Acid–Base, Gas, Ions, and Glucose Analysis in Follicular Fluid in Holstein-Friesian Dairy Cows Is Associated with the Follicle Size in Poland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Samples
2.2. Acid–Base, Gas, and Biochemical Analysis of FF
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Embassy of the Netherlands in Poland Quick Scan Polish Dairy Sector Contents. Available online: https://www.agroberichtenbuitenland.nl/actueel/nieuws/2020/10/21/quick-scan-polish-dairy-sector (accessed on 23 March 2023).
- Senger, P.L. The Estrus Detection Problem: New Concepts, Technologies, and Possibilities. J. Dairy Sci. 1994, 77, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Joao, H.V. 2020 Statistics of embryo production and transfer in domestic farm animals. Embryo Technol. Newsl. 2021, 39, 22–40. [Google Scholar]
- Edwards, R.G. Developmental Potential in Bovine Oocytes Is Related to Cumulus-Oocyte Complex Grade, Calcium Current Activity, and Calcium Stores. Reproduction 1974, 37, 189–219. [Google Scholar] [CrossRef] [PubMed]
- Leroy, J.L.M.R.; Vanholder, T.; Delanghe, J.R.; Opsomer, G.; Van Soom, A.; Bols, P.E.J.; de Kruif, A. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim. Reprod. Sci. 2004, 80, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Orsi, N.M.; Gopichandran, N.; Leese, H.J.; Picton, H.M.; Harris, S.E. Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle. Reproduction 2005, 129, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ginther, O.J.; Kot, K.; Kulick, L.J.; Wiltbank, M.C. Sampling follicular fluid without altering follicular status in cattle: Oestradiol concentrations early in a follicular wave. Reproduction 1997, 109, 181–186. [Google Scholar] [CrossRef]
- Jorritsma, R.; Groot, M.W.d.; Vos, P.L.A.M.; Kruip, T.A.M.; Wensing, T.; Noordhuizen, J.P.T.M. Acute fasting in heifers as a model for assessing the relationship between plasma and follicular fluid NEFA concentrations. Theriogenology 2003, 60, 151–161. [Google Scholar] [CrossRef]
- Leroy, J.L.M.; Vanholder, T.; Delanghe, J.; Opsomer, G.; Van Soom, A.; Bols, P.E.; Dewulf, J.; de Kruif, A. Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology 2004, 62, 1131–1143. [Google Scholar] [CrossRef]
- Guerreiro, T.M.; Gonçalves, R.F.; Melo, C.F.O.R.; de Oliveira, D.N.; Lima, E.d.O.; Visintin, J.A.; de Achilles, M.A.; Catharino, R.R. A Metabolomic Overview of Follicular Fluid in Cows. Front. Vet. Sci. 2018, 5, 10. [Google Scholar] [CrossRef]
- Covelo, I.; Puente, M.A.; Tartaglione, C.M. Influence of Follicular Fluid on in Vitro Maturation and Fertilization of Bovine Oocytes. Open J. Anim. Sci. 2022, 12, 118–128. [Google Scholar] [CrossRef]
- Matoba, S.; Bender, K.; Fahey, A.G.; Mamo, S.; Brennan, L.; Lonergan, P.; Fair, T. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod. Fertil. Dev. 2014, 26, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.C.; Beaumont, S.E.; Peterson, A.J.; Berg, D.K. 335 A Procedure Combining ISTAT® Analysis with OPU to Study Bovine Follicular Environments. Reprod. Fertil. Dev. 2004, 17, 318–319. [Google Scholar] [CrossRef]
- Cech, S.; Dolezel, R.; Lopatarova, M.; Pechova, A. Acid-base balance of follicular fluid in dairy heifers. Reprod. Domest. Anim. 2007, 42, 113. [Google Scholar] [CrossRef]
- Quade, B.N.; Parker, M.D.; Occhipinti, R. The therapeutic importance of acid-base balance. Biochem. Pharmacol. 2021, 183, 114278. [Google Scholar] [CrossRef] [PubMed]
- Hammon, D.S.; Wang, S.; Holyoak, G.R. Ammonia concentration in bovine follicular fluid and its effect during in vitro maturation on subsequent embryo development. Anim. Reprod. Sci. 2000, 58, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Read, C.C.; Edwards, L.; Schrick, N.; Rhinehart, J.D.; Payton, R.R.; Campagna, S.R.; Castro, H.F.; Klabnik, J.L.; Horn, E.J.; Moorey, S.E. Correlation between Pre-Ovulatory Follicle Diameter and Follicular Fluid Metabolome Profiles in Lactating Beef Cows. Metabolites 2021, 11, 623. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, Y.; Sun, S.; Zhao, C.; Fu, S.; Xia, C.; Bai, Y. Metabolite Comparison between Serum and Follicular Fluid of Dairy Cows with Inactive Ovaries Postpartum. Animals 2022, 12, 285. [Google Scholar] [CrossRef]
- Indrova, E.; Dolezel, R.; Novakova-Mala, J.; Pechova, A.; Zavadilova, M.; Cech, S. Impact of acute metabolic acidosis on the acid-base balance in follicular fluid and blood in dairy cattle. Theriogenology 2017, 89, 41–46. [Google Scholar] [CrossRef]
- Sayers, R.G.; Kennedy, A.; Krump, L.; Sayers, G.P.; Kennedy, E. An observational study using blood gas analysis to assess neonatal calf diarrhea and subsequent recovery with a European Commission-compliant oral electrolyte solution. J. Dairy Sci. 2016, 99, 4647–4655. [Google Scholar] [CrossRef]
- Edwards, R.G. Arterial blood gases made easy. Reproduction 1974, 37, 189–219. [Google Scholar] [CrossRef]
- Zebeli, Q.; Mansmann, D.; Steingass, H.; Ametaj, B.N. Balancing diets for physically effective fibre and ruminally degradable starch: A key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livest. Sci. 2010, 127, 1–10. [Google Scholar] [CrossRef]
- Hassan, M.S.; Al-Nuaimi, A.J.; Al-Yasari, A.M.; Jameel, Y.J. Study the Effects of Follicular Size on some Biochemical Follicular Fluid Composition in She Camel (Camelus dromedarius). Adv. Anim. Vet. Sci. 2018, 6, 341–346. [Google Scholar] [CrossRef]
- Sun, B.; Yeh, J. Calcium Oscillatory Patterns and Oocyte Activation During Fertilization: A Possible Mechanism for Total Fertilization Failure (TFF) in Human In Vitro Fertilization? Reprod. Sci. 2021, 28, 639–648. [Google Scholar] [CrossRef]
- Popkiss, S.; Horta, F.; Vollenhoven, B.; Green, M.P.; Zander-Fox, D. Calcium chloride dihydrate supplementation at ICSI improves fertilization and pregnancy rates in patients with previous low fertilization: A retrospective paired treatment cycle study. J. Assist. Reprod. Genet. 2022, 39, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Hu, H.; Liu, Z.; Zhang, L.; Zhuan, Q.; Li, X.; Fu, X.; Zhu, S.; Hou, Y. The Role of Ca2+ in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low-Calcium Model. Front. Cell Dev. Biol. 2021, 9, 746237. [Google Scholar] [CrossRef]
- Kur, D.K.; Hillig, T.; Hansen, S.I.; Goharian, T.; Witte, M.L.; Thode, J. Evaluation of a New Automated Routine Measurement for Serum Adjusted Ionized Calcium (at pH 7.4) in Patients Suspected of Calcium Metabolic Disease. J. Appl. Lab. Med 2020, 5, 704–715. [Google Scholar] [CrossRef]
- Lam, V.; Dhaliwal, S.S.; Mamo, J.C. Adjustment of ionized calcium concentration for serum pH is not a valid marker of calcium homeostasis: Implications for identifying individuals at risk of calcium metabolic disorders. Ann. Clin. Biochem. 2013, 50, 224–229. [Google Scholar] [CrossRef]
- Kim, J.-M.; Song, K.-S.; Xu, B.; Wang, T. Role of potassium channels in female reproductive system. Obstet. Gynecol. Sci. 2020, 63, 565–576. [Google Scholar] [CrossRef]
- Gałęska, E.; Wrzecińska, M.; Kowalczyk, A.; Araujo, J.P. Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. Biology 2022, 11, 1006. [Google Scholar] [CrossRef]
- Saleh, A.; Abozed, G.F.; Zanouny, A.I. Effect of Different Dietary Electrolyte Balance Levels on Physiological Responses and Metabolic Rate of Rams Exposed to Heat Stress Conditions. J. Anim. Poult. Prod. 2020, 11, 465–471. [Google Scholar] [CrossRef]
- Mogheiseh, A.; Kafi, M.; Golestani, N.; Roshan-Ghasrodashti, A.; Nazifi, S.; Mirzaei, A. Follicular fluid composition of ovulatory follicles in repeat breeder Holstein dairy cows. Asian Pacif. J. Reprod. 2019, 8, 124. [Google Scholar] [CrossRef]
- Hussein, H.; Boryczko, Z.; Bostedt, H. Acid-Base Parameters and Steroid Concentrations in Pre-Ovulatory Follicles and Plasma of Lactating Dairy Cows with Spontaneous and Synchronized Oestrus or Follicular Cyst. Reprod. Domest. Anim. 2013, 48, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Abd Ellah, M.R.; Hussein, H.A.; Derar, D.R. Ovarian follicular fluid constituents in relation to stage of estrus cycle and size of the follicle in buffalo. Vet. World 2010, 3, 263–267. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Gianesella, M.; Morgante, M.; Cannizzo, C.; Stefani, A.; Dalvit, P.; Messina, V.; Giudice, E. Subacute Ruminal Acidosis and Evaluation of Blood Gas Analysis in Dairy Cow. Vet. Med. Int. 2010, 2010, 392371. [Google Scholar] [CrossRef]
Group I | Group II | Group III | ||||
---|---|---|---|---|---|---|
Parameters | Arithmetic Mean | Standard Deviation | Arithmetic Mean | Standard Deviation | Arithmetic Mean | Standard Deviation |
pH | 7.12 ^ | 0.10 | 7.18 ^ | 0.07 | 7.23 ^ | 0.06 |
pCO2 [mmhg] | 85.81 | 28.34 | 77.35 | 18.72 | 66.20 | 3.41 |
pO2 [mmhg] | 174.83 | 26.16 | 170.84 | 22.47 | 171.60 | 25.10 |
HCO3-act [mmol/L] | 26.44 | 4.84 | 28.08 | 4.29 | 27.63 | 4.24 |
HCO3-std [mmol/L] | 19.85 ^ | 2.80 | 21.58 ^ | 2.24 | 23.35 ^ | 3.77 |
BE ecf [mmol/L] | −2.90 | 4.89 | −0.23 | 4.32 | 0.13 | 5.23 |
BE(b) [mmol/L] | −5.84 ^ | 3.50 | −3.62 ^ | 2.84 | −1.58 ^ | 4.69 |
ctCO2 [mmol/L] | 29.08 | 5.47 | 30.45 | 4.75 | 29.70 | 4.36 |
Na+ [mmol/L] | 140.18 | 3.79 | 141.95 | 3.67 | 140.65 | 0.44 |
K+ [mmol/L] | 4.71 a | 1.07 | 4.04 ab | 0.39 | 3.68 a | 0.16 |
Ca++ [mmol/L] | 1.17 | 0.06 | 1.17 | 0.05 | 1.19 | 0.05 |
Ca++7.4 [mmol/L] | 1.05 a | 0.06 | 1.10 ab | 0.04 | 1.14 b | 0.02 |
Cl− [mmol/L] | 103.44 | 2.71 | 105.08 | 3.84 | 102.75 | 1.50 |
AnGap [mmol/L] | 15.03 | 5.30 | 12.83 | 3.31 | 13.93 | 3.19 |
Glu [mg/dL] | 90.81 | 30.95 | 99.42 | 26.89 | 90.50 | 31.82 |
cAMP [pmol/mL] | 2.91 | 2.45 | 5.20 | 5.08 | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawliński, B.; Petrajtis-Gołobów, M.; Trela, M.; Witkowska-Piłaszewicz, O. Acid–Base, Gas, Ions, and Glucose Analysis in Follicular Fluid in Holstein-Friesian Dairy Cows Is Associated with the Follicle Size in Poland. Animals 2023, 13, 1636. https://doi.org/10.3390/ani13101636
Pawliński B, Petrajtis-Gołobów M, Trela M, Witkowska-Piłaszewicz O. Acid–Base, Gas, Ions, and Glucose Analysis in Follicular Fluid in Holstein-Friesian Dairy Cows Is Associated with the Follicle Size in Poland. Animals. 2023; 13(10):1636. https://doi.org/10.3390/ani13101636
Chicago/Turabian StylePawliński, Bartosz, Monika Petrajtis-Gołobów, Michał Trela, and Olga Witkowska-Piłaszewicz. 2023. "Acid–Base, Gas, Ions, and Glucose Analysis in Follicular Fluid in Holstein-Friesian Dairy Cows Is Associated with the Follicle Size in Poland" Animals 13, no. 10: 1636. https://doi.org/10.3390/ani13101636
APA StylePawliński, B., Petrajtis-Gołobów, M., Trela, M., & Witkowska-Piłaszewicz, O. (2023). Acid–Base, Gas, Ions, and Glucose Analysis in Follicular Fluid in Holstein-Friesian Dairy Cows Is Associated with the Follicle Size in Poland. Animals, 13(10), 1636. https://doi.org/10.3390/ani13101636