Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Description and Feed Preparation
2.2. Experimental Design
2.3. Metabolic Trial
2.3.1. Analysis of the Mineral Nutrients Composition of the Feed
2.3.2. Analysis of Samples for Chemical Composition
2.3.3. Growth Performance
2.3.4. Methane Estimation
2.3.5. Collection of Blood Samples
2.4. Immunological Analysis
2.4.1. Cell-Mediated Immune Response (CMI)
2.4.2. Humoral Immune Response (HI)
2.5. Statistical Analysis
3. Results
3.1. Mineral and Chemical Composition of Berseem Fodder, Concentrate, and Moringa oleifera Leaves
3.2. Chemical Composition of Feed
3.3. Feed Intake and Digestibility of Nutrients in Different Groups
3.4. Overall Performance of Goats after 180 Days of the Feeding Trial
3.5. Impact of ML on N Balance in Goats
3.6. Enteric Methane Production in Goats
3.7. Effects of ML on Blood Parameters and Antioxidant Activities in Goats
3.8. Effects of ML on Cell-Mediated (CMI) and Humoral Immune (HI) Responses in Goats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouchene-Khelifi, N.A.; Ouchene, N.; Lafri, M. Characterization and typology of goat production systems in Algeria based on producers survey. Bull. Natl. Res. Cent. 2021, 45, 22. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 744–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchet-Filleau, A.H.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totakul, P.; Viennasay, B.; Sommai, S.; Matra, M.; Infascelli, F.; Wanapat, M. Chaya (Cnidoscolus aconitifolius, Mill. Johnston) pellet supplementation improved rumen fermentation, milk yield and milk composition of lactating dairy cows. Livestock Sci. 2020, 262, 104974. [Google Scholar] [CrossRef]
- Huang, H.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Lechniak, D.; Vazirigohar, M.; Varadyova, Z.; Kozłowska, M.; Cieślak, A. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim. Feed. Sci. Technol. 2021, 279, 115038. [Google Scholar] [CrossRef]
- Puchalska, J.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Gao, M.; Petrič, D.; Nabzdyk, M.; Cieślak, A. The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms. Animals 2021, 11, 2843. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.K.; Elsharbasy, F.S.; Fadlelmula, A.A. Nutritional values of Moringa oleifera, total protein. Amino acid, vitamins, minerals, carbohydrates, total fat and crude fiber, under the semi-arid conditions of Sudan. J. Microb. Biochem. Technol. 2008, 10, 56–58. [Google Scholar] [CrossRef]
- Padayachee, B.; Baijnath, H. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. S. Afr. J. Bot. 2020, 129, 304–316. [Google Scholar] [CrossRef]
- Olusanya, R.N.; Kolanisi, U.; Van Onselen, A.; Ngobese, N.Z.; Siwela, M. Nutritional composition and consumer acceptability of Moringa oleifera leaf powder (MOLP)-supplemented mahewu. S. Afr. J. Bot. 2020, 129, 175–180. [Google Scholar] [CrossRef]
- Moyo, B.; Oyedemi, D.; Masika, P.J.; Muchenje, V. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 2012, 91, 441–447. [Google Scholar] [CrossRef]
- Nouman, W.; Basra, S.M.A.; Siddiqui, M.T.; Yasmeen, A.; Gull, T.; Alcayde, M.A.C. Potential of Moringa oleifera L. as livestock fodder crop: A review. Turk. J. Agric. For. 2014, 38, 1. [Google Scholar] [CrossRef]
- Kekana, T.W.; Marume, U.; Muya, M.C.; Nherera-Chokuda, F.V. Periparturient antioxidant enzymes, haematological profile and milk production of dairy cows supplemented with Moringa oleifera leaf meal. Anim. Feed. Sci. Technol. 2020, 268, 114606. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.Y.; Alsawmahi, O.N.; Abdoun, K.A.; Ghafoor, K.; Babiker, E.E. Antioxidant potential of moringa leaves for improvement of milk and serum quality of aardi goats. S. Afr. J Bot. 2020, 129, 134–137. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Olafadehan, O.A.; Abdo, M.M. Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal 2018, 12, 964–972. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S.; Waldrip, H.M.; Parker, D.; Todd, R.W.; Brauer, D. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nut. 2020, 6, 231–246. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Hassan, E.H. Effects of dietary inclusion of Moringa oleifera leaf meal on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Saudi J. Biol. Sci. 2021, 28, 4430–4436. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Morsy, T.A.; Salem, A.Z.M.; Lopez, S.; Kholif, A.M. Moringa oleifera leaf meal as a protein source in lactating goat’s diets: Feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rum. Res. 2015, 129, 129–137. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Leibovich, H.; Vaknin, Y.; Sagi, G.; Shabtay, A.; Ben-Meir, Y.; Nikbachat, M.; Portnik, Y.; Yishay, M.; Miron, J. Effect of feeding lactating cows with ensiled mixture of Moringa oleifera, wheat hay and molasses, on digestibility and efficiency of milk production. Anim. Feed. Sci. Technol. 2016, 211, 75–83. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, T.; Diao, Q. Effect of Dietary Supplementation of Moringa Oleifera on the Production Performance and Fecal Methanogenic Community of Lactating Dairy Cows. Animals 2019, 9, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, B.; Luo, J.; Wang, P.; Yang, L.; Chen, T.; Sun, J. The beneficial effects of Moringa oleifera leaf on reproductive performance in mice. Food Sci. Nutr. 2019, 7, 738–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, A.; Hussain, T.; Hameed, A.; Shahzad, M.; Mazhar, M.U.; Yang, G. Dietary Moringa oleifera alters periparturient plasma and milk biochemical indicators and promotes productive performance in goats. Front. Vet. Sci. 2022, 8, 787719. [Google Scholar] [CrossRef] [PubMed]
- Nwinuka, N.M.; Ibeh, G.O.; Ekeke, G.I. Proximate composition and levels of some toxicants in four commonly consumed spices. J. Appl. Sci. Env. Manag. 2005, 9, 150–155. [Google Scholar]
- Baccou, J.C.; Lambert, F.; Sauvaire, Y. Spectrophotometric method for the determination of total steroidal sapogenin. Analyst 1977, 102, 458–465. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Sultana, S. Nutritional and functional properties of Moringa oleifera. Metab. Open 2020, 8, 100061. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005; Volume 222. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef]
- Johnson, K.; Westberg, H.; Michal, J.; Cossalman, M. The SF6 tracer technique: Methane measurement from ruminants. In Measuring Methane Production from Ruminants; Makkar, H.P., Vercoe, P.E., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Madesh, M.; Balasubramanian, K.A. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J. Biochem. Biophys. 1998, 35, 184–188. [Google Scholar]
- Pattanaik, A.K.; Khan, S.A.; Goswami, T.K. Iodine supplementation to a diet containing Leucaena leucocephala leaf meal: Consequences on nutrient metabolism, clinical chemistry and immunity of goats. Anim. Prod. Sci. 2011, 51, 541–548. [Google Scholar] [CrossRef]
- Sharma, A.N.; Kumari, L.V.; Ram, C.; Mondal, G. Response of different synbiotics on gut health, immunity and growth performance of pre-ruminant Buffalo calves. Indian J. Anim. Nutr. 2020, 37, 206–212. [Google Scholar] [CrossRef]
- Abou-Elkhair, R.; Abdo Basha, H.; Slouma Hamouda Abd El Naby, W.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; Naiel, M.A.E. Effect of a diet supplemented with the Moringa oleifera seed powder on the performance, egg quality, and gene expression in Japanese laying quail under heat-stress. Animals 2020, 10, 809. [Google Scholar] [CrossRef]
- Van Emon, M.; Sanford, C.; McCoski, S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals 2020, 10, 2404. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Galyean, M.L.; Anele, U.Y.; Morsy, T.A. Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst. 2019, 93, 1877–1886. [Google Scholar] [CrossRef]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed. Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Sultana, N.; Alimon, A.; Huque, K.; Sazili, A.; Yaakub, H.; Hossain, J.; Baba, M. The feeding value of Moringa (Moringa oleifera) foliage as replacement to conventional concentrate diet in Bengal goats. Adv. Anim. Vet. Sci. 2015, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Shankhpal, S.S.; Waghela, C.R.; Sherasia, P.L.; Sridhar, V.; Srivastava, A.K.; Singh, D. Effect of feeding Moringa (Moringa oleifera) as green fodder on feed intake, milk yield, microbial protein synthesis and blood profile in crossbred cows. Indian J. Anim. Nut. 2019, 36, 228–234. [Google Scholar] [CrossRef]
- Kholif, A.E.; Morsy, T.A.; Gouda, G.A.; Anele, U.Y.; Galyean, M.L. Effect of feeding diets with processed Moringa oleifera meal as protein source in lactating Anglo-Nubian goats. Anim. Feed Sci. Technol. 2016, 217, 45–55. [Google Scholar] [CrossRef]
- Rahayu, I.; Timotius, K.H. Phytochemical Analysis, Antimutagenic and antiviral activity of Moringa oleifera L. leaf infusion: In Vitro and in silico studies. Molecules 2022, 27, 4017. [Google Scholar] [CrossRef] [PubMed]
- Fadiyimu, A.A.; Alokan, J.A.; Fajemisin, A.N. Digestibility, nitrogen balance and haematological profile of West African dwarf sheep fed dietary levels of Moringa oleifera as supplement to Panicum maximum. J. Am. Sci. 2010, 6, 634–643. [Google Scholar]
- Hassan, H.M.; El-Moniary, M.M.; Hamouda, Y.; El-Daly, E.F.; Youssef, A.W.; Abd El-Azeem, N.A. Effect of different levels of Moringa oleifera leaves meal on productive performance, carcass characteristics and some blood parameters of broiler chicks reared under heat stress conditions. Asian J. Anim. Vet. Adv. 2016, 11, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Aregheore, E.M. Intake and digestibility of Moringa oleifera–batiki grass mixtures by growing goats. Small Rumin. Res. 2020, 46, 23–28. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Vallejo, L.H.; Salem, A.Z.M.; Mellado, M.; Camacho, L.M.; Cipriano, M.; Olafadehan, O.A.; Olivares, J.; Rojas, S. Moringa oleifera leaf meal as an environmental friendly protein source for ruminants: Biomethane and carbon dioxide production, and fermentation characteristics. J. Clean. Prod. 2017, 165, 1229–1238. [Google Scholar] [CrossRef]
- Zeng, B.; Sun, J.J.; Chen, T.; Sun, B.L.; He, Q.; Chen, X.Y. Effects of M. oleifera silage on milk yield, nutrient digestibility and serum biochemical indexes of lactating dairy cows. J. Anim. Physiol. Anim. Nut. 2018, 102, 75–81. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Abu Elella, A.A.; Patra, A.K. Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation. Animals 2022, 12, 1589. [Google Scholar] [CrossRef]
- Machmüller, A.; Ossowski, D.A.; Kreuzer, M. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Anim. Feed. Sci. Technol. 2000, 85, 41–60. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.S. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 2012, 4, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Hernández, J.; Elghandour, M.M.M.Y.; Khusro, A.; Camacho-Diaz, L.M.; Vallejo, L.H.; Barbabosa-Pliego, A. Mitigation of ruminal biogases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. J. Clean. Prod. 2019, 234, 779–786. [Google Scholar] [CrossRef]
- Ndlovu, T.; Chimonyo, M.; Okoh, A.I.; Muchenje, V.; Dzama, K.; Dube, S. A comparison of nutritionally related blood metabolites among Nguni, Bonsmara and Angus steers raised on sweetveld. Vet. J. 2009, 179, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Bashar, M.K.; Huque, K.S.; Sarker, N.R.; Sultana, N. Quality assessment and feeding impact of Moringa feed on intake, digestibility, enteric CH4 emission, rumen fermentation, and milk yield. J. Adv. Vet. Anim. Res. 2020, 7, 521–529. [Google Scholar] [CrossRef]
- Babiker, E.E.; Juhaimi, F.A.L.; Ghafoor, K.; Mohamed, H.E.; Abdoun, K.A. Effect of partial replacement of alfalfa hay with Moringa species leaves on milk yield and composition of Najdi ewes. Trop. Anim. Health Prod. 2016, 48, 1427–1433. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Melesse, A.; Getye, Y.; Berihun, K.; Banerjee, S. Effect of feeding graded levels of Moringa stenopetala leaf meal on growth performance, carcass traits and some serum biochemical parameters of Koekoek chickens. Livestock Sci. 2013, 157, 498–505. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, Y.; Ding, M.; Xi, Q.; Liu, G.; Li, Y. Effects of Moringa oleifera leaves as a substitute for alfalfa meal on nutrient digestibility, growth performance, carcass trait, meat quality, antioxidant capacity and biochemical parameters of rabbits. J. Anim. Physiol. Anim. Nut. 2018, 102, 194–203. [Google Scholar] [CrossRef]
- Osman, H.M.; Shayoub, M.E.; Babiker, E.M. The effect of Moringa oleifera leaves on blood parameters and body weights of Albino rats and rabbits. Jordan J. Biol. Sci. 2012, 5, 147–150. [Google Scholar]
- Moyo, B.; Masika, P.J.; Muchenje, V. Effect of supplementing crossbred Xhosa lop-eared goat castrates with Moringa oleifera leaves on growth performance, carcass and non-carcass characteristics. Trop. Anim. Health Prod. 2012, 44, 801–809. [Google Scholar] [CrossRef]
- Afzal, A.; Hussain, T.; Hameed, A. Moringa oleifera supplementation improves antioxidant status and biochemical indices by attenuating early pregnancy stress in beetal goats. Front. Nut. 2021, 8, 700957. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Jimenez, M.; Almatrafi, M.M.; Fernandez, M.L. Bioactive components in Moringa Oleifera leaves protect against chronic disease. Antioxidants 2017, 16, 91. [Google Scholar] [CrossRef] [PubMed]
S.No. | Groups | Roughage (Berseem %) | Concentrate (%) | Moringa oleifera (%) |
---|---|---|---|---|
1. | Group I | 70 | 30 | 0 |
2. | Group II | 60 | 36 | 4 |
3. | Group III | 70 | 24 | 6 |
4. | Group IV | 80 | 16 | 4 |
Attributes (%) | GI (70R:30C) | GII (60R:40C) | GIII (70R:30C) | GIV (80R:20C) |
---|---|---|---|---|
Dry matter | 43.89 ± 0.20 | 48.17 ± 0.12 | 40.17 ± 0.17 | 34.65 ± 0.14 |
Organic matter | 87.75 ± 0.15 | 87.98 ± 0.19 | 87.77 ± 0.18 | 87.55 ± 0.16 |
Crude protein | 18.33 ± 0.07 | 18.72 ± 0.14 | 18.53 ± 0.13 | 18.21 ± 0.08 |
Ether extract | 3.33 ± 0.04 | 3.49 ± 0.10 | 3.39 ± 0.05 | 3.25 ± 0.06 |
Neutral detergent fiber | 48.58 ± 0.18 | 45.14 ± 0.15 | 48.77 ± 0.12 | 52.28 ± 0.09 |
Acid detergent fiber | 31.16 ± 0.16 | 28.66 ± 0.20 | 31.58 ± 0.11 | 34.22 ± 0.14 |
Hemicellulose | 17.42 ± 0.10 | 16.48 ± 0.11 | 17.20 ± 0.15 | 18.06 ± 0.06 |
Cellulose | 19.44 ± 0.15 | 18.11 ± 0.12 | 20.22 ± 0.10 | 21.81 ± 0.11 |
Total ash | 12.25 ± 0.08 | 12.01 ± 0.12 | 12.21 ± 0.11 | 12.44 ± 0.09 |
Parameters | GI | GII | GIII | GIV | SEM | p-Value |
---|---|---|---|---|---|---|
Intake (g/d) | ||||||
Dry matter | 694.67 b ± 5.43 | 753.14 a ± 4.25 | 752.65 a ± 9.55 | 722.88 b ± 3.77 | 5.97 | 0.01 |
Organic matter | 613.65 ± 6.19 | 663.18 ± 6.28 | 660.95 ± 21.56 | 633.63 ± 4.81 | 7.09 | 0.07 |
Crude protein | 110.39 b ± 3.09 | 123.51 a ± 1.17 | 118.86 a ± 3.88 | 109.88 b ± 0.83 | 1.78 | <0.001 |
Neutral detergent fiber | 339.39 b ± 6.51 | 339.92 a ± 3.22 | 366.96 a ± 11.97 | 377.98 b ± 2.87 | 5.31 | 0.01 |
Acid detergent fiber | 216.85 b ± 6.07 | 215.11 a ± 2.04 | 236.62 a ± 7.72 | 246.40 b ± 1.87 | 3.83 | <0.001 |
Total digestible nutrients | 420.08 c ± 3.19 | 472.25 a ± 13.84 | 452.27 ab ± 14.75 | 422.98 bc ± 11.85 | 6.53 | 0.01 |
Digestibility (%) | ||||||
Dry matter | 66.84 c ± 0.44 | 69.70 ab ± 1.10 | 70.82 a ± 1.26 | 67.68 bc ± 0.38 | 0.55 | 0.02 |
Organic matter | 69.56 b ± 0.68 | 71.89 a ± 0.29 | 71.76 a ± 0.61 | 69.75 b ± 0.62 | 0.36 | 0.01 |
Crude protein | 66.79 ± 1.01 | 65.47 ± 0.64 | 65.08 ± 0.59 | 66.19 ± 1.09 | 0.42 | 0.52 |
Ether extract | 73.28 ± 0.65 | 74.72 ± 2.27 | 75.18 ± 0.69 | 73.86 ± 2.18 | 0.77 | 0.84 |
Neutral detergent fiber | 52.94 b ± 0.45 | 54.91 a ± 0.90 | 56.04 a ± 0.77 | 53.35 b ± 0.70 | 0.44 | 0.02 |
Acid detergent fiber | 40.26 ± 1.87 | 42.88 ± 2.48 | 43.63 ± 2.16 | 41.79 ± 1.60 | 1.50 | 0.68 |
Attributes | GI | GII | GIII | GIV | SEM | p-Value |
---|---|---|---|---|---|---|
Initial BW (kg) | 14.13 ± 0.90 | 14.32 ± 0.61 | 14.36 ± 0.38 | 14.56 ± 0.89 | 0.61 | 0.981 |
Final BW (kg) | 28.43 b ± 0.89 | 32.50 a ± 0.98 | 31.84 a ± 0.54 | 29.15 b ± 0.84 | 0.72 | 0.005 |
Overall weight gain (kg) | 14.13 b ± 0.46 | 18.18 a ± 0.57 | 17.48 a ± 0.85 | 14.59 b ± 0.89 | 0.56 | 0.004 |
Average daily gain (g) | 79.22 b ± 1.13 | 101.01 a ± 3.02 | 95.68 a ± 2.16 | 81.42 b ± 1.28 | 1.87 | <0.001 |
Feed conversion efficiency | 11.38 b ± 1.02 | 13.41 a ± 0.98 | 13.15 a ± 0.01 | 11.21 b ± 0.03 | 0.45 | <0.003 |
Parameter | GI | GII | GIII | GIV | SEM | p-Value |
---|---|---|---|---|---|---|
N intake (g/d) | 17.75 b ± 0.45 | 19.87 a ± 0.20 | 19.13 a ± 0.59 | 17.67 b ± 0.14 | 0.28 | <0.001 |
Fecal N (g/d) | 5.42 ± 0.21 | 5.56 ± 0.12 | 5.32 ± 0.12 | 4.96 ± 0.09 | 0.08 | 0.06 |
Urinary (g/d) | 10.04 ± 0.66 | 11.44 ± 0.33 | 11.21 ± 0.64 | 10.27 ± 0.16 | 0.27 | 0.17 |
Total N loss (g/d) | 15.46 b ± 0.47 | 17.01 a ± 0.26 | 16.53 a ± 0.62 | 15.23 b ± 0.12 | 0.25 | 0.02 |
N balance (g/d) | 2.29 b ± 0.15 | 2.87 a ± 0.10 | 2.60 ab ± 0.05 | 2.44 b ± 0.13 | 0.07 | 0.01 |
Absorbed N (%) | 69.28 ± 1.87 | 72.01 ± 0.75 | 72.09 ± 1.04 | 71.91 ± 0.67 | 0.61 | 0.30 |
Nitrogen retention | ||||||
Intake (%) | 12.94 ± 0.88 | 14.47 ± 0.59 | 13.69 ± 0.62 | 13.78 ± 0.61 | 0.34 | 0.49 |
Absorbed (%) | 18.81 ± 0.57 | 20.12 ± 0.93 | 19.04 ± 1.09 | 19.15 ± 0.76 | 0.53 | 0.85 |
Parameter | GI | GII | GIII | GIV | SEM | p-Value |
---|---|---|---|---|---|---|
CH4(g/d) | 8.83 ± 0.07 | 8.24 ± 0.32 | 8.13 ± 0.22 | 8.77 ± 0.13 | 0.17 | 0.09 |
CH4 (MJ/d) | 0.49 ± 0.03 | 0.45 ± 0.02 | 0.45 ± 0.01 | 0.48 ± 0.01 | 0.02 | 0.12 |
CH4 (g/kg DMI) | 12.28 ± 0.62 | 11.42 ± 0.65 | 11.34 ± 0.73 | 11.50 ± 0.06 | 2.08 | 0.06 |
CH4/Kg (DM digested) | 17.34 ± 0.84 | 15.01 ± 0.83 | 15.09 ± 0.36 | 16.67 ± 0.32 | 0.57 | 0.08 |
CH4 (g/Kg OMI) | 13.85 ± 0.35 | 12.21 ± 0.49 | 12.14 ± 0.79 | 13.84 ± 0.14 | 0.44 | 0.06 |
CH4 (g/kg NDFI) | 25.31 ± 0.65 | 24.16 ± 0.90 | 22.21 ± 0.87 | 23.30 ± 0.33 | 0.67 | 0.08 |
CH4 energy loss as % | ||||||
GE loss | 2.68 ± 0.31 | 2.57 ± 0.10 | 2.55 ± 0.07 | 2.90 ± 0.03 | 0.12 | 0.471 |
DE loss | 4.73 ± 0.26 | 4.38 ± 0.14 | 4.39 ± 0.06 | 4.70 ± 0.09 | 0.13 | 0.296 |
ME loss | 5.91 ± 0.12 | 5.44 ± 0.24 | 5.29 ± 0.17 | 5.83 ± 0.01 | 0.13 | 0.07 |
Attribute | GI | GII | GIII | GIV | SEM | T | P | T*P |
---|---|---|---|---|---|---|---|---|
Glucose (mg/dL) | 64.56 ± 0.35 | 64.54 ± 0.30 | 65.01 ± 0.34 | 64.76 ± 0.31 | 0.32 | 0.327 | 0.351 | 0.275 |
Total protein (g/dL) | 6.74 b ± 0.02 | 6.97 a ± 0.04 | 6.99 a ± 0.05 | 6.77 b ± 0.02 | 0.03 | <0.001 | <0.001 | <0.001 |
Plasma albumin (g/dL) | 3.38 b ± 0.03 | 3.66 a ± 0.06 | 3.66 a ± 0.05 | 3.44 b ± 0.03 | 0.02 | 0.001 | <0.012 | <0.001 |
Plasma globulin (g/dL) | 3.36 ± 0.03 | 3.31 ± 0.03 | 3.32 ± 0.03 | 3.34 ± 0.02 | 0.02 | 0.232 | <0.001 | 0.120 |
Albumin globulin ratio | 1.01 ± 0.2 | 1.12 ± 0.03 | 1.12 ± 0.02 | 1.03 ± 0.01 | 0.06 | <0.001 | <0.145 | 0.225 |
Plasma cholesterol (g/dL) | 97.36 a ± 0.25 | 93.70 b ± 0.42 | 92.36 c ± 0.53 | 93.89 b ± 0.32 | 0.34 | <0.001 | <0.001 | <0.001 |
Blood plasma AST (U/L) | 195.29 ± 1.04 | 194.17 ± 0.93 | 194.49 ± 0.89 | 194.790.89 | 0.36 | 0.680 | <0.001 | 0.478 |
Plasma ALT (U/L) | 30.10 ± 0.35 | 29.92 ± 0.32 | 30.08 ± 0.27 | 29.99 ± 0.29 | 0.29 | 0.910 | <0.001 | 0.239 |
Blood plasma ALP (U/L) | 101.33 ± 0.56 | 100.75 ± 0.50 | 100.49 ± 0.54 | 100.85 ± 0.56 | 0.52 | 0.479 | <0.001 | 0.698 |
GPx activity (μmol of NDDPH oxidized/gHb) | 14.17 b ± 0.18 | 14.80 a ± 0.25 | 15.03 a ± 0.27 | 14.68 a ± 0.23 | 0.21 | <0.001 | <0.001 | 0.090 |
Catalase activity (µmol of H2O2 consumed/min/g/Hb) | 54.17 b ± 0.18 | 54.80 a ± 0.25 | 55.03 a ± 0.27 | 54.68 a ± 0.23 | 0.22 | <0.001 | <0.001 | 0.085 |
SOD activity (U/mg Hb) | 91.69 b ± 0.29 | 93.28 a ± 0.30 | 93.40 a ± 0.34 | 93.04 a ± 0.31 | 0.29 | 0.003 | <0.001 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitanthem, V.K.; Chaudhary, P.; Maiti, S.; Mohini, M.; Mondal, G. Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids. Animals 2023, 13, 97. https://doi.org/10.3390/ani13010097
Leitanthem VK, Chaudhary P, Maiti S, Mohini M, Mondal G. Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids. Animals. 2023; 13(1):97. https://doi.org/10.3390/ani13010097
Chicago/Turabian StyleLeitanthem, Vandana Kumari, Parul Chaudhary, Sanjit Maiti, Madhu Mohini, and Goutam Mondal. 2023. "Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids" Animals 13, no. 1: 97. https://doi.org/10.3390/ani13010097
APA StyleLeitanthem, V. K., Chaudhary, P., Maiti, S., Mohini, M., & Mondal, G. (2023). Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids. Animals, 13(1), 97. https://doi.org/10.3390/ani13010097