Effects of Phytase Source and Dose on Its Stability during Pelleting Process under Different Conditioning Temperatures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phytase Source
2.2. Experimental Design
2.2.1. Exp. 1
2.2.2. Exp. 2
2.3. Experimental Diet
2.4. Steam Conditioning–Pelleting Process and Sample Collection
2.5. Determination of Feed and Phytases
2.6. Data Calculation and Statistical Analysis
3. Results
3.1. Effect of Phytase Dose on Recovery Rate of Phytase Activity (Exp. 1)
3.2. Characteristics of Phytase from Different Sources (Exp. 2)
3.3. Effect of Phytase Source on Recovery Rate of Phytase Activity (Exp. 2)
4. Discussion
4.1. Differences in Thermal Stability of Phytase at Different Doses
4.2. Differences in Thermal Stability of Phytase from Different Sources
4.3. Loss of Phytase Activity during Conditioning, Pelleting, and Cooling Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- She, Y.; Sparks, J.C.; Stein, H.H. Effects of increasing concentrations of an Escherichia coli phytase on the apparent ileal digestibility of amino acids and the apparent total tract digestibility of energy and nutrients in corn-soybean meal diets fed to growing pigs. J. Anim. Sci. 2018, 96, 2804–2816. [Google Scholar] [CrossRef]
- Babatunde, O.; Cowieson, A.; Wilson, J.; Adeola, O. The impact of age and feeding length on phytase efficacy during the starter phase of broiler chickens. Poult. Sci. 2019, 98, 6742–6750. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R.; Apajalahti, J.H. The role of feed enzymes in maintaining poultry intestinal health. J. Sci. Food Agric. 2022, 102, 1759–1770. [Google Scholar] [CrossRef]
- De Jong, J.; Woodworth, J.; DeRouchey, J.; Goodband, R.; Tokach, M.; Dritz, S.; Stark, C.; Jones, C. Stability of four commercial phytase products under increasing thermal conditioning temperatures. Transl. Anim. Sci. 2017, 1, 255–260. [Google Scholar] [CrossRef]
- Abdollahi, M.; Ravindran, V.; Svihus, B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim. Feed Sci. Technol. 2013, 179, 1–23. [Google Scholar] [CrossRef]
- Evans, C.E.; Saensukjaroenphon, M.; Gebhardt, J.T.; Stark, C.R.; Paulk, C.B. Effects of conditioning temperature and pellet mill die speed on pellet quality and relative stabilities of phytase and xylanase. Transl. Anim. Sci. 2021, 5, txab043. [Google Scholar] [CrossRef]
- Greiner, R. Limitations of an in vitro model of the poultry digestive tract on the evaluation of the catalytic performance of phytases. J. Sci. Food Agric. 2021, 101, 2519–2524. [Google Scholar] [CrossRef] [PubMed]
- Brinch-Pedersen, H.; Hatzack, F.; Stöger, E.; Arcalis, E.; Pontopidan, K.; Holm, P.B. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): Deposition pattern, thermostability, and phytate hydrolysis. J. Agric. Food Chem. 2006, 54, 4624–4632. [Google Scholar] [CrossRef] [PubMed]
- Slominski, B.; Davie, T.; Nyachoti, M.; Jones, O. Heat stability of endogenous and microbial phytase during feed pelleting. Livest. Sci. 2007, 109, 244–246. [Google Scholar] [CrossRef]
- De Jong, J.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Woodworth, J.C.; Jones, C.K.; Stark, C.R. Stability of commercial phytase sources under different environmental conditions. J. Anim. Sci. 2016, 94, 4259–4266. [Google Scholar] [CrossRef]
- Boney, J.; Moritz, J. Phytase dose effects in practically formulated diets that vary in ingredient composition on feed manufacturing and broiler performance. J. Appl. Poult. Res. 2017, 26, 273–285. [Google Scholar] [CrossRef]
- Thomas, M.; van der Poel, A. Fundamental factors in feed manufacturing: Towards a unifying conditioning/pelleting framework. Anim. Feed Sci. Technol. 2020, 268, 114612. [Google Scholar] [CrossRef]
- Engelen, A.J.; Van Der Heeft, F.C.; Randsdorp, P.H.; Smtt, E.L. Simple and rapid determination of phytase activity. J. AOAC Int. 1994, 77, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Engelen, A.J.; van der Heeft, F.C.; Randsdorp, P.H.; Somers, W.A.; Schaefer, J.; van der Vat, B.J. Determination of phytase activity in feed by a colorimetric enzymatic method: Collaborative interlaboratory study. J. AOAC Int. 2001, 84, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Kaps, M.; Lamberson, W.R. Biostatistics for Animal Science; CABI: Oxfordshire, UK, 2017. [Google Scholar]
- Poulsen, H.; Blaabjerg, K.; Feuerstein, D. Comparison of different levels and sources of microbial phytases. Livest. Sci. 2007, 109, 255–257. [Google Scholar] [CrossRef]
- Singh, P. Significance of phytic acid and supplemental phytase in chicken nutrition: A review. World’s Poult. Sci. J. 2008, 64, 553–580. [Google Scholar] [CrossRef]
- Woyengo, T.; Nyachoti, C. Supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci. 2011, 91, 177–192. [Google Scholar] [CrossRef]
- Almeida, F.N.; Vazquez-Añón, M.; Escobar, J. Dose-dependent effects of a microbial phytase on phosphorus digestibility of common feedstuffs in pigs. Asian-Australas. J. Anim. Sci. 2017, 30, 985. [Google Scholar] [CrossRef]
- Walk, C.; Bedford, M.; Santos, T.; Paiva, D.; Bradley, J.; Wladecki, H.; Honaker, C.; McElroy, A. Extra-phosphoric effects of superdoses of a novel microbial phytase. Poult. Sci. 2013, 92, 719–725. [Google Scholar] [CrossRef]
- Walk, C.; Santos, T.; Bedford, M. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef]
- Guggenbuhl, P.; Calvo, E.; Fru, F. Effects of dietary doses of three phytases on performance in pigs. J. Anim. Sci. 2016, 94, 286–288. [Google Scholar] [CrossRef]
- Beeson, L.; Walk, C.; Bedford, M.; Olukosi, O. Hydrolysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase. Poult. Sci. 2017, 96, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Kim, B.G. Supplemental phytase increases phosphorus digestibility in pigs regardless of phytase source or feed pelleting. Anim. Feed Sci. Technol. 2021, 276, 114901. [Google Scholar] [CrossRef]
- Gizzi, G.; Thyregod, P.; von Holst, C.; Bertin, G.; Vogel, K.; Faurschou-Isaksen, M.; Betz, R.; Murphy, R.; Andersen, B.B. Determination of phytase activity in feed: Interlaboratory study. J. AOAC Int. 2008, 91, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Loop, S.; Lilly, K.; Shires, L.; Gehring, C.; Beaman, K.; Persia, M.; Moritz, J. The phytase analytical activity of pelleted diets may not adequately describe efficacy in the bird. J. Appl. Poult. Res. 2012, 21, 492–501. [Google Scholar] [CrossRef]
- Fan, L.; He, Z.; Ao, X.; Sun, W.; Xiao, X.; Zeng, F.; Wang, Y.; He, J. Effects of residual superdoses of phytase on growth performance, tibia mineralization, and relative organ weight in ducks fed phosphorus-deficient diets. Poult. Sci. 2019, 98, 3926–3936. [Google Scholar] [CrossRef]
- Timmons, J.; Angel, R.; Harter-Dennis, J.; Saylor, W.; Ward, N. Evaluation of heat-stable phytases in pelleted diets fed to broilers from day zero to thirty-five during the summer months. J. Appl. Poult. Res. 2008, 17, 482–489. [Google Scholar] [CrossRef]
- Singh, B.; Satyanarayana, T. Fungal phytases: Characteristics and amelioration of nutritional quality and growth of non-ruminants. J. Anim. Physiol. Anim. Nutr. 2015, 99, 646–660. [Google Scholar] [CrossRef]
- Han, Y.; Lei, X.G. Role of Glycosylation in the Functional Expression of anAspergillus nigerPhytase (phyA) inPichia pastoris. Arch. Biochem. Biophys. 1999, 364, 83–90. [Google Scholar] [CrossRef]
- Singh, N.; Kuhar, S.; Priya, K.; Jaryal, R.; Yadav, R. Phytase: The feed enzyme, an overview. In Advances in Animal Biotechnology and its Applications; Springer: Singapore, 2018; pp. 269–327. [Google Scholar]
- Svihus, B.; Zimonja, O. Chemical alterations with nutritional consequences due to pelleting animal feeds: A review. Anim. Prod. Sci. 2011, 51, 590–596. [Google Scholar] [CrossRef]
- Bedford, M.; Partridge, G. Thermostability of feed enzymes and their practical application in the feed mill. In Enzymes in Farm Animal Nutrition; Bedford, M.R., Partridge, G.G., Eds.; CABI: Oxfordshire, UK, 2010; p. 368. [Google Scholar]
- Amerah, A.; Gilbert, C.; Simmins, P.; Ravindran, V. Influence of feed processing on the efficacy of exogenous enzymes in broiler diets. World’s Poult. Sci. J. 2011, 67, 29–46. [Google Scholar] [CrossRef]
- Vasudevan, U.M.; Jaiswal, A.K.; Krishna, S.; Pandey, A. Thermostable phytase in feed and fuel industries. Bioresour. Technol. 2019, 278, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Zhao, G.; Ning, Y. Interactions between plant proteins/enzymes and other food components, and their effects on food quality. Crit. Rev. Food Sci. Nutr. 2017, 57, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Homan, V.; Boney, J.; Moritz, J. Effects of steam conditioning temperatures on commercial phytases and subsequent broiler performance and tibia mineralization. Appl. Anim. Sci. 2019, 35, 298–303. [Google Scholar] [CrossRef]
Batch of Production | No. of Diets | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 3 | 7 | 5 | 8 | 1 | 9 |
2 | 7 | 9 | 3 | 2 | 1 | 4 | 6 | 8 | 5 |
3 | 4 | 1 | 7 | 5 | 9 | 3 | 2 | 6 | 8 |
4 | 3 | 5 | 9 | 4 | 8 | 1 | 7 | 2 | 6 |
Item | Diet |
---|---|
Ingredients | |
Corn | 73.71 |
Soybean meal | 23.23 |
Limestone | 0.79 |
Dicalcium phosphate | 1.18 |
Sodium chloride | 0.39 |
L-lysine∙HCl | 0.31 |
L-threonine | 0.09 |
DL-methionine | 0.08 |
L-tryptophan | 0.02 |
Premix 1 | 0.20 |
Total | 100.00 |
Nutrient composition 2, % | |
Dry matter | 88.41 |
Crude protein | 16.01 |
Ether extract | 3.89 |
Crude fiber | 2.76 |
Calcium | 0.73 |
Total phosphorus | 0.61 |
Lysine | 1.15 |
Methionine | 0.34 |
Threonine | 0.70 |
Tryptophan | 0.20 |
Phytase Doses, FTU/kg | Conditioning at 75 °C | Conditioning at 85 °C | ||||||
---|---|---|---|---|---|---|---|---|
Temperature, °C | Dry Matter, % | Temperature, °C | Dry Matter, % | |||||
Conditioning | Pelleting | Cooling | Conditioning | Pelleting | Cooling | |||
7560 | 75.2 | 83.58 | 83.89 | 85.44 | 85.0 | 83.11 ab | 83.49 | 85.10 |
14,310 | 75.1 | 83.63 | 84.03 | 85.67 | 85.0 | 82.59 b | 83.35 | 85.17 |
33,830 | 75.2 | 83.72 | 83.82 | 85.60 | 84.6 | 83.00 ab | 83.72 | 85.66 |
43,590 | 75.2 | 84.46 | 84.73 | 86.10 | 85.0 | 83.89 ab | 84.43 | 86.01 |
61,500 | 75.3 | 84.41 | 84.89 | 86.28 | 85.0 | 84.15 a | 84.43 | 86.07 |
SEM | 0.07 | 0.003 | 0.003 | 0.003 | 0.19 | 0.004 | 0.003 | 0.004 |
p value | 0.5887 | 0.1176 | 0.0923 | 0.3913 | 0.6248 | 0.0349 | 0.1127 | 0.2313 |
Phytase Dose, FTU/kg | Temperature, °C | Recovery Rate of Phytase Activity, % | ||
---|---|---|---|---|
Conditioning | Pelleting | Cooling | ||
7560 | 75 | 60.4 | 42.6 | 39.8 |
85 | 39.1 | 17.4 | 13.9 | |
14,310 | 75 | 65.7 | 44.2 | 44.0 |
85 | 36.1 | 17.0 | 17.9 | |
33,830 | 75 | 63.8 | 37.0 | 35.3 |
85 | 26.5 | 9.2 | 10.0 | |
43,590 | 75 | 64.4 | 41.6 | 42.5 |
85 | 18.0 | 7.4 | 8.5 | |
61,500 | 75 | 60.0 | 39.7 | 40.7 |
85 | 17.3 | 13.9 | 16.3 | |
SEM | 8.0 | 3.6 | 3.3 | |
Source of variance | ||||
Phytase dose, p value | 0.5139 | 0.3141 | 0.2384 | |
7560 | 49.7 | 30.0 | 26.9 | |
14,310 | 50.9 | 30.6 | 30.9 | |
33,830 | 45.2 | 23.1 | 22.6 | |
43,590 | 41.2 | 24.5 | 25.5 | |
61,500 | 38.6 | 26.8 | 28.4 | |
SEM | 5.7 | 2.9 | 2.5 | |
Temperature, p value | <0.0001 | <0.0001 | <0.0001 | |
75 °C | 62.8 | 41.0 | 40.4 | |
85 °C | 27.4 | 13.0 | 13.3 | |
SEM | 3.6 | 1.6 | 1.5 | |
Phytase dose × Temperature, p value | 0.5352 | 0.6119 | 0.5232 |
Phytase | Property of Phytase | Phytase Activity in Diet, FTU/g DM | ||||
---|---|---|---|---|---|---|
Phytase Activity 1, FTU/g | Appearance | Color | Determined 1 | Calculated 2 | RE 3, % | |
1 | 11,809 | Powder, with a few particle | Pale yellow | 56.5 bc | 54.5 | 1.80 |
2 | 14,864 | Irregular balls, uneven size | Pale yellow | 70.8 a | 68.4 | 1.72 |
3 | 15,225 | Powder, with a few crystalline particle | Pale yellow | 73.0 a | 70.0 | 2.10 |
4 | 12,094 | Powder, with many spherical particles of uneven size | Pale yellow | 61.7 b | 55.7 | 5.11 |
5 | 9787 | Powder, flakes | Yellow | 43.2 d | 45.1 | 2.15 |
6 | 12,827 | Sphere particles, uneven size | Pale yellow | 62.4 b | 59.1 | 2.72 |
7 | 11,673 | Powder, flakes | Yellow | 54.1 c | 53.8 | 0.28 |
8 | 8058 | Powder, flakes | Yellow | 42.7 d | 37.1 | 7.02 |
Without phytase | - | - | - | 4.2 e | - | - |
SEM | 2.0 | |||||
Source of variance, p value | ||||||
Block | 0.0141 | |||||
Phytase | <0.0001 |
Phytase | Temperature, °C | Measured Temperature, °C | Recovery Rate of Phytase Activity, % | ||
---|---|---|---|---|---|
Conditioning | Pelleting | Cooling | |||
1 | 75 | 74.2 | 61.8 | 35.5 | 39.4 |
85 | 85.0 | 54.7 | 28.8 | 28.8 | |
2 | 75 | 75.3 | 64.9 | 29.0 | 32.6 |
85 | 85.1 | 65.6 | 28.9 | 26.7 | |
3 | 75 | 75.6 | 59.6 | 34.7 | 39.2 |
85 | 85.3 | 43.0 | 25.8 | 26.1 | |
4 | 75 | 75.4 | 71.7 | 39.9 | 41.3 |
85 | 85.4 | 68.7 | 26.7 | 27.0 | |
5 | 75 | 75.8 | 71.7 | 47.2 | 54.4 |
85 | 85.3 | 63.8 | 36.6 | 36.8 | |
6 | 75 | 75.2 | 54.1 | 35.9 | 39.7 |
85 | 85.0 | 33.1 | 21.4 | 20.6 | |
7 | 75 | 74.7 | 55.5 | 31.4 | 33.0 |
85 | 85.1 | 26.3 | 14.7 | 12.7 | |
8 | 75 | 75.6 | 64.8 | 36.9 | 43.5 |
85 | 85.3 | 42.8 | 28.7 | 26.6 | |
SEM | 1.3 | 6.5 | 3.7 | 3.7 | |
Source of variance | |||||
Phytase, p value | 0.0001 | 0.0028 | <0.0001 | ||
1 | 58.3 ab | 32.1 ab | 34.1 abc | ||
2 | 65.3 a | 29.0 b | 29.6 bc | ||
3 | 51.3 ab | 30.3 ab | 32.6 bc | ||
4 | 70.2 a | 33.3 ab | 34.2 abc | ||
5 | 67.7 a | 41.9 a | 45.6 a | ||
6 | 43.6 b | 28.6 b | 30.2 bc | ||
7 | 40.9 b | 23.1 b | 22.8 c | ||
8 | 53.8 ab | 32.8 ab | 35.0 ab | ||
SEM | 5.1 | 2.7 | 2.9 | ||
Temperature, p value | <0.0001 | <0.0001 | <0.0001 | ||
75 °C | 63.0 | 36.3 | 40.4 | ||
85 °C | 49.7 | 26.4 | 25.7 | ||
SEM | 3.8 | 1.7 | 2.2 | ||
Phytase × Temperature, p value | 0.1386 | 0.4017 | 0.3385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, F.; Zhang, H.; Zhang, Q.; Zhao, W.; Sa, R.; Xie, J. Effects of Phytase Source and Dose on Its Stability during Pelleting Process under Different Conditioning Temperatures. Animals 2023, 13, 3741. https://doi.org/10.3390/ani13233741
Wang Y, Zhao F, Zhang H, Zhang Q, Zhao W, Sa R, Xie J. Effects of Phytase Source and Dose on Its Stability during Pelleting Process under Different Conditioning Temperatures. Animals. 2023; 13(23):3741. https://doi.org/10.3390/ani13233741
Chicago/Turabian StyleWang, Yuming, Feng Zhao, Hu Zhang, Qianyun Zhang, Wei Zhao, Renna Sa, and Jingjing Xie. 2023. "Effects of Phytase Source and Dose on Its Stability during Pelleting Process under Different Conditioning Temperatures" Animals 13, no. 23: 3741. https://doi.org/10.3390/ani13233741
APA StyleWang, Y., Zhao, F., Zhang, H., Zhang, Q., Zhao, W., Sa, R., & Xie, J. (2023). Effects of Phytase Source and Dose on Its Stability during Pelleting Process under Different Conditioning Temperatures. Animals, 13(23), 3741. https://doi.org/10.3390/ani13233741