A.; Koltay, I.A.; Husvéth, F.; Dublecz, K. The effect of diet composition, a probiotic and a symbiotic treatment on the ileal microbiota composition of one-week-old broiler chickens. Acta Agrar. Debr. 2021, 1, 213–220. [Google Scholar] [CrossRef]
- Song, D.; Wang, W.; Chen, B.; Li, A.; Song, G.; Cheng, J.; Qiao, L.; Zhu, R.; Min, Y. Dietary supplemental synbiotic–yucca extract compound preparation modulates production performance, immune status and faecal microflora diversity in laying hens. Food Agric. Immunol. 2022, 33, 360–376. [Google Scholar] [CrossRef]
- Brugaletta, G.; De Cesare, A.; Zampiga, M.; Laghi, L.; Oliveri, C.; Zhu, C.; Manfreda, G.; Syed, B.; Valenzuela, L.; Sirri, F. Effects of Alternative Administration Programs of a Synbiotic Supplement on Broiler Performance, Foot Pad Dermatitis, Caecal Microbiota, and Blood Metabolites. Animals 2020, 10, 522. [Google Scholar] [CrossRef]
Farm | Intestinal Tract | Histopathological Lesion Score | ||
---|---|---|---|---|
CTRL | PS | p-Value | ||
All farms | Duodenum | 1.667 ± 0.480 | 1.367 ± 0.490 | 0.0211 |
Jejunum | 1.833 ± 0.379 | 1.3 ± 0.466 | <0.0001 | |
Ileum | 1.8 ± 0.407 | 1.233 ± 0.430 | <0.0001 | |
Caecum | 2.067 ± 0.691 | 1.5 ± 0.630 | 0.0081 | |
Farm 1 | Duodenum | 1 ± 0.000 | 1.6 ± 0.516 | 0.005 |
Jejunum | 1.5 ± 0.527 | 1.1 ± 0.316 | 0.06362 | |
Ileum | 1.5 ± 0.527 | 1 ± 0.000 | 0.0137 | |
Caecum | 2.3 ± 0.675 | 1.2 ± 0.483 | 0.0017 | |
Farm 2 | Duodenum | 2 ± 0.000 | 1.3 ± 0.483 | 0.0016 |
Jejunum | 2 ± 0.000 | 1.7 ± 0.483 | 0.0767 | |
Ileum | 1.9 ± 0.316 | 1.4 ± 0.516 | 0.0251 | |
Caecum | 1.6 ± 0.516 | 1.5 ± 0.527 | 0.6934 | |
Farm 3 | Duodenum | 2 ± 0.000 | 1.2 ± 0.133 | 0.0004 |
Jejunum | 2 ± 0.000 | 1.1 ± 0.100 | <0.0001 | |
Ileum | 2 ± 0.000 | 1.3 ± 0.157 | 0.0016 | |
Caecum | 2.3 ± 0.213 | 1.8 ± 0.249 | 0.1557 |
Farm | Intestinal Tract | Villi Length | Crypt Length | ||||
---|---|---|---|---|---|---|---|
CTRL | PS | p-Value | CTRL | PS | p-Value | ||
All farms | Duodenum | 725.7 ± 150.2 | 760.6 ± 125.6 | 0.0221 | 160.8 ± 62.7 | 155.9 ± 70.2 | 0.1343 |
Jejunum | 446.7 ± 117.0 | 498.0 ± 109.0 | <0.0001 | 114.8 ± 50.0 | 121.9 ± 57.0 | 0.5289 | |
Ileum | 255.7 ± 90.2 | 304.4 ± 85.9 | <0.0001 | 107.2 ± 55.6 | 109.4 ± 43.6 | 0.2507 | |
Caecum | 114.3 ± 46.2 | 146.0 ± 81.8 | 0.0113 | 91.7 ± 34.7 | 94.0 ± 38.1 | 0.764 | |
Farm 1 | Duodenum | 709.8 ± 136.2 | 710.9 ± 178.7 | 0.9478 | 216.4 ± 73.1 | 234.9 ± 63.1 | 0.2385 |
Jejunum | 518.4 ± 94.8 | 525.6 ± 98.0 | 0.6969 | 165.1 ± 53.2 | 184.4 ± 50.4 | 0.0589 | |
Ileum | 345.3 ± 64.6 | 382.9 ± 94.0 | 0.046 | 158.4 ± 67.9 | 163.2 ± 29.9 | 0.0189 | |
Caecum | 152.0 ± 42.2 | 224.3 ± 93.4 | 0.0002 | 123.1 ± 29.2 | 132.2 ± 37.3 | 0.2482 | |
Farm 2 | Duodenum | 791.6 ± 109.9 | 804.0 ± 72.3 | 0.8795 | 147.4 ± 31.0 | 118.3 ± 28.4 | <0.0001 |
Jejunum | 344.0 ± 87.9 | 484.6 ± 92.1 | <0.0001 | 88.5 ± 18.9 | 88.2 ± 22.3 | 0.5372 | |
Ileum | 199.0 ± 46.5 | 276.9 ± 40.3 | <0.0001 | 80.5 ± 17.8 | 82.5 ± 13.9 | 0.5259 | |
Caecum | 78.8 ± 29.4 | 112.3 ± 31.9 | <0.0001 | 81.2 ± 23.7 | 70.6 ± 19.8 | 0.0329 | |
Farm 3 | Duodenum | 659.7 ± 170.2 | 766.8 ± 79.4 | 0.0025 | 118.7 ± 22.4 | 114.6 ± 24.8 | 0.6075 |
Jejunum | 477.8 ± 88.9 | 483.8 ± 129.9 | 0.5837 | 90.87 ± 23.3 | 93.0 ± 29.0 | 0.855 | |
Ileum | 222.6 ± 76.3 | 254.3 ± 49.9 | 0.0383 | 82.9 ± 21.5 | 82.3 ± 16.1 | 0.9341 | |
Caecum | 112.1 ± 33.2 | 101.5 ± 34.3 | 0.0926 | 70.5 ± 25.7 | 79.5 ± 19.1 | 0.0141 |
Farm | Average Carcass Weight (FCR) | ||
---|---|---|---|
CTRL | PS | p-Value | |
Farm 1 | 1948 g (1.85) | 2021 g (1.79) | 0.0094 |
Farm 2 | 2001 g (1.70) | 2095 g (1.64) | 0.0052 |
Farm 3 | 1979 g (1.76) | 2087 g (1.70) | 0.0079 |
ASV | Log2 Fold Change | Standard Error | Adjusted p-Value | Lowest Resolved Taxon |
---|---|---|---|---|
ASV_566 | −30.000000 | 4.494941 | 2.4864 × 10−11 | Faecalibacterium |
ASV_450 | −23.252888 | 3.715454 | 3.8889 × 10−10 | Monoglobus |
ASV_557 | −27.994668 | 4.727891 | 3.1965 × 10−9 | Clostridia UCG-014 |
ASV_788 | 30.000000 | 5.187864 | 7.3500 × 10−9 | Lachnospiraceae |
ASV_326 | −30.000000 | 5.454703 | 3.8013 × 10−8 | Clostridia UCG-014 |
ASV_156 | −30.000000 | 5.827878 | 2.6374 × 10−7 | Clostridia UCG-014 |
ASV_159 | −30.000000 | 5.839874 | 2.7902 × 10−7 | Clostridia UCG-014 |
ASV_275 | −29.839008 | 5.840154 | 3.2338 × 10−7 | Clostridia UCG-014 |
ASV_340 | 30.000000 | 5.832041 | 2.6895 × 10−7 | Clostridia |
ASV_395 | −29.762335 | 5.834230 | 3.3727 × 10−7 | Clostridia UCG-014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prentza, Z.; Castellone, F.; Legnardi, M.; Antlinger, B.; Segura-Wang, M.; Kefalas, G.; Papaioannou, N.; Stylianaki, I.; Papatsiros, V.G.; Franzo, G.; et al. Administration of a Multi-Genus Synbiotic to Broilers: Effects on Gut Health, Microbial Composition and Performance. Animals 2023, 13, 113. https://doi.org/10.3390/ani13010113
Prentza Z, Castellone F, Legnardi M, Antlinger B, Segura-Wang M, Kefalas G, Papaioannou N, Stylianaki I, Papatsiros VG, Franzo G, et al. Administration of a Multi-Genus Synbiotic to Broilers: Effects on Gut Health, Microbial Composition and Performance. Animals. 2023; 13(1):113. https://doi.org/10.3390/ani13010113
Chicago/Turabian StylePrentza, Zoi, Francesco Castellone, Matteo Legnardi, Birgit Antlinger, Maia Segura-Wang, Giorgos Kefalas, Nikolaos Papaioannou, Ioanna Stylianaki, Vasileios G. Papatsiros, Giovanni Franzo, and et al. 2023. "Administration of a Multi-Genus Synbiotic to Broilers: Effects on Gut Health, Microbial Composition and Performance" Animals 13, no. 1: 113. https://doi.org/10.3390/ani13010113
APA StylePrentza, Z., Castellone, F., Legnardi, M., Antlinger, B., Segura-Wang, M., Kefalas, G., Papaioannou, N., Stylianaki, I., Papatsiros, V. G., Franzo, G., Cecchinato, M., & Koutoulis, K. (2023). Administration of a Multi-Genus Synbiotic to Broilers: Effects on Gut Health, Microbial Composition and Performance. Animals, 13(1), 113. https://doi.org/10.3390/ani13010113