Development of Optimized Feed for Lipid Gain in Zophobas morio (Coleoptera: Tenebrionidae) Larvae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analyses of the Nutritional Composition of Ingredients and ZML
2.3. Selection of Effective Fermenting Microorganisms
2.4. Determination of the Optimal Fermentation Period for Producing Feed Using FW
2.5. Selection of the Preservative Type and Content for Producing Feed Using FFW
2.6. Selection of Solidifying Materials for Producing Feed Using FFW
2.7. Calculation of the Body Weight Gain of ZML
2.8. Statistical Analyses
3. Results
3.1. The Weight Gain of ZML Bred with Organic Wastes
3.2. The Composition of ZML Bred with Organic Wastes
3.3. The Selection of Microbial Strains to Prepare Fermented Feed Using FW
3.4. Analysis of Weight Gain of ZML Bred with Fermented FW
3.5. Determination of Preservatives for FFW
3.6. Determination of Solidifying Material for FFWS
3.7. Establishment of Manufacturing Process for the Production of ZML with Lipid Gain and Solid Feed and Analyses of the ZML Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leung, D.Y.; Wu, X.; Leung, M. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Lee, K.-S.; Yun, E.-Y.; Goo, T.-W. Optimization of Feed Components to Improve Hermetia illucens Growth and Development of Oil Extractor to Produce Biodiesel. Animals 2021, 11, 2573. [Google Scholar] [CrossRef] [PubMed]
- Atabani, A.; Silitonga, A.; Badruddin, I.A.; Mahlia, T.; Masjuki, H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Synthesis of Biodiesel through Catalytic Transesterification of Various Feedstocks using Fast Solvothermal Technology: A Critical Review. Catal. Rev. 2015, 57, 407–435. [Google Scholar] [CrossRef]
- Mishra, V.K.; Goswami, R. A review of production, properties and advantages of biodiesel. Biofuels 2016, 9, 273–289. [Google Scholar] [CrossRef]
- Demirbas, A.; Bafail, A.; Ahmad, W.; Sheikh, M. Biodiesel production from non-edible plant oils. Energy Explor. Exploit. 2016, 34, 290–318. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.C.; Nguyen, N.T.; Su, C.-H.; Wang, F.-M.; Tran, T.N.; Liao, Y.-T.; Liang, S.-H. Biodiesel Production from Insects: From Organic Waste to Renewable Energy. Curr. Org. Chem. 2019, 23, 1499–1508. [Google Scholar] [CrossRef]
- Surendra, K.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Rehman, K.U.; Liu, X.; Yang, Q.; Zheng, L.; Li, W.; Cai, M.; Li, Q.; Zhang, J.; Yu, Z. Insect biorefinery: A green approach for conversion of crop residues into biodiesel and protein. Biotechnol. Biofuels 2017, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.C.; Liang, S.-H.; Li, S.-Y.; Su, C.-H.; Chien, C.-C.; Chen, Y.-J.; Huong, D.T.M. Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J. Taiwan Inst. Chem. Eng. 2018, 85, 165–169. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzano-Agugliaro, F.; Sanchez-Muros, M.; Barroso, F.; Martínez-Sánchez, A.; Rojo, S.; Pérez-Bañón, C. Insects for biodiesel production. Renew. Sustain. Energy Rev. 2012, 16, 3744–3753. [Google Scholar] [CrossRef]
- Pleissner, D.; Rumpold, B.A. Utilization of organic residues using heterotrophic microalgae and insects. Waste Manag. 2018, 72, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Jang, S.; Kikuchi, Y. Impact of the insect gut microbiota on ecology, evolution, and industry. Curr. Opin. Insect Sci. 2020, 41, 33–39. [Google Scholar] [CrossRef]
- Kesti, S.S.; Shivasharana, C. The role of insects and microorganisms in plastic biodegradation: A comprehensive review. Int. J. Sci. Res. Biol. Sci. 2018, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, J.; Xia, M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci. Total Environ. 2019, 708, 135233. [Google Scholar] [CrossRef]
- Adámková, A.; Kouřimská, L.; Borkovcová, M.; Kulma, M.; Mlček, J. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo 2016, 10, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Kulma, M.; Kouřimská, L.; Homolková, D.; Božik, M.; Plachý, V.; Vrabec, V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J. Food Compos. Anal. 2020, 92, 103570. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Athanassiou, C.G. The Superworm, Zophobas morio (Coleoptera:Tenebrionidae): A ‘Sleeping Giant’ in Nutrient Sources. J. Insect Sci. 2021, 21, 13. [Google Scholar] [CrossRef]
- Leung, D.; Yang, D.; Li, Z.; Zhao, Z.; Chen, J.; Zhu, L. Biodiesel from Zophobas morio Larva Oil: Process Optimization and FAME Characterization. Ind. Eng. Chem. Res. 2012, 51, 1036–1040. [Google Scholar] [CrossRef]
- Peng, B.-Y.; Li, Y.; Fan, R.; Chen, Z.; Chen, J.; Brandon, A.M.; Criddle, C.S.; Zhang, Y.; Wu, W.-M. Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environ. Pollut. 2020, 266, 115206. [Google Scholar] [CrossRef]
- Kuan, Z.-J.; Chan, B.K.-N.; Gan, S.K.-E. Worming the circular economy for biowaste and plastics: Hermetia illucens, Tenebrio molitor, and Zophobas morio. Sustainability 2022, 14, 1594. [Google Scholar] [CrossRef]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of organic wastes as substrates for rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus larvae as alternative feed supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef]
- Barker, D.; Fitzpatrick, M.P.; Dierenfeld, E.S. Nutrient composition of selected whole invertebrates. Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 1998, 17, 123–134. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef]
- Yi, L.; Lakemond, C.M.; Sagis, L.M.; Eisner-Schadler, V.; van Huis, A.; van Boekel, M.A. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422-423, 193–201. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Kouřimská, L.; Borkovcová, M.; Bušina, T.; Adámek, M.; Bednářová, M.; Krajsa, J. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. Int. J. Environ. Res. Public Health 2017, 14, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, R.R.S.; Benfica, T.A.R.D.S.; Ferraz, V.P.; Santos, E.M. Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. J. Food Compos. Anal. 2018, 76, 22–26. [Google Scholar] [CrossRef]
- Higa, T.; Wididana, G. (Eds.) The concept and theories of effective microorganisms. In Proceedings of the First International Conference on Kyusei Nature Farming; US Department of Agriculture: Washington, DC, USA, 1991. [Google Scholar]
- Park, K.K.; Park, H.Y.; Jung, Y.C.; Lee, E.S.; Yang, S.Y.; Im, B.S.; Kim, C.J. Effects of fermented food waste feeds on pork carcass and meat quality properties. Korean J. Food Sci. Technol. 2005, 37, 38–43. [Google Scholar]
- Jeong, Y.D.; Lee, J.J.; Kim, J.E.; Kim, D.W.; Min, Y.J.; Cho, E.S.; Yu, D.J.; Kim, Y.H. Effects of dietary supplementation of fermented wheat bran on performance and blood profiles in weaned pigs. Korean J. Agric. Sci. 2017, 44, 409–415. [Google Scholar]
- Kim, D.-H.; Joo, Y.-H.; Lee, H.-J.; Lee, S.-S.; Paradhipta, D.H.V.; Choi, N.-J.; Kim, S.-C. Effects of Inoculant Application Level on Chemical Compositions of Fermented Chestnut Meal and Its Rumen Fermentation Indices. J. Environ. Sci. Int. 2018, 27, 333–340. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Kołodziejski, P.; Pruszyńska–Oszmałek, E.; Rawski, M.; Józefiak, D. Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poult. Sci. 2020, 99, 196–206. [Google Scholar] [CrossRef]
- Miglietta, P.P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for Food: A Water Footprint Perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef] [Green Version]
CP (g/100 g) | CF (g/100 g) | CHO (g/100 g) | Ash (g/100 g) | GE (Kcal/100 g) | |
---|---|---|---|---|---|
RB | 15.7 ± 0.2 ef | 21.8 ± 0.1 a | 53.0 ± 0.1 c | 9.5 ± 0.0 b | 471.4 ± 0.5 a |
WB | 15.0 ± 0.0 f | 4.0 ± 0.2 d | 76.2 ± 0.3 a | 4.9 ± 0.1 f | 399.8 ± 0.9 cd |
CS | 8.3 ± 1.4 g | 3.4 ± 0.1 d | 78.6 ± 4.3 a | 6.5 ± 0.2 d | 378.1 ± 12.4 de |
SM | 68.3 ± 2.0 a | 2.7 ± 0.1 e | 21.2 ± 1.9 e | 7.6 ± 0.2 c | 383.8 ± 1.8 cde |
SO | 51.8 ± 2.5 b | 10.0 ± 0.3 c | 26.5 ± 1.9 e | 11.7 ± 0.3 a | 403.7 ± 0.2 c |
PO | 44.4 ± 1.1 c | 10.4 ± 0.2 c | 39.3 ± 1.3 d | 5.9 ± 0.1 e | 428.4 ± 1.1 b |
SC | 31.2 ± 1.8 d | 4.0 ± 0.1 d | 61.0 ± 1.7 b | 3.8 ± 0.1 g | 404.5 ± 0.4 c |
CG | 16.6 ± 0.6 ef | 16.9 ± 0.1 b | 65.1 ± 0.6 b | 1.4 ± 0.0 h | 478.7 ± 0.5 a |
TF | 20.1 ± 0.2 e | 1.1 ± 0.1 f | 68.1 ± 3.5 b | 6.6 ± 0.4 d | 362.2 ± 15.8 e |
FW | 16.5 ± 1.9 ef | 8.1 ± 0.4 c | 61.4 ± 1.3 b | 8.0 ± 0.1 c | 384.7 ± 0.9 cde |
5 Days | 10 Days | 15 Days | 20 Days | |
---|---|---|---|---|
RB | 28.33 ± 4.45 b | 41.45 ± 14.86 bc | 71.31 ± 41.01 bc | 101.57 ± 36.61 de |
WB | 35.80 ± 19.08 ab | 61.47 ± 29.40 abc | 112.17 ± 38.48 ab | 166.46 ± 43.16 a |
CS | 24.67 ± 9.22 abc | 55.53 ± 29.59 bc | 69.44 ± 30.42 b | 99.75 ± 29.87 de |
SM | 24.53 ± 11.32 a | 65.41 ± 39.38 bc | 93.22 ± 39.96 b | 139.78 ± 2.07 ab |
SO | 20.13± 12.70 c | 68.73 ± 57.08 abcd | 79.01 ± 56.94 bc | 108.77 ± 30.68 cd |
PO | 21.47 ± 11.57 c | 60.64 ± 25.58 bc | 898.25 ± 72.03 abc | 143.83 ± 69.21 ab |
SC | 28.73 ± 17.72 abc | 46.36 ± 19.89 cd | 96.85 ± 38.48 ab | 124.92 ± 32.86 c |
CG | 15.20 ± 9.62 d | 38.40 ± 27.90 cd | 76.24 ± 29.78 b | 103.32 ± 53.48 de |
TF | 26.93 ± 19.43 bc | 58.80 ± 33.55 abc | 96.60 ± 37.96 ab | 132.58 ± 29.16 b |
FW | 29.67 ± 29.62 abcd | 63.39 ± 36.27 abc | 104.48 ± 34.81 ab | 159.90 ± 62.85 ab |
CP (g/100 g) | CF (g/100 g) | CHO (g/100 g) | Ash (g/100 g) | GE (Kcal/100 g) | |
---|---|---|---|---|---|
RB | 43.7 ± 0.6 d | 40.1 ± 0.6 bc | 11.4 ± 0.2 abc | 2.9 ± 0.0 bc | 581.7 ± 2.1 ab |
WB | 44.5 ± 0.8 cd | 36.8 ± 0.6 cd | 13.6 ± 1.0 a | 3.1 ± 0.0 a | 534.0 ± 2.7 e |
CS | 48.3 ± 0.4 ab | 38.5 ± 2.6 cd | 7.8 ± 2.2 c | 3.2 ± 0.0 a | 573.3 ± 12.5 bc |
SM | 45.2 ± 1.3 bcd | 42.9 ± 0.8 ab | 7.5 ± 1.9 c | 2.7 ± 0.0 d | 597.3 ± 3.5 a |
SO | 46.8 ± 1.0 bcd | 37.1 ± 1.1 cd | 11.7 ± 1.2 ab | 3.1 ± 0.0 a | 568.0 ± 5.6 bc |
PO | 48.6 ± 0.5 ab | 35.6 ± 0.3 d | 11.1 ± 0.6 abc | 2.8 ± 0.0 cd | 558.6 ± 1.5 cd |
SC | 47.1 ± 1.1 abc | 38.9 ± 1.4 cd | 8.8 ± 0.3 bc | 3.0 ± 0.0 ab | 573.3 ± 7.2 bc |
CG | 50.1 ± 0.3 a | 35.4 ± 0.4 d | 8.9 ± 0.1 bc | 3.1 ± 0.0 a | 555.0 ± 2.0 cd |
TF | 47.2 ± 0.8 abc | 37.1 ± 0.8 cd | 1017 ± 1.2 abc | 3.2 ± 0.0 a | 562.3 ± 4.0 bcd |
FW | 39.0 ± 0.7 e | 46.3 ± 0.4 a | 9.7 ± 0.4 bc | 2.7 ± 0.1 cd | 548.3 ± 6.0 de |
Amylase (U/mL) | Maltase (U/mg Protein) | Sucrase (U/mL) | Protease (%) | Lipase (U/mL) | |
---|---|---|---|---|---|
L. plantarum | 3.47 ± 0.24 b | 35.28 ± 3.84 ca | 44.09 ± 3.35 ba | 107.70 ± 0.48 c | 0.086 ± 0.001 b |
L. fermentum | 4.01 ± 0.50 a | 85.13 ± 6.89 aa | 24.94 ± 1.45 ca | 112.35 ± 0.82 b | 0.094 ± 0.002 a |
L. acidophilus | 3.56 ± 0.12 b | 15.58 ± 3.56 da | 73.96 ± 0.12 aa | 116.87 ± 0.98 a | 0.093 ± 0.001 a |
P. acidilactici | 2.77 ± 0.29 c | 28.98 ± 7.34 bc | 43.24 ± 3.52 ba | 112.59 ± 0.74 b | 0.093 ± 0.001 a |
B. subtilis | 3.11 ± 0.09 b | 25.27 ± 1.01 ca | 46.31 ± 0.24 ba | 100.00 ± 0.00 e | 0.090 ± 0.001 a |
S. cerevisiae | 3.34 ± 0.12 b | 42.68 ± 2.64 ba | 42.70 ± 0.80 bc | 106.85 ± 0.57 d | 0.086 ± 0.002 b |
5 Days | 10 Days | 15 Days | 20 Days | |
---|---|---|---|---|
(A) Body weight gain (mg/ind.) of ZML fed with EM-fermented FW | ||||
FW | 51.00 ± 6.00 c | 61.33 ± 6.03 d | 74.33 ± 13.32 c | 110.00 ± 11.14 c |
FW/EM/5 DAF | 80.33 ± 11.85 b | 94.00 ± 31.61 ab | 74.00 ± 32.74 ab | 108.00 ± 39.15 bc |
FW/EM/7 DAF | 77.26 ± 15.51 b | 92.30 ± 13.61 bc | 103.41 ± 14.70 bc | 118.41 ± 14.50 ab |
FW/EM/14 DAF | 89*.26 ± 15.45 b | 54.56 ± 11.95 c | 84.74 ± 17.60 bc | 110.02 ± 24.47 ab |
FW/EM/21 DAF | 112.33 ± 40.43 a | 95.96 ± 6.23 b | 74.19 ±8.98 b | 113.96 ± 9.23 a |
FW/EM/28 DAF | 86.33 ± 3.21 ab | 92.00 ± 19.00 a | 93.00 ±17. 69 a | 122.67± 7.09 a |
(B) Body weight gain (mg/ind.) of ZML fed with yeast (S. cerevisiae)-fermented FW | ||||
FW | 51.00 ± 6.00 b | 61.33 ± 6.03 d | 74.33 ± 13.32 c | 110.00 ± 11.14 bc |
FW/Y/5 DAF | 16.00 ± 5.00 c | 84.67 ± 13.28 ab | 67.33 ± 9.87 ab | 102.00 ± 7.81 ab |
FW/Y/7 DAF | 31.00 ± 10.58 b | 82.75 ±2.82 b | 68.75 ± 11.10 b | 110.92 ± 15.92 a |
FW/Y/14 DAF | 54.42 ± 2.92 a | 92.17 ± 8.81 a | 80.08 ± 19.81 ab | 106.83 ± 11.30 a |
FW/Y/21 DAF | 33.33 ± 10.79 b | 77.67 ± 2.31 b | 70.33 ± 7.77 a | 98.33 ± 5.03 b |
FW/Y/28 DAF | 21.48 ± 6.24 c | 71.33 ± 5.77 c | 56.50 ± 19.81 bc | 96.75 ± 2.17 b |
(C) Body weight gain (mg/ind.) of ZML fed with 3M-fermented FW | ||||
FW | 51.00 ± 6.00 a | 61.33 ± 6.03 c | 74.33 ± 13.32 bc | 110.00 ± 11.14 c |
FW/3M/5 DAF | 32.26 ± 18.92 ab | 85.41 ± 19.00 ab | 73.26 ± 24.88 ab | 129.96 ± 15.35 a |
FW/3M/7 DAF | 16.67 ± 10.26 bc | 78.67 ± 16.26 a | 70.00 ± 8.54 a | 124.33 ± 13.65 a |
FW/3M/14 DAF | 18.33 ± 16.29 bc | 79.41 ± 19.52 ab | 59.37 ± 18.32 bc | 119.41 ± 13.65 ab |
FW/3M/21 DAF | 38.74 ± 43.95 abc | 80.52 ± 16.28 b | 62.56 ± 10.08 b | 128.07 ± 8.06 b |
FW/3M/28 DAF | 30.00 ± 16.82 ab | 74.67 ± 7.23 ab | 65.00 ± 8.54 b | 125.67 ± 23.71 ab |
5 Days | 10 Days | 15 Days | 20 Days | |
---|---|---|---|---|
FW | 51.00 ± 6.00 d | 61.33 ± 6.03 c | 74.33 ± 13.32 d | 110.00 ± 11.14 b |
FFW/S 0.05% | 86.67 ± 24.50 a | 111.48 ± 9.96 ab | 93.50 ± 24.71 bc | 165.67 ± 16.44 a |
FFW/S 0.10% | 73.33 ± 11.93 b | 142.33 ± 3.79 a | 128.00 ± 8.198 a | 166.67 ± 6.11 a |
FFW/S 0.15% | 61 ± 10.00 c | 107.33 ± 9.61 b | 107.33 ± 23.69 ab | 171.33 ± 13.61 a |
FFW/GSE 0.05% | 62.67 ± 20.13 b | 106.37 ± 30.80 ab | 73.85 ± 9.77 c | 161.33 ± 13.50 a |
FFW/GSE 0.10% | 62.66 ± 8.32 bc | 102.04 ± 16.47 b | 111.52 ± 27.98 ab | 147.85 ± 18.07 ab |
FFW/GSE 0.15% | 54.00 ± 23.07 bc | 85.33 ± 15.70 b | 92.67 ± 12.50 c | 136.00 ± 11.14 b |
5 Days | 10 Days | 15 Days | 20 Days | |
---|---|---|---|---|
WB | 70.00 ± 30.00 bc | 110.00 ± 30.00 b | 136.67 ± 11.55 b | 150.00 ± 10.00 c |
FW | 50.00 ± 34.64 cd | 110.00 ± 26.46 b | 133.33 ± 25.17 b | 153.33 ± 15.28 c |
FFWS | 73.33 ± 23.09 b | 123.33 ± 30.55 ab | 166.67 ± 20.82 ab | 203.33 ± 11.55 ab |
FFWS/A/50 | 50.00 ±30.00 cd | 126.67 ± 20.82 b | 166.67 ± 15.28 a | 230.00 ± 10.00 a |
FFWS/A/100 | 13.33 ± 5.77 d | 103.33 ± 15.28 a | 150.00 ± 20.00 b | 210.00 ± 10.00 b |
FFWS/A/150 | 80.00 ± 52.92 ab | 106.67 ± 49.33 ab | 136.67 ± 49.33 b | 223.33 ± 37.86 b |
FFWS/C/50 | 43.33 ± 15.28 d | 130.00 ± 36.06 ab | 173.33 ± 20.82 a | 220.00 ± 26.46 ab |
FFWS/C/100 | 66.67 ± 41.63 bc | 113.33 ± 11.55 b | 160.00 ± 36.06 ab | 193.33 ± 37.86 ab |
FFWS/C/150 | 60.00 ± 45.83 bcd | 113.33 ± 23.09 b | 143.33 ± 28.87 b | 186.67 ± 15.28 c |
FFWS/S/50 | 63.33 ± 37.86 bcd | 126.67 ± 25.17 a | 176.67 ± 46.19 ab | 210.00 ± 36.06 ab |
FFWS/S/100 | 86.67 ± 5.77 a | 113.33 ± 5.77 b | 150.00 ± 51.96 b | 196.67 ± 28.87 bc |
FFWS/S/150 | 70.00 ± 34.64 ab | 106.67 ± 30.55 ab | 136.67 ± 15.28 ab | 163.33 ± 5.77 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goo, T.-W.; Hwang, D.; Lee, K.-S.; Lee, S.H.; Yun, E.-Y. Development of Optimized Feed for Lipid Gain in Zophobas morio (Coleoptera: Tenebrionidae) Larvae. Animals 2023, 13, 1958. https://doi.org/10.3390/ani13121958
Goo T-W, Hwang D, Lee K-S, Lee SH, Yun E-Y. Development of Optimized Feed for Lipid Gain in Zophobas morio (Coleoptera: Tenebrionidae) Larvae. Animals. 2023; 13(12):1958. https://doi.org/10.3390/ani13121958
Chicago/Turabian StyleGoo, Tae-Won, Dooseon Hwang, Kyu-Shik Lee, Seung Hun Lee, and Eun-Young Yun. 2023. "Development of Optimized Feed for Lipid Gain in Zophobas morio (Coleoptera: Tenebrionidae) Larvae" Animals 13, no. 12: 1958. https://doi.org/10.3390/ani13121958
APA StyleGoo, T. -W., Hwang, D., Lee, K. -S., Lee, S. H., & Yun, E. -Y. (2023). Development of Optimized Feed for Lipid Gain in Zophobas morio (Coleoptera: Tenebrionidae) Larvae. Animals, 13(12), 1958. https://doi.org/10.3390/ani13121958