Variability in Enteric Methane Emissions among Dairy Cows during Lactation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Gas Sampling
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- FAO. GDP. In Climate Change and the Global Dairy Cattle Sector—The Role of the Dairy Sector in a Low-Carbon Future; The Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Garnsworthy, P.C. The environmental impact of fertility in dairy cows: A modelling approach to predict methane and ammonia emissions. Anim. Feed Sci. Technol. 2004, 112, 211–223. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, M.J.; Garnsworthy, P.C.; Stott, A.W.; Pryce, J.E. Effects of changing cow production and fitness traits on profit and greenhouse gas emissions of UK dairy systems. J. Agric. Sci. 2015, 153, 138–151. [Google Scholar] [CrossRef]
- Bell, M.J.; Potterton, S.L.; Craigon, J.; Saunders, N.; Wilcox, R.H.; Hunter, M.; Goodman, J.R.; Garnsworthy, P.C. Variation in enteric methane emissions among cows on commercial dairy farms. Animal 2014, 8, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Lassen, J.; Lovendahl, P. Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J. Dairy Sci. 2016, 99, 1959–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnsworthy, P.C.; Difford, G.F.; Bell, M.J.; Bayat, A.R.; Huhtanen, P.; Kuhla, B.; Lassen, J.; Peiren, N.; Pszczola, M.; Song, D.; et al. Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals 2019, 9, 837. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Garnsworthy, P.C.; Mallis, D.; Eckard, R.; Moate, P. Modified approach to estimating daily methane emissions of dairy cows by measuring filtered eructations during milking. J. Sustain. Org. Agric. Syst. 2019, 69, 47–56. [Google Scholar] [CrossRef]
- Hardan, A.; Garnsworthy, P.C.; Bell, M.J. Detection of methane eructation peaks in dairy cows at a robotic milking station using signal processing. Animals 2021, 12, 26. [Google Scholar] [CrossRef]
- Visscher, P.M. On the sampling variance of intraclass correlations and genetic correlations. Genetics 1998, 149, 1605–1614. [Google Scholar] [CrossRef]
- MAFF. Energy allowances and feeding systems for ruminants. In MAFF Reference Book 433; HMSO: London, UK, 1984; ISBN 0112426425. [Google Scholar]
- Bell, M.J.; Eckard, R.J. Reducing enteric methane losses from ruminant livestock—Its measurement, prediction and the influence of diet. In Livestock Production; In Tech Publishing: Rijeka, Croatia, 2012; pp. 135–150. [Google Scholar]
- Guilloteau, P.; Zabielski, R.; Blum, J.W. Gastrointestinal tract and digestion in the young ruminant: Ontogenesis, adaptations, consequences and manipulations. J. Physiol. Pharmacol. 2009, 60, 37–46. [Google Scholar]
- Grandl, F.; Amelchanka, S.L.; Furger, M.; Clauss, M.; Zeitz, J.O.; Kreuzer, M.; Schwarm, A. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age. J. Dairy Sci. 2016, 99, 3472–3485. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Bell, M.J.; Wall, E.; Russell, G.; Morgan, C.; Simm, G. Effect of breeding for milk yield, diet, and management on enteric methane emissions from dairy cows. Anim. Prod. Sci. 2010, 50, 817–826. [Google Scholar] [CrossRef]
- Dillon, P.; Berry, D.P.; Evans, R.D.; Buckley, F.; Horan, B. Consequences of genetic selection for increased milk production in European seasonal pasture based systems of milk production. Livest. Sci. 2006, 99, 141–158. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Crompton, L.A.; Mills, J.A.N. Improving the efficiency of energy utilisation in cattle. Anim. Prod. Sci. 2011, 51, 6–12. [Google Scholar] [CrossRef]
- Pryce, J.E.; Bell, M.J. The impact of genetic selection on greenhouse-gas emissions in Australian dairy cattle. Anim. Prod. Sci. 2017, 57, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Moate, P.J.; Deighton, M.H.; Williams, S.R.; Pryce, J.E.; Hayes, B.J.; Jacobs, J.L.; Eckard, R.J.; Hannah, M.C.; Wales, W.J. Reducing the carbon footprint of Australian milk production by mitigation of enteric methane emissions. Anim. Prod. Sci. 2016, 56, 1017–1034. [Google Scholar] [CrossRef]
- Hammond, K.J.; Humphries, D.J.; Crompton, L.A.; Green, C.; Reynolds, C.K. Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim. Feed Sci. Technol. 2015, 203, 41–52. [Google Scholar] [CrossRef]
- Jonker, A.; Molano, G.; Antwi, C.; Waghorn, G.C. Enteric methane and carbon dioxide emissions measured using respiration chambers, the sulfur hexafluoride tracer technique, and a GreenFeed head-chamber system from beef heifers fed alfalfa silage at three allowances and four feeding frequencies. J. Anim. Sci. 2016, 94, 4326–4337. [Google Scholar] [CrossRef]
- Doreau, M.; Arbre, M.; Rochette, Y.; Lascoux, C.; Eugène, M.; Martin, C. Comparison of 3 methods for estimating enteric methane and carbon dioxide emission in nonlactating cows. J. Anim. Sci. 2018, 96, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
Farm | Diet | No. of Cows | Parity | Milk Yield (kg/day) | Live Weight (kg) | Robot Concentrate DMI (kg/day) | DMI 1 (kg/day) | Milkings per Day (no. per Cow) |
---|---|---|---|---|---|---|---|---|
A | PMR + grazing | 55 | 3.1 (0.2) | 27.7 (1.2) | - | 6.0 (0.4) | - | 1.9 (0.07) |
B | PMR | 70 | 3.2 (0.3) | 21.1 (0.8) | 621 (7.8) | 6.2 (0.2) | 17.6 (0.2) | 1.7 (0.05) |
B | PMR + grazing | 66 | 4.0 0.3) | 21.8 (0.9) | 597 (8.5) | 4.6 (0.2) | 17.1 (0.3) | 1.9 (0.07) |
C | PMR | 41 | 2.1 (0.3) | 30.2 (1.3) | 634 (10.8) | 9.2 (0.6) | 18.9 (0.3) | 1.9 (0.09) |
C | PMR + grazing | 34 | 2.9 (0.3) | 24.7 (1.6) | 634 (10.5) | 7.3 (0.5) | 19.3 (0.3) | 2.0 (0.07) |
D | PMR + grazing | 47 | 2.2 (0.2) | 26.9 (1.4) | 610 (8.9) | 7.0 (0.5) | 17.9 (0.3) | 2.0 (0.09) |
E | PMR | 73 | 2.6 (0.2) | 26.4 (1.0) | 647 (8.1) | 7.3 (0.4) | 18.8 (0.3) | 2.1 (0.06) |
E | PMR + grazing | 71 | 3.9 (0.4) | 28.2 (0.9) | 629 (6.8) | 7.3 (0.3) | 18.5 (0.2) | 2.4 (0.08) |
F | PMR + grazing | 45 | 3.6 (0.3) | 26.3 (1.2) | 601 (11.5) | 5.0 (0.3) | 17.6 (0.3) | 2.4 (0.09) |
G | PMR | 116 | 2.6 (0.1) | 25.5 (0.7) | 627 (7.1) | 5.9 (0.2) | 18.2 (0.2) | 2.3 (0.06) |
H | PMR + grazing | 85 | 3.0 (0.2) | 26.2 (1.1) | - | 7.9 (0.2) | - | 3.4 (0.17) |
I | PMR | 110 | 2.9 (0.2) | 25.8 (0.7) | 602 (7.3) | 5.1 (0.2) | 17.6 (0.2) | 2.1 (0.05) |
J | PMR | 329 | 2.7 (0.1) | 31.0 (0.6) | 669 (3.7) | 6.6 (0.2) | 19.9 (0.1) | 2.3 (0.04) |
K | PMR | 199 | 2.2 (0.1) | 28.8 (0.7) | - | 5.9 (0.2) | - | 2.4 (0.06) |
L | PMR | 63 | 3.7 (0.2) | 27.0 (1.1) | 697 (8.1) | 5.3 (0.3) | 20.1 (0.2) | 2.9 (0.10) |
M | PMR | 119 | 2.4 (0.1) | 34.3 (0.9) | 611 (6.8) | 6.4 (0.2) | 18.7 (0.2) | 2.3 (0.06) |
N | PMR | 129 | 2.0 (0.1) | 22.4 (0.8) | 605 (6.9) | 6.6 (0.4) | 17.4 (0.2) | 2.6 (0.08) |
O | PMR | 81 | 2.9 (0.2) | 18.7 (0.8) | 580 (7.9) | 5.7 (0.2) | 16.4 (0.2) | 2.5 (0.08) |
P | PMR | 26 | 2.4 (0.4) | 29.7 (2.0) | - | 4.0 (0.4) | - | 2.2 (0.12) |
Q | PMR | 224 | 2.6 (0.1) | 35.4 (0.9) | - | - | - | 2.1 (0.03) |
R | PMR | 223 | 2.4 (0.1) | 32.6 (0.6) | 608 (4.8) | 5.2 (0.1) | 18.5 (0.1) | 2.5 (0.06) |
All | 2206 | 2.6 (0.04) | 30.4 (0.2) | 617 (1.6) | 5.7 (0.05) | 18.5 (0.01) | 2.4 (0.02) |
Farm | Forage (% DM) | Concentrate (% DM) | DM (g/kg) | Starch (g/kg DM) | Neutral Detergent Fibre (g/kg DM) | Crude Protein (g/kg DM) | Oil (g/kg DM) | Metabolisable Energy (MJ/kg DM) |
---|---|---|---|---|---|---|---|---|
A | 68.4 | 31.6 | 231 | 11 | 356 | 231 | 33 | 11.1 |
B | 68.7 | 31.3 | 395 | 141 | 399 | 141 | 42 | 10.6 |
C | 45.5 | 54.5 | 356 | 37 | 357 | 184 | 38 | 11.9 |
D | 57.9 | 42.1 | 461 | 165 | 403 | 131 | 31 | 11.4 |
E | 37.5 | 62.5 | 590 | 90 | 445 | 153 | 50 | 10.9 |
F | 75.6 | 24.4 | 362 | 32 | 401 | 156 | 29 | 11.3 |
G | 60.2 | 39.8 | 365 | 162 | 299 | 107 | 23 | 10.6 |
H | 59.8 | 40.2 | 404 | 62 | 434 | 137 | 41 | 10.3 |
I | 65.5 | 34.5 | 303 | 16 | 442 | 207 | 42 | 11.0 |
J | 42.3 | 57.7 | 519 | 47 | 383 | 138 | 39 | 11.4 |
K | 39.5 | 60.5 | 325 | 23 | 469 | 169 | 57 | 11.8 |
L | 47.9 | 52.1 | 489 | 87 | 481 | 116 | 45 | 10.1 |
M | 49.4 | 50.6 | 668 | 96 | 448 | 129 | 26 | 10.8 |
N | 58.3 | 41.7 | 380 | 20 | 301 | 162 | 19 | 11.5 |
O | 68.0 | 32.0 | 466 | 129 | 373 | 131 | 31 | 11.6 |
P | 45.1 | 54.9 | 510 | 89 | 410 | 133 | 33 | 11.6 |
Q | 42.9 | 57.1 | 360 | 19 | 470 | 155 | 50 | 11.2 |
R | 56.0 | 44.0 | 361 | 68 | 411 | 131 | 49 | 10.5 |
Emissions (g/min) | Emissions (g/kg Milk) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Effect (s.e) | Mean | F-Statistic | d.f. | SED | p Value | Effect (s.e) | Mean | F-Statistic | d.f. | SED | p Value | |
Farm 1 | 129 | 17 | 0.02 | <0.001 | 54 | 17 | 2.2 | <0.001 | |||||
Week of lactation 2 | 4.2 | 69 | 0.01 | <0.001 | 10 | 69 | 1.4 | <0.001 | |||||
Parity | 1 | 0.39 | 9.7 | 4 | 0.004 | <0.001 | 26 | 16 | 4 | 0.48 | <0.001 | ||
2 | 0.39 | 26 | |||||||||||
3 | 0.38 | 25 | |||||||||||
4 | 0.37 | 25 | |||||||||||
5+ | 0.36 | 25 | |||||||||||
Diet | PMR | 0.38 | 0.8 | 1 | 0.007 | 0.385 | 24 | 22 | 1 | 0.78 | <0.001 | ||
PMR + grazing | 0.38 | 28 | |||||||||||
DMI | 0.01 (0.001) | 105 | 1 | 0.001 | <0.001 | −0.82 (0.08) | 101 | 1 | 0.08 | <0.001 | |||
Diet × DMI | PMR | 0.01 (0.001) | 17 | 1 | 0.002 | <0.001 | −0.82 (0.08) | 5 | 1 | 0.32 | 0.024 | ||
PMR + grazing | 0.02 (0.003) | −0.10 (0.40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardan, A.; Garnsworthy, P.C.; Bell, M.J. Variability in Enteric Methane Emissions among Dairy Cows during Lactation. Animals 2023, 13, 157. https://doi.org/10.3390/ani13010157
Hardan A, Garnsworthy PC, Bell MJ. Variability in Enteric Methane Emissions among Dairy Cows during Lactation. Animals. 2023; 13(1):157. https://doi.org/10.3390/ani13010157
Chicago/Turabian StyleHardan, Ali, Philip C. Garnsworthy, and Matt J. Bell. 2023. "Variability in Enteric Methane Emissions among Dairy Cows during Lactation" Animals 13, no. 1: 157. https://doi.org/10.3390/ani13010157
APA StyleHardan, A., Garnsworthy, P. C., & Bell, M. J. (2023). Variability in Enteric Methane Emissions among Dairy Cows during Lactation. Animals, 13(1), 157. https://doi.org/10.3390/ani13010157