An Analysis of DNA Sequence Polymorphism in the Swamp Buffalo Toll-like Receptor (TLR2) Gene
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Animals
2.2. DNA Extraction and PCR Protocol
2.3. Sequencing and Bioinformatics Analysis
2.4. Genetic Diversity and Molecular Diversity Indices
3. Results
3.1. Characterization of the TLR2 Exon 2 Gene in Swamp Buffaloes
3.2. Haplotype (Hap) Analysis
3.3. Genetic Diversity
3.4. Molecular Diversity Indices
3.5. Genetic Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ünal, E.Ö.; Işık, R.; Şen, A.; Geyik Kuş, E.; Soysal, M.İ. Evaluation of genetic diversity and structure of Turkish water buffalo population by using 20 microsatellite markers. Animals 2021, 11, 1067. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, M.L. Analysis of genetic diversity of Indian buffalo breeds by DNA markers. J. Buffalo Sci. 2012, 1, 91–101. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. 2022. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 19 January 2022).
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015; Available online: https://www.fao.org/3/i4787e/i4787e00.pdf (accessed on 20 May 2019).
- Falconer, D.; Mackay, T. Introduction to Quantitative Genetics, 4th ed.; Prentice Hall: Harlow, UK, 1996; Available online: https://www.cabdirect.org/cabdirect/abstract/19601603365 (accessed on 20 May 2019).
- Brotherstone, S.; Goddard, M. Artificial selection and maintenance of genetic variance in the global dairy cow population. Phil. Trans. R. Soc. B 2005, 360, 1479–1488. [Google Scholar] [CrossRef] [Green Version]
- Alfano, F.; Peletto, S.; Lucibelli, M.G.; Borriello, G.; Urciuolo, G.; Maniaci, M.G.; Desiato, R.; Tarantino, M.; Barone, A.; Pasquali, P.; et al. Identification of single nucleotide polymorphisms in Toll-like receptor candidate genes associated with tuberculosis infection in water buffalo (Bubalus bubalis). BMC Genet. 2014, 139, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Statistics of the Number of Animals for the Year 2021. Available online: http://www.fao.org/3/i3107e/i3107e.pdf (accessed on 20 May 2019).
- Triwitayakorn, K.; Moolmuang, B.; Sraphet, S.; Panyim, S.; Na-Chiangmai, A.; Smith, D. Analysis of genetic diversity of the Thai swamp buffalo (Bubalus bubalis) using cattle microsatellite DNA markers. Asian Australas. J. Anim. Sci. 2006, 19, 617–621. [Google Scholar] [CrossRef]
- Irvine, K.L.; Hopkins, L.J.; Gangloff, M.; Bryant, C.E. The molecular basis for recognition of bacterial ligands at equine TLR2, TLR1 and TLR6. Vet. Res. 2013, 44, 50. [Google Scholar] [CrossRef] [Green Version]
- Vahanan, B.M.; Raj, G.D.; Pawar, R.M.; Gopinath, V.P.; Raja, A.; Thangavelu, A. Expression profile of toll like receptors in a range of water buffalo tissues (Bubalus bubalis). Vet. Immunol. Immunopathol. 2008, 126, 149–155. [Google Scholar] [CrossRef]
- Dubey, P.K.; Goyal, S.; Kathiravan, P.; Mishra, B.P.; Gahlawat, S.K.; Kataria, R.S. Sequence characterization of river buffalo Toll-like receptor genes 1-10, reveals distinct relationship with cattle and sheep. Int. J. Immunogenet. 2013, 40, 140–148. [Google Scholar] [CrossRef]
- Siswanto, F.M.; Jawi, I.M.; Kartiko, B.H. The role of E3 ubiquitin ligase seven in absentia homolog in the innate immune system: An overview. Vet. World 2018, 11, 1551–1557. [Google Scholar] [CrossRef] [Green Version]
- Raja, A.; Vignesh, A.R.; Mary, B.A.; Tirumurugaan, K.G.; Raj, G.D.; Kataria, R.; Mishra, B.P.; Kumanan, K. Sequence analysis of Toll-like receptor genes 1–10 of goat (Capra hircus). Vet. Immunol. Immunopathol. 2011, 140, 252–258. [Google Scholar] [CrossRef]
- Tantikositruj, C.; Gunawan, A.; Uddin, M.J.; Nuchchanart, W.; Boonkaewwan, C.; Laenoi, W.; Kayan, A. Hematology and toll-like receptors 2 and 4 and lipopolysaccharide-induced tumor necrosis factor-α factor gene expression in peripheral blood mononuclear cells of Thai indigenous chickens. Vet. World 2022, 15, 2795–2799. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 2005, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mossallam, A.A.A.; Osman, N.M.; Othman, O.E.; Mahfouz, E.R. Polymorphism Evaluation of TLR2 Gene Associated with Endometritis Infection in Buffalo Reared in Egypt. Biotechnol. J. Int. 2020, 26, 45–55. [Google Scholar] [CrossRef]
- Banerjee, P.; Gahlawat, S.K.; Joshi, J.; Sharma, U.; Tantia, M.S.; Vijh, R.K. Sequencing, Characterization and Phylogenetic analysis of TLR genes of Bubalus bubalis. Int. J. Biomed. Life Sci. 2012, 13, 137–159. [Google Scholar]
- Goodwin, W.; Linacre, A.; Hadi, S. An Introduction to Forensic Genetics, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Shi, W.; Mei, X.; Kang, Y.; Elsheikha, H.; Hu, C.; Wang, Y.; Lu, K.; Zhang, Y.; Sheng, Z.; Wang, D.; et al. De Novo Characterization of the Genetic Polymorphism and Transcript Abundance of Toll-Like Receptors (TLRs) in Tissues of Swamp Buffaloes (Bubalus bubalis) from Guangxi, China. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Dubey, P.K.; Goyal, S.; Kumari, N.; Mishra, S.K.; Arora, R.; Kataria, R.S. Genetic diversity within 5’upstream region of Toll-like receptor 8 gene reveals differentiation of riverine and swamp buffaloes. Meta Gene 2013, 1, 24–32. [Google Scholar] [CrossRef]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Liu, J.; Ding, X.; Zeng, Y.; Yue, Y.; Guo, X.; Guo, T.; Chu, M.; Wang, F.; Han, J.; Feng, R.; et al. Genetic diversity and phylogenetic evolution of Tibetan sheep based on mtDNA D-Loop sequences. PLoS ONE 2016, 11, e0159308. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Diez Benavente, E.; Nolder, D.; Proux, S.; Higgins, M.; Muwanguzi, J.; Gonzalez, P.J.G.; Fuehrer, H.-P.; Roper, C.; Nosten, F.; et al. Selective whole genome amplification of Plasmodium malariae DNA from clinical samples reveals insights into population structure. Sci. Rep. 2020, 10, 10832. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Li, C.; Li, R.; Xiao, H.; Chen, S. Genetic diversity of TLR3 and TLR8 genes among five Chinese native cattle breeds from southwest China. Livest. Sci. 2020, 232, 103895. [Google Scholar] [CrossRef]
- Kataria, R.S.; Tait, R.G., Jr.; Kumar, D.; Ortega, M.A.; Rodiguez, J.; Reecy, J.M. Association of toll-like receptor four single nucleotide polymorphisms with incidence of infectious bovine keratoconjunctivitis (IBK) in cattle. Immunogenetics 2011, 63, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Mucha, R.; Bhide, M.R.; Chakurkar, E.B.; Novak, M.; Mikula, I., Sr. Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Vet. Immunol. Immunopathol. 2009, 128, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.S.; Leyva, I.; Schenkel, F.; Karrow, N.A. Association of Toll-Like Receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein bulls. J. Dairy Sci. 2006, 89, 3626–3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartl, D.L.; Clark, G.C. Principles of Population Genetics, 3rd ed.; Sinauer Associates: Sunderland, UK, 1997; p. 519. [Google Scholar]
- le Roex, N.; Koets, A.P.; van Helden, P.D.; Hoal, E.G. Gene polymorphisms in African buffalo associated with susceptibility to bovine tuberculosis infection. PLoS ONE 2013, 8, e64494. [Google Scholar] [CrossRef] [Green Version]
SNPs | Expected Heterozygosity | HE | HO | Fixation Indices (Fst) | |||||
---|---|---|---|---|---|---|---|---|---|
SN (n = 10) | MK (n = 6) | KK (n = 10) | NP (n = 18) | SR (n = 6) | Mean ± SD | ||||
A39T | 0 | 0.53 | 0 | 0.21 | 0 | 0.16 ± 0.26 | 0.31 | 0.36 | 0.60 |
C51G | 0 | 0.33 | 0 | 0.21 | 0 | 0.12 ± 0.18 | 0.12 | 0.12 | 0.00 |
A52C/T | 0.47 | 0.60 | 0 | 0 | 0 | 0.23 ± 0.33 | 0.19 | 0.20 | 0.18 |
T53C | 0 | 0 | 0 | 0 | 0.60 | 0.12 ± 0.27 | 0.12 | 0.15 | 0.60 * |
A56G | 0 | 0.33 | 0 | 0 | 0 | 0.08 ± 0.18 | 0.04 | 0.04 | 0.09 |
A59G | 0 | 0.33 | 0 | 0 | 0.40 | 0.16 ± 0.22 | 0.08 | 0.09 | 0.09 |
A60G | 0 | 0.33 | 0 | 0 | 0 | 0.08 ± 0.18 | 0.04 | 0.04 | 0.09 |
A61G | 0 | 0.33 | 0 | 0 | 0 | 0.08 ± 0.18 | 0.04 | 0.04 | 0.09 |
C65T | 0.47 | 0.60 | 0.36 | 0.53 | 0 | 0.39 ± 0.24 | 0.50 | 0.52 | 0.17 |
A68G | 0 | 0 | 0 | 0.11 | 0 | 0.02 ± 0.05 | 0.04 | 0.04 | 0.00 |
G72A | 0.20 | 0 | 0 | 0 | 0 | 0.04 ± 0.09 | 0.04 | 0.04 | 0.00 |
T90A/C | 0 | 0 | 0 | 0 | 0.40 | 0.08 ± 0.18 | 0.19 | 0.26 | 0.85 * |
A97G | 0 | 0.33 | 0 | 0 | 0 | 0.08 ± 0.18 | 0.04 | 0.04 | 0.09 |
T106C | 0 | 0 | 0 | 0 | 0.40 | 0.08 ± 0.18 | 0.04 | 0.05 | 0.14 |
T108C | 0.53 | 0.53 | 0.36 | 0.50 | 0.60 | 0.52 ± 0.10 | 0.49 | 0.50 | 0.00 * |
T111G | 0 | 0 | 0 | 0 | 0.40 | 0.08 ± 0.18 | 0.15 | 0.21 | 0.81 * |
A121G | 0.20 | 0 | 0 | 0 | 0 | 0.04 ± 0.09 | 0.04 | 0.04 | 0.00 |
A131G | 0 | 0.33 | 0 | 0 | 0 | 0.08 ± 0.18 | 0.04 | 0.04 | 0.09 |
C140G | 0.20 | 0 | 0 | 0 | 0 | 0.04 ± 0.09 | 0.04 | 0.04 | 0.00 |
G146A | 0 | 0 | 0 | 0 | 0.40 | 0.08 ± 0.18 | 0.15 | 0.21 | 0.81 * |
C174A | 0 | 0 | 0 | 0 | 0.40 | 0.08 ± 0.18 | 0.04 | 0.05 | 0.14 |
A190T | 0 | 0 | 0 | 0 | 0.40 | 0.08 ± 0.18 | 0.04 | 0.05 | 0.14 |
A279G | 0.20 | 0 | 0 | 0 | 0 | 0.04 ± 0.09 | 0.04 | 0.04 | 0.00 |
C374T | 0.56 | 0.53 | 0.36 | 0.52 | 0 | 0.41 ± 0.25 | 0.50 | 0.52 | 0.14 |
G455A | 0.47 | 0 | 0 | 0.11 | 0 | 0.12 ± 0.20 | 0.15 | 0.15 | 0.12 |
A473G | 0 | 0 | 0 | 0 | 0.60 | 0.12 ± 0.27 | 0.08 | 0.10 | 0.38 * |
C519G | 0.53 | 0.53 | 0.36 | 0.52 | 0 | 0.40 ± 0.24 | 0.50 | 0.51 | 0.14 |
A681R | 0.53 | 0.60 | 0.47 | 0.50 | 0.40 | 0.50 ± 0.07 | 0.47 | 0.47 | 0.08 * |
T762C | 0.36 | 0 | 0 | 0.21 | 0 | 0.11 ± 0.16 | 0.15 | 0.15 | 0.00 |
average | 0.16 ± 0.21 | 0.24 ± 0.21 | 0.07 ± 0.21 | 0.12 ± 0.21 | 0.17 ± 0.21 | 0.15 ± 0.21 | 0.16 ± 0.16 | 0.17 ± 0.17 | |
χ2 = 0.10, (χ20.05,28 = 41.34) |
Statistics/Locations | SN | MK | KK | NP | SR | Average ± SD |
---|---|---|---|---|---|---|
Diversity indices | ||||||
No. of substitutions | 12 | 15 | 5 | 10 | 11 | 10.4 |
No. private subst. sites | 4 | 5 | 0 | 1 | 8 | 3.6 |
Genetic diversity | 1.00 ± 0.04 | 1.00 ± 0.12 | 1.00 ± 0.04 | 0.93 ± 0.04 | 1.00 ± 0.13 | 0.99 ± 0.04 |
Nucleotide diversity | 0.16 ± 0.09 | 0.24 ± 0.16 | 0.06 ± 0.09 | 0.12 ± 0.07 | 0.17 ± 0.12 | 0.16 ± 0.09 |
HE | 0.39 ± 0.15 | 0.51 ± 0.11 | 0.38 ± 0.05 | 0.34 ± 0.19 | 0.45 ± 0.09 | 0.39 ± 0.15 |
π | 4.71 ± 2.84 | 6.27 ± 4.69 | 1.89 ± 1.32 | 3.43 ± 2.06 | 5.00 ± 3.41 | 4.26 ± 1.66 |
Neutrality test | ||||||
Tajima’s D test | ||||||
Tajima’s D | 0.49 | 0.14 | 0.28 | 0.65 | −0.38 | 0.23 ± 0.39 |
Tajima’s D p value | 0.70 | 0.59 | 0.66 | 0.75 | 0.44 | 0.63 ± 0.11 |
Fu’s FS test | ||||||
Exp. no. of alleles | 5.72 | 4.46 | 3.94 | 6.73 | 3.73 | 4.82 |
FS | −6.17 | −1.73 | 0.47 | −3.81 | −1.35 | −2.52 ± 2.54 |
FS p value | 0.001 | 0.090 | 0.599 | 0.011 | 0.122 | 0.165 |
Source of Variation | df | SS | Variance Components | Percentage of Variation | Fixation Indices | p Value |
---|---|---|---|---|---|---|
Among populations | 4 | 28.41 | 0.56 Va | 22.543 | FST: 0.239 | p < 0.001 |
Within populations | 44 | 84.53 | 1.92 Vb | 77.46 | ||
Total | 48 | 112.94 | 2.48 |
Locations | SN | MK | KK | NP | SR |
---|---|---|---|---|---|
SN | 0.000 | ||||
MK | 0.000 | 0.000 | |||
KK | 0.127 | 0.031 | 0.000 | ||
NP | 0.0.03 | 0.000 | 0.024 | 0.000 | |
SR | 0.459 * | 0.394 * | 0.657 * | 0.523 * | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenchaiwong, W.; Pongthaisong, P.; Kananit, S.; Duangjinda, M.; Boonkum, W. An Analysis of DNA Sequence Polymorphism in the Swamp Buffalo Toll-like Receptor (TLR2) Gene. Animals 2023, 13, 2012. https://doi.org/10.3390/ani13122012
Kenchaiwong W, Pongthaisong P, Kananit S, Duangjinda M, Boonkum W. An Analysis of DNA Sequence Polymorphism in the Swamp Buffalo Toll-like Receptor (TLR2) Gene. Animals. 2023; 13(12):2012. https://doi.org/10.3390/ani13122012
Chicago/Turabian StyleKenchaiwong, Wootichai, Pongphol Pongthaisong, Srinuan Kananit, Monchai Duangjinda, and Wuttigrai Boonkum. 2023. "An Analysis of DNA Sequence Polymorphism in the Swamp Buffalo Toll-like Receptor (TLR2) Gene" Animals 13, no. 12: 2012. https://doi.org/10.3390/ani13122012
APA StyleKenchaiwong, W., Pongthaisong, P., Kananit, S., Duangjinda, M., & Boonkum, W. (2023). An Analysis of DNA Sequence Polymorphism in the Swamp Buffalo Toll-like Receptor (TLR2) Gene. Animals, 13(12), 2012. https://doi.org/10.3390/ani13122012