The Effect of Carbamazepine on Performance, Carcass Value, Hematological and Biochemical Blood Parameters, and Detection of Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids in Growing Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Growth and Slaughter Performance, Physical Characteristics
2.3. Blood Analyses
2.4. Chemical Analyses—Determination of CBZ and Metabolites
2.4.1. Analytical Chemicals and Stock Solutions
2.4.2. Validation
2.4.3. Extraction
Extraction of Liver, Kidney, and Thigh Samples
Extraction of Loin, Content of Caecum, and Hard Feces
Extraction of Blood Samples
Extraction of Urine Samples
2.4.4. Analytical Conditions
2.5. Statistical Analysis
3. Results
3.1. Growth and Carcass Performance
3.2. Haematological and Biochemical Parameters
3.3. Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids
4. Discussion
4.1. Growth and Carcass Performance
4.2. Haematological and Biochemical Parameters
4.3. Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breton, H.; Cociglio, M.; Bressolle, F.; Peyrière, H.; Blayac, J.P.; Hillaire-Buys, D. Liquid Chromatography–Electrospray Mass Spectrometry Determination of Carbamazepine, Oxcarbazepine and Eight of Their Metabolites in Human Plasma. J. Chromatog. B 2005, 828, 80–90. [Google Scholar] [CrossRef]
- Brodie, M.J.; Dichter, M.A. Antiepileptic Drugs. N. Engl. J. Med. 1996, 334, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Pápai, M.; Benedek, T.; Táncsics, A.; Bornemann, T.L.V.; Plewka, J.; Probst, A.J.; Hussein, D.; Maróti, G.; Menashe, O.; Kriszt, B. Selective Enrichment, Identification, and Isolation of Diclofenac, Ibuprofen, and Carbamazepine Degrading Bacteria from a Groundwater Biofilm. Environ. Sci. Pollut. Res. Int. 2023, 30, 44518–44535. [Google Scholar] [CrossRef] [PubMed]
- Parnas, J.; Gram, L.; Flachs, H. Psychopharmacological Aspects of Antiepileptic Treatment. Prog. Neurobiol. 1980, 15, 119–138. [Google Scholar] [CrossRef]
- Magiorkinis, E.; Diamantis, A.; Sidiropoulou, K.; Panteliadis, C. Highights in the History of Epilepsy: The Last 200 Years. Epilepsy Res. Treat. 2014, 2014, 582039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannessen Landmark, C. Antiepileptic Drugs in Non-Epilepsy Disorders: Relations between Mechanisms of Action and Clinical Efficacy. CNS Drugs 2008, 22, 27–47. [Google Scholar] [CrossRef]
- Zimcikova, E.; Simko, J.; Karesova, I.; Kremlacek, J.; Malakova, J. Behavioral Effects of Antiepileptic Drugs in Rats: Are the Effects on Mood and Behavior Detectable in Open-Field Test? Seizure 2017, 52, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Dalby, M.A. Antiepileptic and Psychotropic Effect of Carbamazepine (Tegretol®) in the Treatment of Psychomotor Epilepsy. Epilepsia 1971, 12, 325–334. [Google Scholar] [CrossRef]
- Bertilsson, L. Clinical Pharmacokinetics of Carbamazepine. Clin. Pharmacokinet. 1978, 3, 128–143. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Neels, H.M.; Sierens, A.C.; Naelaerts, K.; Scharpé, S.L.; Hatfield, G.M.; Lambert, W.E. Therapeutic Drug Monitoring of Old and Newer Anti-Epileptic Drugs. Clin. Chem. Lab. Med. 2004, 42, 1228–1255. [Google Scholar] [CrossRef] [PubMed]
- Alrashood, S.T. Chapter Three—Carbamazepine. Profiles Drug Subs. Excip. Relat. Methodol. 2016, 41, 133–321. [Google Scholar] [CrossRef]
- Qiang, L.; Cheng, J.; Yi, J.; Rotchell, J.M.; Zhu, X.; Zhou, J. Environmental Concentration of Carbamazepine Accelerates Fish Embryonic Development and Disturbs Larvae Behavior. Ecotoxicology 2016, 25, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Paltiel, O.; Fedorova, G.; Tadmor, G.; Kleinstern, G.; Maor, Y.; Chefetz, B. Human Exposure to Wastewater-Derived Pharmaceuticals in Fresh Produce: A Randomized Controlled Trial Focusing on Carbamazepine. Environ. Sci. Technol. 2016, 50, 4476–4482. [Google Scholar] [CrossRef]
- Galus, M.; Kirischian, N.; Higgins, S.; Purdy, J.; Chow, J.; Rangaranjan, S.; Li, H.; Metcalfe, C.; Wilson, J.Y. Chronic, Low Concentration Exposure to Pharmaceuticals Impacts Multiple Organ Systems in Zebrafish. Aquat. Toxicol. 2013, 132–133, 200–211. [Google Scholar] [CrossRef]
- Kohl, A.; Golan, N.; Cinnamon, Y.; Genin, O.; Chefetz, B.; Sela-Donenfeld, D. A Proof of Concept Study Demonstrating That Environmental Levels of Carbamazepine Impair Early Stages of Chick Embryonic Development. Environ. Int. 2019, 129, 583–594. [Google Scholar] [CrossRef]
- Sırlak, M.; Eryılmaz, S.; Bahadır Inan, M.; Sırın, Y.S.; Besaltı, O.; Yazıcıoglu, L.; Ozcınar, E.; Erdemlı, E.; Tasoz, R.; Elhan, A.H.; et al. Effects of Carbamazepine on Spinal Cord Ischemia. J. Thorac. Cardiovasc. Surg. 2008, 136, 1038–1043.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krunt, O.; Zita, L.; Kraus, A.; Volek, Z. How Can Housing System Affect Growth and Carcass Traits, Meat Quality and Muscle Fiber Characteristics in Biceps Femoris and Mineral Content of Tibia and Femur Bones in Growing Rabbits? Livest. Sci. 2021, 249, 104531. [Google Scholar] [CrossRef]
- Blasco, A.; Ouhayoun, J. Harmonization of Criteria and Terminology in Rabbit Meat Research. Revised Proposal. World Rabbit. Sci. 1994, 4, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Lo, J.C.Y. Carbamazepine. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 665–667. ISBN 978-0-12-386455-0. [Google Scholar]
- Silverman, R.B.; Holladay, M.W. Chapter 8—Drug Metabolism. In The Organic Chemistry of Drug Design and Drug Action, 3rd ed.; Silverman, R.B., Holladay, M.W., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 357–422. ISBN 978-0-12-382030-3. [Google Scholar]
- Attia, S.M. Deleterious Effects of Reactive Metabolites. Oxid. Med. Cell. Longev. 2010, 3, 238–253. [Google Scholar] [CrossRef] [Green Version]
- PubChem Carbamazepine-10,11-Epoxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2555 (accessed on 29 January 2023).
- PubChem Trans-10,11-Dihydro-10,11-Dihydroxy Carbamazepine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/13726064 (accessed on 29 January 2023).
- Carpay, J.A.; Aldenkamp, A.P.; van Donselaar, C.A. Complaints Associated with the Use of Antiepileptic Drugs: Results from a Community-Based Study. Seizure 2005, 14, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Biton, V.; Mirza, W.; Montouris, G.; Vuong, A.; Hammer, A.E.; Barrett, P.S. Weight Change Associated with Valproate and Lamotrigine Monotherapy in Patients with Epilepsy. Neurology 2001, 56, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Corman, C.L.; Leung, N.M.; Guberman, A.H. Weight Gain in Epileptic Patients during Treatment with Valproic Acid: A Retrospective Study. Can. J. Neurol. Sci. 1997, 24, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Wang, X.; Xi, Z.; Yan, Y. Adverse Effects of Carbamazepine, Phenytoin, Valproate and Lamotrigine Monotherapy in Epileptic Adult Chinese Patients. Clin. Neurol. Neurosurg. 2010, 112, 291–295. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Kodama, T.; Hikita, H.; Tanaka, S.; Shigekawa, M.; Nawa, T.; Shimizu, S.; Li, W.; Miyagi, T.; Hiramatsu, N.; et al. Carbamazepine Promotes Liver Regeneration and Survival in Mice. J. Hepatol. 2013, 59, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Sadock, B.J.; Sadock, V.A.; Ruiz, P. Kaplan and Sadock’s Comprehensive Textbook of Psychiatry; Wolter-Kluwer/Lippincott, Williams and Wilkins: London, UK, 2009. [Google Scholar]
- Bachmann, T.; Bertheussen, K.H.; Svalheim, S.; Rauchenzauner, M.; Luef, G.; Gjerstad, L.; Taubøll, E. Haematological Side Effects of Antiepileptic Drug Treatment in Patients with Epilepsy. Acta Neurol. Scand. 2011, 124, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Talas, Z.S.; Gulhan, M.F. Effects of Various Propolis Concentrations on Biochemical and Hematological Parameters of Rainbow Trout (Oncorhynchus mykiss). Ecotoxicol. Environ. Saf. 2009, 72, 1994–1998. [Google Scholar] [CrossRef]
- Kavitha, C.; Malarvizhi, A.; Senthil Kumaran, S.; Ramesh, M. Toxicological Effects of Arsenate Exposure on Hematological, Biochemical and Liver Transaminases Activity in an Indian Major Carp, Catla Catla. Food Chem. Toxicol. 2010, 48, 2848–2854. [Google Scholar] [CrossRef]
- Harden, C.L. Therapeutic Safety Monitoring: What to Look for and When to Look for It. Epilepsia 2000, 41, S37–S44. [Google Scholar] [CrossRef]
- Adedapo, A.A.; Mogbojuri, O.M.; Emikpe, B.O. Safety evaluations of the aqueous extract of the leaves of Moringa oleifera in rats. J. Med. Plants Res. 2009, 3, 586–591. [Google Scholar]
- Aliyu, H.; Ayo, J.O.; Ambali, S.F.; Zezi, A.U. Effects of Administration of Carbamazepine and/or Phenytoin on Haematological Parameters in Wistar Rats. Afr. J. Pharm. Pharmacol. 2013, 7, 1585–1591. [Google Scholar] [CrossRef]
- Sadock, B.J.; Sadock, V.A. Synopsis of Psychiatry, 9th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2002. [Google Scholar]
- Čepelak, I.; Žanić Grubišić, T.; Mandušić, A.; Rekić, B.; Leniček, J. Valproate and Carbamazepine Comedication Changes Hepatic Enzyme Activities in Sera of Epileptic Children. Clin. Chim. Acta 1998, 276, 121–127. [Google Scholar] [CrossRef]
- Schmidt, D. Efficacy of New Antiepileptic Drugs: Efficacy of New Antiepileptic Drugs. Epilepsy Curr. 2011, 11, 9–11. [Google Scholar] [CrossRef]
- Hadzagic-Catibusic, F.; Hasanbegovic, E.; Melunovic, M.; Zubcevic, S.; Uzicanin, S. Effects of Carbamazepine and Valproate on Serum Aspartate Aminotransferase, Alanine Aminotransferase and Gamma—Glutamyltransferase in Children. Med. Arch. 2017, 71, 239–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syn, W.-K.; Choi, S.S.; Diehl, A.M. Apoptosis and Cytokines in Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2009, 13, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Weiner, I.D.; Mitch, W.E.; Sands, J.M. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin. J. Am. Soc. Nephrol. 2015, 10, 1444–1458. [Google Scholar] [CrossRef] [Green Version]
- Millichap, J.G. Carbamazepine and Serum Lipid Levels. Pediatr. Neurol. Briefs 1993, 7, 45–46. [Google Scholar] [CrossRef] [Green Version]
- Merete, A.; Brechan, L.; TaubØll, E.; Jemtland, R.; Godang, K.; Bollerslev, J.; Gjer-stad, L. The Effect of Chronic Carbamazepine Treatment in Postmenopausal Women. Epilepsia 2005, 46, 167–192. [Google Scholar]
- Cotton, D.B.; Hallak, M.; Janusz, C.; Irtenkauf, S.M.; Berman, R.F. Central Anticonvulsant Effects of Magnesium Sulfate on N-Methyl-D-Aspartate-Induced Seizures. Am. J. Obstet. Gynecol. 1993, 168, 974–978. [Google Scholar] [CrossRef]
- Dhande, P.P.; Ranade, R.S.; Ghongane, B.B. Effect of Magnesium Oxide on the Activity of Standard Anti-Epileptic Drugs against Experimental Seizures in Rats. Indian J. Pharmacol. 2009, 41, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Tolou-Ghamari, Z.; Zare, M.; Habibabadi, J.M.; Najafi, M.R. A Quick Review of Carbamazepine Pharmacokinetics in Epilepsy from 1953 to 2012. J. Res. Med. Sci. 2013, 18, S81–S85. [Google Scholar] [PubMed]
- Kim, K.-A.; Oh, S.O.; Park, P.-W.; Park, J.-Y. Effect of Probenecid on the Pharmacokinetics of Carbamazepine in Healthy Subjects. Eur. J. Clin. Pharmacol. 2005, 61, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.M.; Donnelly, A. Carbamazepine-10,11-Epoxide in Therapeutic Drug Monitoring. Ther. Drug Monit. 1998, 20, 652–657. [Google Scholar] [CrossRef] [PubMed]
- So, E.L.; Ruggles, K.H.; Cascino, G.D.; Ahmann, P.A.; Weatherford, K.W. Seizure Exacerbation and Status Epilepticus Related to Carbamazepine-10,11-Epoxide. Ann. Neurol. 1994, 35, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Mesdjian, E.; Sérée, E.; Charvet, B.; Mirrione, A.; Bourgarel-Rey, V.; Desobry, A.; Barra, Y. Metabolism of Carbamazepine by CYP3A6: A Model for in Vitro Drug Interactions Studies. Life Sci. 1999, 64, 827–835. [Google Scholar] [CrossRef]
- Weber, A.; Kaplan, M.; Chughtai, S.A.; Cohn, L.A.; Smith, A.L.; Unadkat, J.D. CYP3A Inductive Potential of the Rifamycins, Rifabutin and Rifampin, in the Rabbit. Biopharm. Drug Dispos. 2001, 22, 157–168. [Google Scholar] [CrossRef]
- Bedada, S.K.; Nearati, P. Effect of Resveratrol on the Pharmacokinetics of Carbamazepine in Healthy Human Volunteers. Phytother. Res. 2015, 29, 701–706. [Google Scholar] [CrossRef]
Group | Group Definition |
---|---|
Control | Feed mixture without CBZ 1 ad libitum |
CBZ-low dose | 0.1 mg CBZ in 10 g of feed mixture per day for 1 kg of live weight + control feed mixture without CBZ ad libitum |
CBZ-high dose | 12.5 mg CBZ in 10 g of feed mixture per day for 1 kg of live weight + control feed mixture without CBZ ad libitum |
Parameter | Group | SEM 2 | p-Value | ||
---|---|---|---|---|---|
Control | CBZ-Low | CBZ-High | |||
Live weight 35 d (g) | 1031 | 1027 | 1051 | 23.140 | 0.9065 |
Live weight 42 d (g) | 1500 | 1491 | 1506 | 29.669 | 0.9806 |
Live weight 77 d (g) | 3136 | 3013 | 3006 | 79.617 | 0.6831 |
Period 42–77 d | |||||
Daily weight gain (g) | 47.64 | 46.60 | 44.62 | 1.484 | 0.7087 |
Total weight gain (g) | 1668 | 1527 | 1514 | 52.629 | 0.4360 |
Daily feed intake (g) | 185.58 | 183.56 | 172.11 | 6.400 | 0.6708 |
Feed conversion ratio | 4.20 | 3.99 | 4.23 | 0.109 | 0.6548 |
Parameter | Group | SEM 2 | p-Value | ||
---|---|---|---|---|---|
Control | CBZ-Low | CBZ-High | |||
Slaughter weight (g) | 3163 | 3013 | 3006 | 79.617 | 0.6831 |
Hot carcass (g) | 1946 | 1908 | 1816 | 54.631 | 0.6259 |
Chilled carcass (g) | 1888 | 1850 | 1755 | 53.535 | 0.6012 |
Reference carcass (g) | 1559 | 1527 | 1441 | 42.311 | 0.5189 |
Cooler carcass shrinkage (%) | 3.01 | 3.08 | 3.31 | 6.181 | 0.7952 |
Dressing percentage (%) | 59.65 | 61.77 | 58.43 | 1.160 | 0.5150 |
Liver (% CC 3) | 5.89 | 5.98 | 5.79 | 0.193 | 0.9283 |
Kidney (% CC) | 1.06 | 1.06 | 1.15 | 0.034 | 0.4766 |
Hind leg (% CC) | 29.97 | 29.71 | 29.41 | 0.3143 | 0.7823 |
pHu 4 of the loin | 5.43 | 5.40 | 5.35 | 0.013 | 0.0595 |
pHu of the thigh | 5.56 | 5.54 | 5.57 | 0.017 | 0.6746 |
Parameter | Group | SEM 2 | p-Value | ||
---|---|---|---|---|---|
Control | CBZ-Low | CBZ-High | |||
Haematocrit (%) | 48.96 a | 42.56 b | 42.83 b | 0.692 | 0.0001 |
Haemoglobin (g·L−1) | 130.69 a | 112.81 b | 113.84 b | 1.882 | 0.0001 |
Erythrocytes (T·L−1) | 6.31 a | 5.49 b | 5.50 b | 0.090 | 0.0001 |
Leukocytes (G·L−1) | 10.82 a | 9.97 b | 9.58 c | 0.130 | 0.0001 |
Neutrophils (G·L−1) | 5.41 a | 4.99 b | 4.79 c | 0.065 | 0.0001 |
Lymphocytes (G·L−1) | 3.46 a | 3.19 b | 3.06 c | 0.042 | 0.0001 |
Monocytes (G·L−1) | 1.41 a | 1.30 b | 1.24 c | 0.017 | 0.0001 |
Eosinophils (G·L−1) | 0.43 a | 0.40 b | 0.38 b | 0.005 | 0.0001 |
Basophils (G·L−1) | 0.11 a | 0.10 b | 0.10 b | 0.002 | 0.0001 |
Platelet count (G·L−1) | 550.93 | 548.30 | 568.54 | 8.049 | 0.5571 |
Parameter | Group | SEM 2 | p-Value | ||
---|---|---|---|---|---|
Control | CBZ-Low | CBZ-High | |||
Total protein (g·L−1) | 61.91 b | 64.71 a | 60.79 b | 0.543 | 0.0047 |
Albumin (g·L−1) | 33.91 ab | 35.11 a | 32.71 b | 0.386 | 0.0313 |
Globulin (g·L−1) | 33.18 ab | 34.75 a | 32.39 b | 0.371 | 0.0224 |
Albumin/globulin | 1.02 | 1.01 | 1.01 | 0.007 | 0.8083 |
Alanin aminotransferase (IU·L−1) | 167.19 c | 274.32 b | 312.40 a | 12.882 | 0.0001 |
Alkaline phosphatase (IU·L−1) | 54.06 c | 118.87 b | 174.85 a | 10.490 | 0.0001 |
Amylase (IU·L−1) | 308.83 | 407.25 | 363.79 | 21.298 | 0.1697 |
Aspartate aminotransferase (IU·L−1) | 41.15 c | 107.28 b | 162.87 a | 11.035 | 0.0001 |
Glutamate oxalocetate transaminase (IU·L−1) | 57.29 a | 53.82 b | 52.71 c | 0.451 | 0.0001 |
Glutamate pyruvate transaminase (IU·L−1) | 93.41 c | 94.73 b | 96.42 a | 0.298 | 0.0001 |
Gama glutamyl transferase (IU·L−1) | 11.85 c | 15.26 b | 16.37 a | 0.426 | 0.0001 |
Kreatinin (mmol·L−1) | 78.51 | 77.89 | 72.27 | 4.524 | 0.8377 |
Glucose (mmol·L−1) | 6.48 | 5.71 | 6.12 | 0.311 | 0.6173 |
Urea (mmol·L−1) | 7.67 b | 8.31 a | 8.40 a | 0.074 | 0.0001 |
Triacylglycerol (mmol·L−1) | 0.85 b | 0.95 a | 0.97 a | 0.011 | 0.0001 |
Cholesterol (mmol·L−1) | 1.30 | 1.46 | 1.04 | 0.119 | 0.3468 |
Calcium (mmol·L−1) | 4.26 | 4.30 | 4.05 | 0.124 | 0.6969 |
Phosphorus (mmol·L−1) | 5.03 | 4.80 | 4.91 | 0.119 | 0.7624 |
Chlorine (mmol·L−1) | 112.73 | 112.92 | 110.64 | 0.977 | 0.5948 |
Magnesium (mmol·L−1) | 1.10 a | 0.56 b | 0.52 b | 0.060 | 0.0001 |
Potassium (mmol·L−1) | 3.98 a | 3.20 b | 3.01 b | 0.114 | 0.0001 |
Sodium (mmol·L−1) | 143.11 | 143.28 | 140.90 | 0.834 | 0.4511 |
Sample | Compound/ Metabolite | Group | SEM 2 | p-Value | ||
---|---|---|---|---|---|---|
Control | CBZ-Low | CBZ-High | ||||
Liver | CBZ 1 | 3.0 b | 21.0 b | 624.6 a | 73.982 | 0.0001 |
CBZ-E 3 | 0.3 b | 22.2 b | 1360.8 a | 165.058 | 0.0001 | |
CBZ-diol 4 | 0.08 b | 4.22 b | 248.70 a | 27.102 | 0.0001 | |
Spleen | CBZ | 0 b | 5.98 b | 193.21 a | 23.759 | 0.0001 |
CBZ-E | 0 b | 9.0 b | 661.2 a | 88.307 | 0.0003 | |
CBZ-diol | 0.016 b | 1.258 b | 67.268 a | 7.103 | 0.0001 | |
Kidney | CBZ | 0.39 b | 80.77 b | 261.87 a | 34.22 | 0.0021 |
CBZ-E | 0.1 b | 95.5 b | 1060.6 a | 119.988 | 0.0001 | |
CBZ-diol | 0.17 b | 7.10 b | 223.26 a | 22.935 | 0.0001 | |
Caecum | CBZ | 0.3 b | 94.1 b | 2026.2 a | 203.827 | 0.0001 |
CBZ-E | 0 b | 32.3 b | 2179.1 a | 239.855 | 0.0001 | |
CBZ-diol | 0.5 b | 33.4 b | 1800.6 a | 217.328 | 0.0001 | |
Feces | CBZ | 0.8 b | 209.7 b | 5507.6 a | 693.702 | 0.0001 |
CBZ-E | 0 b | 72.3 b | 2692.7 a | 381.444 | 0.0001 | |
CBZ-diol | 0 b | 15.2 b | 660.0 a | 120.927 | 0.0032 | |
Urine | CBZ | 1.68 b | 6.69 b | 77.96 a | 11.670 | 0.0058 |
CBZ-E | 2.56 b | 17.48 b | 448.13 a | 51.797 | 0.0001 | |
CBZ-diol | 2.31 b | 12.28 b | 163.15 a | 33.465 | 0.0002 | |
Blood | CBZ | 0.0304 | 0.0598 | 0.1075 | 0.0145 | 0.0842 |
CBZ-E | 0 | 0 | 0.0007 | 0.0002 | 0.2760 | |
CBZ-diol | 0.0373 | 0.0360 | 0.0359 | 0.0023 | 0.9643 | |
Loin meat | CBZ | 0.75 b | 8.66 b | 188.88 a | 22.957 | 0.0001 |
CBZ-E | 0 b | 8.4 b | 684.3 a | 88.971 | 0.0002 | |
CBZ-diol | 0.14 b | 1.64 b | 135.03 a | 14.363 | 0.0001 | |
Thigh meat | CBZ | 0.15 b | 9.10 b | 184.96 a | 21.823 | 0.0001 |
CBZ-E | 0 b | 10.9 b | 796.4 a | 101.183 | 0.0001 | |
CBZ-diol | 0.02 b | 2.52 b | 168.70 a | 17.892 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zita, L.; Kurhan, S.; Krunt, O.; Chmelíková, E.; Kraus, A.; Čítek, J.; Klouček, P.; Stupka, R. The Effect of Carbamazepine on Performance, Carcass Value, Hematological and Biochemical Blood Parameters, and Detection of Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids in Growing Rabbits. Animals 2023, 13, 2041. https://doi.org/10.3390/ani13122041
Zita L, Kurhan S, Krunt O, Chmelíková E, Kraus A, Čítek J, Klouček P, Stupka R. The Effect of Carbamazepine on Performance, Carcass Value, Hematological and Biochemical Blood Parameters, and Detection of Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids in Growing Rabbits. Animals. 2023; 13(12):2041. https://doi.org/10.3390/ani13122041
Chicago/Turabian StyleZita, Lukáš, Sebnem Kurhan, Ondřej Krunt, Eva Chmelíková, Adam Kraus, Jaroslav Čítek, Pavel Klouček, and Roman Stupka. 2023. "The Effect of Carbamazepine on Performance, Carcass Value, Hematological and Biochemical Blood Parameters, and Detection of Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids in Growing Rabbits" Animals 13, no. 12: 2041. https://doi.org/10.3390/ani13122041
APA StyleZita, L., Kurhan, S., Krunt, O., Chmelíková, E., Kraus, A., Čítek, J., Klouček, P., & Stupka, R. (2023). The Effect of Carbamazepine on Performance, Carcass Value, Hematological and Biochemical Blood Parameters, and Detection of Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids in Growing Rabbits. Animals, 13(12), 2041. https://doi.org/10.3390/ani13122041