Genotypic and Phenotypic Characterization of Escherichia coli Isolates Recovered from the Uterus of Mares with Fertility Problems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Collection
2.3. Cell Line
2.4. E. coli Isolation and Identification
2.5. Hemolysis
2.6. Evaluation of E. coli Antimicrobial Susceptibility Profiles
2.7. Evaluation of E. coli Biofilm Formation
2.8. Phylotyping
2.9. Evaluation of E. coli Virulence Genes (VGs)
2.10. Adhesion Assay
2.11. Invasion Assays
2.12. Hierarchical Clustering Analysis
2.13. Statistical Analysis
3. Results
3.1. E. coli Isolation and Identification
3.2. Antimicrobial Resistance Profiles of E. coli Strains
3.3. In Vitro E. coli Biofilm Formation
3.4. Phylogenetic Group and E. coli Virulence Genes
3.5. Adhesion and Invasion Assays
3.6. Hierarchical Clustering Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laseca, N.; Anaya, G.; Peña, Z.; Pirosanto, Y.; Molina, A.; Demyda Peyrás, S. Impaired reproductive function in equines: From genetics to genomics. Animals 2021, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Causey, R.C. Making sense of equine uterine infections: The many faces of physical clearance. Vet. J. 2006, 172, 405–421. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, M.M.; Causey, R.C. Clinical and subclinical endometritis in the mare: Both threats to fertility. Reprod. Domest. Anim. 2009, 44, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Albihn, A.B.; Baverud, V.; Magnusson, U. Uterine microbiology and antimicrobial susceptibility in isolated bacteria from mares with fertility problems. Acta Vet. Scand. 2003, 44, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Frontoso, R.; De Carlo, E.; Pasolini, M.P.; van der Meulen, K.; Pagnini, U.; Iovane, G.; De Martino, L. Retrospective study of bacterial isolates and their antimicrobial susceptibilities in equine uteri during fertility problems. Res. Vet. Sci. 2008, 84, 1–6. [Google Scholar] [CrossRef]
- Reshadi, P.; Heydari, F.; Ghanbarpour, R.; Bagheri, M.; Jajarmi, M.; Amiri, M.; Alizade, H.; Badouei, M.A.; Sahraei, S.; Adib, N. Molecular characterization and antimicrobial resistance of potentially human-pathogenic Escherichia coli strains isolated from riding horses. BMC Vet. Res. 2021, 17, 131. [Google Scholar] [CrossRef]
- Poolman, J.T.; Wacker, M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: Challenges for vaccine development and progress in the field. J. Infect. Dis. 2016, 213, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.A.; Walsh, C.; Karczmarczyk, M.; O’Brien, S.; Akasheh, N.; Quirke, M.; Farrell-Ward, S.; Buckley, T.; Fogherty, U.; Kavanagh, K.; et al. Multi-drug resistant Escherichia coli in diarrhoeagenic foals: Pulsotyping, phylotyping, serotyping, antibiotic resistance and virulence profiling. Vet. Microbiol. 2018, 223, 144–152. [Google Scholar] [CrossRef]
- DebRoy, C.; Roberts, E.; Jayarao, B.M.; Brooks, J.W. Bronchopneumonia associated with extraintestinal pathogenic Escherichia coli in a horse. J. Vet. Diagn. Investig. 2008, 20, 661–664. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 2019, 32, e00135-18. [Google Scholar] [CrossRef] [PubMed]
- Raidal, S.L. Antimicrobial stewardship in equine practice. Aust. Vet. J. 2019, 97, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Canisso, I.F.; Segabinazzi, L.G.T.M.; Fedorka, C.E. Persistent breeding-induced endometritis in mares—A multifaceted challenge: From clinical aspects to immunopathogenesis and pathobiology. Int. J. Mol. Sci. 2020, 21, 1432. [Google Scholar]
- Lewis, A.J.; Richards, A.C.; Mulvey, M.A. Invasion of host cells and tissues by uropathogenic bacteria. Microbiol. Spectr. 2016, 4, 359–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čurová, K.; Slebodníková, R.; Kmeťová, M.; Hrabovský, V.; Maruniak, M.; Liptáková, E.; Siegfried, L. Virulence, phylogenetic background and antimicrobial resistance in Escherichia coli associated with extraintestinal infections. J. Infect. Public Health 2020, 13, 1537–1543. [Google Scholar] [CrossRef]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Nocera, F.P.; Ambrosio, M.; Conte, A.; Di Palma, T.; Castaldo, S.; Pasolini, M.P.; Fiorito, F.; De Martino, L. Importance of broth-enrichment culture in equine endometritis diagnosis. New Microbiol. 2021, 44, 19–23. [Google Scholar]
- Beutin, L.; Montenegro, M.A.; Orskov, I.; Orskov, F.; Prada, J.; Zimmermann, S.; Stephan, R. Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J. Clin. Microbiol. 1989, 27, 2559–2564. [Google Scholar] [CrossRef] [Green Version]
- CLSI Approved Standard M100-S15; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, IL, USA, 2018.
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 8.1; EUCAST: Växjö, Sweden, 2018; Available online: http://www.eucast.org (accessed on 20 March 2018).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Cirković, I.; Ranin, L.; Svabić-Vlahović, M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 2004, 38, 428–432. [Google Scholar] [CrossRef]
- Johnson, J.R.; Stell, A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Longhi, C.; Comanducci, A.; Riccioli, A.; Ziparo, E.; Marazzato, M.; Aleandri, M.; Conte, A.L.; Lepanto, M.S.; Goldoni, P.; Conte, M.P. Features of uropathogenic Escherichia coli able to invade a prostate cell line. New Microbiol. 2016, 39, 146–149. [Google Scholar] [PubMed]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions; R Package Version 2.1.4; R Foundation: Indianapolis, IN, USA, 2022. [Google Scholar]
- Yu, G. Using ggtree to Visualize Data on Tree-Like Structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Lam, T.T.; Zhu, H.; Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018, 35, 3041–3043. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.M.; Smith, D.; Zhu, H.; Guan, Y.; Lam, T.T. GGTREE: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Díaz-Bertrana, M.L.; Deleuze, S.; Pitti Rios, L.; Yeste, M.; Morales Fariña, I.; Rivera del Alamo, M.M. Microbial Prevalence and Antimicrobial Sensitivity in Equine Endometritis in Field Conditions. Animals 2021, 11, 1476. [Google Scholar] [CrossRef]
- Watson, E.D.; Barbacini, S.; Berrocal, B.; Sheerin, O.; Marchi, V.; Zavaglia, G.; Necchi, D. Effect of insemination time of frozen semen on incidence of uterine fluid in mares. Theriogenology 2001, 56, 123–131. [Google Scholar] [CrossRef]
- Christoffersen, M.; Woodward, E.M.; Bojesen, A.M.; Petersen, M.R.; Squires, E.L.; Lehn-Jensen, H.; Troedsson, M.H. Effect of immunomodulatory therapy on the endometrial inflammatory response to induced infectious endometritis in susceptible mares. Theriogenology 2012, 78, 991–1004. [Google Scholar] [CrossRef]
- Fedorka, C.E.; Scoggin, K.E.; Boakari, Y.L.; Hoppe, N.E.; Squires, E.L.; Ball, B.A.; Troedsson, M.H.T. The anti-inflammatory effect of exogenous lactoferrin on breeding-induced endometritis when administered post-breeding in susceptible mares. Theriogenology 2018, 114, 63–69. [Google Scholar] [CrossRef]
- Islam, M.Z.; Espinosa-Gongora, C.; Damborg, P.; Sieber, R.N.; Munk, R.; Husted, L.; Moodley, A.; Skov, R.; Larsen, J.; Guardabassi, L. Horses in Denmark are a reservoir of diverse clones of methicillin-resistant and -susceptible Staphylococcus aureus. Front Microbiol. 2017, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- Doumith, M.; Day, M.J.; Hope, R.; Wain, J.; Woodford, N. Improved multiplex PCR strategy for rapid assignment of the four major Escherichia coli phylogenetic groups. J. Clin. Microbiol. 2012, 50, 3108–3110. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, I.M.; Rycroft, A.N.; Dogan, B.; Craven, M.; Bromfield, J.J.; Chandler, A.; Roberts, M.H.; Price, S.B.; Gilbert, R.O.; Simpson, K.W. Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS ONE 2010, 5, e9192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Kong, L.; Liao, Y.; Tian, Y.; Wu, Q.; Liu, H.; Wang, X. Mini-Review: Antibiotic-resistant Escherichia coli from farm animal-associated sources. Antibiotics 2022, 11, 1535. [Google Scholar] [CrossRef] [PubMed]
- Duchesne, R.; Castagnet, S.; Maillard, K.; Petry, S.; Cattoir, V.; Giard, J.C.; Leon, A. In vitro antimicrobial susceptibility of equine clinical isolates from France, 2006–2016. J. Glob. Antimicrob. Resist. 2019, 19, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Rocha, A. A novel approach to minimising acute equine endometritis that may help to prevent the development of the chronic state. Front. Vet. Sci. 2022, 8, 799619. [Google Scholar] [CrossRef]
- Ferris, R.A. Current understanding of bacterial biofilms and latent infections: A clinical perspective. Rev. Bras. Reprod. Anim. 2017, 41, 74–80. [Google Scholar]
- Beehan, D.P.; Wolfsdorf, K.; Elam, J.; Krekeler, N.; Paccamonti, D.; Lyle, S.K. The evaluation of biofilm-forming potential of Escherichia coli collected from the equine female reproductive tract. J. Equine Vet. Sci. 2015, 35, 935–939. [Google Scholar] [CrossRef]
- Ferris, R.A. Bacterial endometritis: A focus on biofilms. Clin. Theriogenol. 2014, 6, 315–319. [Google Scholar]
- Ferris, R.A.; Wittstock, S.M.; McCue, P.M.; Borlee, B.R. Evaluation of biofilms in gram-negative bacteria isolated from the equine uterus. J. Equine Vet. Sci. 2014, 34, 121. [Google Scholar] [CrossRef]
- Ferris, R.A.; McCue, P.M.; Borlee, G.I.; Loncar, K.D.; Hennet, M.L.; Borlee, B.R. In vitro efficacy of nonantibiotic treatments on biofilm disruption of gram-negative pathogens and an in vivo model of infectious endometritis utilizing isolates from the equine uterus. J. Clin. Microbiol. 2016, 54, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Bicalho, R.C.; Machado, V.S.; Bicalho, M.L.; Gilbert, R.O.; Teixeira, A.G.; Caixeta, L.S.; Pereira, R.V. Molecular and epidemiological characterization of bovine intrauterine Escherichia coli. J. Dairy Sci. 2010, 93, 5818–5830. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, F.; Sugiura, T.; Munby, M.; Shiokura, Y.; Murata, R.; Nakamura, T.; Fujiki, J.; Iwano, H. Relationship between Escherichia coli virulence factors, notably kpsMTII, and symptoms of clinical metritis and endometritis in dairy cows. J. Vet. Med. Sci. 2022, 84, 420–428. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Agent | Disk Content (µg) | Antimicrobial Class | Reference |
---|---|---|---|
Amoxicillin–clavulanic acid (AUG) | 20/10 | Penicillins (alone or combined) | [19] |
Ampicillin (AMP) | 30 | [19] | |
Ceftiofur (EFT) | 30 | Cephalosporins | [19] |
Ceftriaxone (CRO) | 30 | [20] | |
Ceftazidime (CAZ) | 30 | [20] | |
Amikacin (AK) | 30 | Aminoglycosides | [19] |
Gentamicin (CN) | 10 | [19] | |
Kanamycin (K) | 30 | [19] | |
Meropenem (MRP) | 10 | [20] | |
Enrofloxacin (ENR) | 5 | Fluoroquinolones | [19] |
Norfloxacin (NOR) | 10 | [20] | |
Ofloxacin (OFX) | 5 | [20] | |
Sulfamethoxazole–trimethoprim (SXT) | 25 | Sulfonamides | [19] |
Tetracycline (TE) | 30 | Tetracyclines | [19] |
Oxytetracycline (T) | 30 | [19] |
Gene | Primer Sequence (5′-3′) | Size of Product (bp) |
---|---|---|
fimH | TGCAGAACGGATAAGCCGTGG GCAGTCACCTGCCCTCCGGTA | 508 |
ibeA | AGGCAGGTGTGCGCCGCGTAC TGGTGCTCCGGCAAACCATGC | 170 |
fyuA | TGATTAACCCCGCGACGGGAA CGCAGTAGGCACGATGTTGTA | 880 |
iutA | CGCAGTAGGCACGATGTTGTA CGTCGGGAACGGGTAGAATCG | 300 |
kpsMT II | GCGCATTTGCTGATACTGTTG CATCCAGACGATAAGCATGAGCA | 272 |
traT | GGTGTGGTGCGATGAGCACAG CACGGTTCAGCCATCCCTGAG | 290 |
cnf1 | AAGATGGAGTTTCCTATGCAGGAG CATTCAGAGTCCTGCCCTCATTATT | 498 |
Sample ID | Antimicrobial Resistance Profile | N. of Resistances to Tested Antimicrobials | MDR * |
---|---|---|---|
1b ^ | AMP | 1 | - |
2b | - | - | - |
3b | AMP, TE | 2 | - |
4 | AMP, K, TE | 3 | X |
5b | AMP, K, TE | 3 | X |
6 | AMP, CAZ | 2 | - |
7b | AUG, AMP, K, TE, T | 5 | X |
8b | AUG, AMP | 2 | - |
9 | AUG, AMP | 2 | - |
10 | AUG, AMP | 2 | - |
11b | AUG, AMP | 2 | - |
12b | AUG, AMP, EFT, CRO, K, SXT, TE, T | 8 | X |
13b | AUG, AMP, CAZ, CN, SXT | 5 | X |
14b | AMP | 1 | - |
15b | AUG, AMP, SXT, TE, T | 5 | X |
16 | AMP, T | 2 | - |
17b | TE, T | 2 | - |
18b | - | - | - |
19 | AMP, CAZ, CN, K, NOR, SXT, T | 7 | X |
20 | AUG, AMP, CAZ, EFT, CRO, CN, SXT, TE, T | 9 | X |
21 | AUG, AMP, EFT, CRO, CN, SXT, TE, T | 8 | X |
22 | AMP | 1 | - |
23 | AMP | 1 | - |
24 | AMP, SXT, TE, T | 4 | X |
Biofilm Production | % (N) |
---|---|
No Biofilm Producer | 0% (0) |
Weak Biofilm Producer | 29% (7) |
Moderate Biofilm Producer | 54% (13) |
Strong Biofilm Producer | 17% (4) |
Sample ID | Hem * | MDR | Biofilm Production | Phylogroup | Virulence Factors | Adhesion Values ** |
---|---|---|---|---|---|---|
1b ^ | - | Weak | D | fimH, kpsMTII, ibeA, | ++ | |
2b | - | Weak | D | fimH, kpsMTII, ibeA, | ++ | |
3b | X | - | Moderate | D | fimH, kpsMTII, ibeA, cnf1 | ++ |
4 | X | Strong | D | fimH, ibeA, cnf1 | ++ | |
5b | X | Moderate | D | fimH | +++ | |
6 | - | Moderate | B1 | fimH | +++ | |
7b | X | Moderate | B1 | fimH | ++ | |
8b | - | Weak | B1 | fimH | +++ | |
9 | - | Strong | B1 | fimH | +++ | |
10 | - | Strong | A | fimH, fyuA, traT | ++ | |
11b | - | Moderate | A | fimH, traT | ++ | |
12b | X | Moderate | D | fimH, fyuA, iutA, traT | ++ | |
13b | X | Moderate | B1 | fimH | ++ | |
14b | X | - | Moderate | B2 | fimH, kpsMTII, ibeA, fyuA, cnf1 | ++ |
15b | X | Moderate | A | fimH, kpsMTII, fyuA, traT | ++ | |
16 | - | Moderate | A | fimH, kpsMTII, traT | ++ | |
17b | - | Moderate | A | fimH, kpsMTII, traT | ++ | |
18b | - | Strong | B1 | fimH, fyuA | +++ | |
19 | X | Moderate | A | fimH, kpsMTII | ++ | |
20 | X | Weak | B1 | fimH, kpsMTII, fyuA, | +++ | |
21 | X | Moderate | A | fimH, kpsMTII | + | |
22 | - | Weak | B2 | fimH, kpsMTII, iutA, traT | ++ | |
23 | - | Weak | B1 | fimH | + | |
24 | X | Weak | B1 | fimH | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocera, F.P.; Maurizi, L.; Masullo, A.; Nicoletti, M.; Conte, A.L.; Brunetti, F.; De Martino, L.; Zagaglia, C.; Longhi, C. Genotypic and Phenotypic Characterization of Escherichia coli Isolates Recovered from the Uterus of Mares with Fertility Problems. Animals 2023, 13, 1639. https://doi.org/10.3390/ani13101639
Nocera FP, Maurizi L, Masullo A, Nicoletti M, Conte AL, Brunetti F, De Martino L, Zagaglia C, Longhi C. Genotypic and Phenotypic Characterization of Escherichia coli Isolates Recovered from the Uterus of Mares with Fertility Problems. Animals. 2023; 13(10):1639. https://doi.org/10.3390/ani13101639
Chicago/Turabian StyleNocera, Francesca Paola, Linda Maurizi, Angelo Masullo, Mauro Nicoletti, Antonietta Lucia Conte, Francesca Brunetti, Luisa De Martino, Carlo Zagaglia, and Catia Longhi. 2023. "Genotypic and Phenotypic Characterization of Escherichia coli Isolates Recovered from the Uterus of Mares with Fertility Problems" Animals 13, no. 10: 1639. https://doi.org/10.3390/ani13101639
APA StyleNocera, F. P., Maurizi, L., Masullo, A., Nicoletti, M., Conte, A. L., Brunetti, F., De Martino, L., Zagaglia, C., & Longhi, C. (2023). Genotypic and Phenotypic Characterization of Escherichia coli Isolates Recovered from the Uterus of Mares with Fertility Problems. Animals, 13(10), 1639. https://doi.org/10.3390/ani13101639