Use of Wild Boar (Sus scrofa) as a Sustainable Alternative in Pork Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Intensive Pig Farming
3. Habits, Life, Expansion, and Emergence of Wild Boar
4. Socio-Economic Activities Involving Wild Boar
5. Wild Boar Carcass Characteristics and Meat Quality
5.1. Carcass Characteristics
5.2. Meat Quality
5.3. Processed Products
6. Discussion
6.1. Scientific Opinion on Wild Boar Management
6.2. Potential of Wild Boar Meat
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabinowitz, P.M.; Pappaioanou, M.; Bardosh, K.L.; Conti, L. A planetary vision for one health. BMJ Glob. Health 2018, 3, e001137. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, T. Sustainable livestock production: Low Emission Farm—The innovative combination of nutrient, emission and waste management with special emphasis on Chinese pig production. Anim. Nutr. 2015, 1, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Lerner, H.; Berg, C. A comparison of three holistic approaches to health: One health, ecoHealth, and planetary health. Front. Vet. Sci. 2017, 4, 163. [Google Scholar] [CrossRef] [PubMed]
- Ruckli, A.K.; Hörtenhuber, S.J.; Ferrari, P.; Guy, J.; Helmerichs, J.; Hoste, R.; Carmen, H.; Kasperczyk, N.; Leeb, C.; Malak-Rawlikowska, A.; et al. Integrative Sustainability Analysis of European Pig Farms: Development of a Multi-Criteria Assessment Tool. Sustainability 2022, 14, 5988. [Google Scholar] [CrossRef]
- Macháčková, K.; Jiří Zelený, J.; Lang, D.; Vinš, Z. Wild boar meat as a sustainable substitute for pork: A mixed methods approach. Sustainability 2021, 13, 2490. [Google Scholar] [CrossRef]
- Thøgersen, J. Country Differences in Sustainable Consumption: The Case of Organic Food. J. Macromark. 2010, 30, 171–185. [Google Scholar] [CrossRef]
- FAO. Livestock’s Long Shadow. Environmental Issues and Options. 2006. Available online: https://www.fao.org/3/a0701e/a0701e.pdf/ (accessed on 19 May 2023).
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013; Available online: https://www.fao.org/3/i3437e/i3437e.pdf/ (accessed on 19 May 2023).
- FAO. Food Outlook—Biannual Report on Global Food Markets. 2020. Available online: https://www.fao.org/documents/card/en/c/cc3020en (accessed on 19 May 2023).
- Augère-Granier, M.-L. The EU Pig Meat Sector. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/652044/EPRS_BRI(2020)652044_EN.pdf (accessed on 19 May 2023).
- Jiménez Ruiz, S.; Laguna, E.; Vicente, J.; García Bocanegra, I.; Martínez Guijosa, J.; Cano Terriza, D.; Risalde, M.A.; Acevedo, P. Characterization and management of interaction risks between livestock and wild ungulates on outdoor pig farms in Spain. Porc. Health Manag. 2022, 8, 2. [Google Scholar] [CrossRef]
- Freschi, P.; Braghieri, A.; Pacelli, C.; Langella, E.; Riviezzi, A.A.; Paolino, R.; Cosentino, C. Sensory Profile and Consumer Liking of Sustainable Salamis Differing in Wild Boar Meat and Seasoning Ingredients Addition. Foods 2023, 12, 1089. [Google Scholar] [CrossRef]
- McGlone, J.J. The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems. Animals 2013, 3, 401–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolba, A.; Wood-Gush, D. The behaviour of pigs in a semi-natural environment. Anim. Sci. 1989, 48, 419–425. [Google Scholar] [CrossRef]
- Valros, A.; Heinonen, M. Save the pig tail. Porc. Health Manag. 2015, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Terlouw, E.; Lawrence, A.B.; Illius, A.W. Influences of feeding level and physical restriction on development of stereotypies in sows. Anim. Behav. 1991, 42, 981–991. [Google Scholar] [CrossRef]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Rev. 2020, 51, 1. [Google Scholar] [CrossRef]
- Fulgione, D.; Buglione, M. The Boar War: Five Hot Factors Unleashing Boar Expansion and Related Emergency. Land 2022, 11, 887. [Google Scholar] [CrossRef]
- Baskin, L.M.; Danell, K. Ecology of Ungulates: A Handbook of Species in Eastern Europe and Northern and Central Asia; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003. [Google Scholar]
- Long, J.L. Introduced Mammals of the World: Their History, Distribution and Influence; CSIRO Publishing: Melbourne, Austrilia, 2003. [Google Scholar]
- Ballari, S.A.; Barrios-García, M.N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges: A review of wild boar Sus scrofa diet. Mammal Rev. 2014, 44, 124–134. [Google Scholar] [CrossRef]
- Sales, J.; Kotrba, R. Meat from wild boar (Sus scrofa L.): A review. Meat Sci. 2013, 94, 187–201. [Google Scholar] [CrossRef]
- Johann, F.; Handschuh, M.; Linderoth, P.; Dormann, C.F.; Arnold, J. Adaptation of wild boar (Sus scrofa) activity in a humandominated landscape. BMC Ecol. 2020, 20, 4. [Google Scholar] [CrossRef] [Green Version]
- Keuling, O.; Stier, N.; Roth, M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.? Eur. J. Wildl. Res. 2008, 54, 729–737. [Google Scholar] [CrossRef]
- Thurfjell, H.; Spong, G.; Ericsson, G. Effects of hunting on wild boar Sus scrofa behaviour. Wildl. Biol. 2013, 19, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sales, L.P.; Ribeiro, B.R.; Hayward, M.W.; Paglia, A.; Passamani, M.; Loyola, R. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 2017, 86, 1214–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozolinš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe: Wild boar and hunter trends in Europe. Pest. Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef]
- Hernández, F.A.; Parker, B.M.; Pylant, C.L.; Smyser, T.J.; Piaggio, A.J.; Lance, S.L.; Milleson, M.P.; Austin, J.D.; Wisely, S.M. Invasion ecology of wild pigs (Sus scrofa) in Florida, USA: The role of humans in the expansion and colonization of an invasive wild ungulate. Biol. Invasions. 2018, 20, 1865–1880. [Google Scholar] [CrossRef] [Green Version]
- Marsico, G.; Lestingi, A.; Caputi Jambrenghi, A. Cinghiali per lo sviluppo delle aree marginali. Riv. Suinic. 1998, 5, 25–38. [Google Scholar]
- Flores Ahumada, P.; Morales Pavez, R.; Skewes Ramm, O. Chemical properties and sensory characteristics of wild boar meat (Sus scrofa scrofa) fed with acorns (Quercus robur). Rev. Prod. Anim. 2021, 33. [Google Scholar]
- Colwell, R.K.; Rangel, T.F. Hutchinson’s duality: The once and future niche. Proc. Natl. Acad. Sci. USA 2009, 106, 19651–19658. [Google Scholar] [CrossRef]
- Bruinderink, G.W.T.A.G.; Hazebroek, E. Ungulate Traffic Collisions in Europe. Conserv. Biol. 1996, 10, 1059–1067. [Google Scholar] [CrossRef]
- Bhandari, S.; Morley, C.; Aryal, A.; Shrestha, U.B. The diet of the striped hyena in Nepal’s lowland regions. Ecol. Evol. 2020, 10, 7953–7962. [Google Scholar] [CrossRef]
- Buglione, M.; Troisi, S.R.; Petrelli, S.; van Vugt, M.; Notomista, T.; Troiano, C.; Bellomo, A.; Maselli, V.; Gregorio, R.; Fulgione, D. The First Report on the Ecology and Distribution of the Wolf Population in Cilento, Vallo di Diano and Alburni National Park. Biol. Bull. 2020, 47, 640–654. [Google Scholar] [CrossRef]
- de Schaetzen, F.; van Langevelde, F.; WallisDeVries, M.F. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands. J. Insect Conserv. 2018, 22, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Sandom, C.J.; Hughes, J.; Macdonald, D.W. Rewilding the Scottish Highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 2013, 21, 336–343. [Google Scholar] [CrossRef]
- Barrios-Garcia, M.N.; Ballari, S.A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 2012, 14, 2283–2300. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database; Hollands Printing Ltd.: Auckland, New Zealand, 2000. [Google Scholar]
- Davidson, A.; Malkinson, D.; Schonblum, A.; Koren, L.; Shanas, U. Do boars compensate for hunting with higher reproductive hormones? Conserv. Physiol. 2021, 9, coab068. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, A.; Magliozzi, L.; Fulgione, D.; Aria, M.; D’Aniello, B. Lepidoptera Papilionoidea communities as a sentinel of biodiversity threat: The case of wild boar rooting in a Mediterranean habitat. J. Insect Conserv. 2016, 20, 353–362. [Google Scholar] [CrossRef]
- Iglesias, I.; Martínez, M.; Montes, F.; de la Torre, A. Velocity of ASF spread in wild boar in the European Union (2014–2017). Int. J. Infect. Dis. 2019, 79, 69. [Google Scholar]
- Taylor, R.A.; Condoleo, R.; Simons, R.R.L.; Gale, P.; Kelly, L.A.; Snary, E.L. The Risk of Infection by African Swine Fever Virus in European Swine Through Boar Movement and Legal Trade of Pigs and Pig Meat. Front. Vet. Sci. 2020, 6, 486. [Google Scholar] [CrossRef] [Green Version]
- Risch, D.R.; Ringma, J.; Price, M.R. The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Sci. Rep. 2021, 11, 13256. [Google Scholar] [CrossRef]
- Lewis, J.S.; Corn, J.L.; Mayer, J.J.; Jordan, T.R.; Farnsworth, M.L.; Burdett, C.L.; VerCauteren, K.C.; Sweeney, S.J.; Miller, R.S. Historical, current, and potential population size estimates of invasive wild pigs (Sus scrofa) in the United States. Biol. Invasions 2019, 21, 2373–2384. [Google Scholar] [CrossRef]
- Croft, S.; Franzetti, B.; Gill, R.; Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS ONE 2020, 15, e0238429. [Google Scholar] [CrossRef]
- Massei, G.; Sugoto, R.; Bunting, R. Too Many Hogs? A Review of Methods to Mitigate Impact by Wild Boar and Feral Hogs. Hum.-Wildl. Interact. 2011, 5, 79–99. [Google Scholar]
- Delibes-Mateos, M.; Farfán, M.A.; Olivero, J.; Márquez, A.L.; Vargas, J.M. Long-term changes in game species over a long period of transformation in the Iberian Mediterranean landscape. Environ. Manag. 2009, 43, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Avagnina, A.; Nucera, D.; Grassi, M.A.; Ferroglio, E.; Dalmasso, A.; Civera, T. The microbiological conditions of carcasses from large game animals in Italy. Meat Sci. 2012, 91, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Coltman, D.W.; O’Donoghue, P.; Jorgenson, J.T.; Hogg, J.T.; Strobeck, C.; Festa-Bianchet, M. Undesirable evolutionary consequences of trophy hunting. Nature 2003, 426, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Garel, M.; Cugnasse, J.M.; Maillard, D.; Gaillard, J.M.; Hewison, A.M.; Dubray, D. Selective harvesting and habitat loss produce long-term life history changes in a mouflon population. Ecol. Appl. 2007, 17, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Mysterud, A. Selective harvesting of large mammals: How often does it result in directional selection? J. Appl. Ecol. 2011, 48, 827–834. [Google Scholar] [CrossRef]
- Piasentier, E.; Bovolenta, S.; Viliani, M. Wild Ungulate Farming Systems and Product Quality. Vet. Res. Commun. 2005, 29, 65–70. [Google Scholar] [CrossRef]
- Torres-Porras, J.; Carranza, J.; Pérez-González, J.; Mateos, C.; Alarcos, S. The tragedy of the commons: Unsustainable population structure of Iberian red deer in hunting estates. Eur. J. Wildl. Res. 2014, 60, 351–357. [Google Scholar] [CrossRef]
- Putman, R.; Staines, B.W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: Justifications, feeding practice and effectiveness. Mammal Rev. 2004, 34, 285–306. [Google Scholar] [CrossRef]
- Mysterud, A. Still walking on the wild side? Management actions as steps towards ‘semi-domestication’ of hunted ungulates. J. Appl. Ecol. 2010, 47, 920–925. [Google Scholar] [CrossRef]
- Putman, R.J.; Langbein, J.; Watson, P.; Green, P.; Cahill, S. The management of urban populations of ungulates. In Behaviour and Management of European Ungulates; Putman, R.J., Apollonio, M., Eds.; Whittles Publishing: Dunbeath, UK, 2014; pp. 148–177. [Google Scholar]
- Milner, J.M.; Van Beest, F.M.; Schmidt, K.T.; Brook, R.K.; Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 2014, 78, 1322–1334. [Google Scholar] [CrossRef] [Green Version]
- Torres-Porras, J.; Carranza, J.; Pérez-González, J. Selective culling of Iberian red deer stags (Cervus elaphus hispanicus) by selective monteria in Spain. Eur. J. Wildl. Res. 2009, 55, 117–123. [Google Scholar] [CrossRef]
- Ilic, J.; Tomasevic, I.; Djekic, I. Influence of boiling, grilling, and sous-vide on mastication, bolus formation, and dynamic sensory perception of wild boar ham. Meat Sci. 2022, 188, 108805. [Google Scholar] [CrossRef]
- Naya, Y.; Horiuchi, M.; Ishiguro, N.; Shinagawa, M. Bacteriological and genetic assessment of game meat from Japanese wild boars. J. Agr. Food Chem. 2003, 51, 345–349. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Morais, B.H.; de Lima Cardoso, D.; da Silva Costa, J.; Mayor, P.; de Albuquerque, N.I.; Chisté, R.C.; de Araújo Guimaraes, D.A. Use of wildlife as an alternative protein source: Collared peccary meat. Meat Sci. 2022, 192, 108895. [Google Scholar] [CrossRef] [PubMed]
- Pitman, R.T.; Fattebert, J.; Williams, S.T.; Williams, K.S.; Hill, R.A.; Hunter, L.T.B.; Slotow, R.; Balme, G.A. The conservation costs of game ranching. Conserv. Lett. 2016, 10, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from wild ungulates: Ensuring quality and hygiene of an increasing resource. It. J. Anim. Sci. 2010, 9, e61. [Google Scholar]
- Mussa, P.P.; Debernardi, M.; Maletto, S.; O’Donoghue, E.M. Cento Norme Pratiche per Allevare Selvaggina: Fagiano, Starna, Lepre, Cinghiale, Daino, Cervo; Reda: Valle Mosso, Italy, 1986; pp. 97–117. [Google Scholar]
- Hodgkinson, S.; López, I.; Navarrete, S. Ingestion of energy, protein and amino acids from pasture by grazing European wild boar (Sus scrofa L.) in a semi-extensive production system. Livest. Sci. 2009, 122, 222–226. [Google Scholar] [CrossRef]
- Demartini, E.; Vecchiato, D.; Tempesta, T.; Gaviglio, A.A.M.; Viganó, R. Consumer preferences for red deer meat: A discrete choice analysis considering attitudes towards wild game meat and hunting. Meat Sci. 2018, 146, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiklund, E.; Farouk, M.; Finstad, G. Venison: Meat from red deer (Cervus elaphus) and reindeer (Rangifer tarandus tarandus). Anim. Front. 2014, 4, 55–61. [Google Scholar] [CrossRef]
- Wiklund, E.; Malmfors, G.; Smulders, F.J.M. Game meat as a resource in Sweden—With particular focus on moose (Alces alces). In Trends in Game Meat Hygiene—From Forest to Fork; Paulsen, P., Bauer, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 305–320. [Google Scholar]
- Rivero, M.J.; Rodríguez-Estévez, V.; Pietrosemoli, S.; Carballo, C.; Cooke, A.S.; Kongsted, A.G. Forage Consumption and Its Effects on the Performance of Growing Swine—Discussed in Relation to European Wild Boar (Sus scrofa L.) in Semi-Extensive Systems: A Review. Animals 2019, 9, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skewes, O.; Morales, R.; González, F.; Lui, J.; Hofbauer, P.; Paulsen, P. Carcass and meat quality traits of wild boar (Sus scrofa s. L.) with 2n=36 karyotype compared to those of phenotypically similar crossbreeds (2n = 37 and 2n = 38) raised under same farming conditions. 1. Carcass quantity and meat dressing. Meat Sci. 2008, 80, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Skewes, O.; Morales, R.; Mendoza, N.; Smulders, F.J.M.; Paulsen, P. Carcass and meat quality traits of wild boar (Sus scrofa s. L.) with 2n = 36 karyotype compared to those of phenotypically similar crossbreeds (2n = 37 and 2n = 38) raised under the same farming conditions Fatty acid profile and cholesterol. Meat. Sci. 2009, 83, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.; Russo, V.; Davoli, R.; Sternstein, I.; Brunsch, C.; Schröffelova, D. Linkage and QTL mapping for Sus scrofa chromosome 13. J. Anim. Breed. Gen. 2003, 120, 103–110. [Google Scholar] [CrossRef]
- Kuryl, J.; Pierzchala, M.; Hojny, J.; Reiner, G.; Bartenschlager, H.; Moser, G. Linkage and QTL mapping for Sus scrofa chromosome 15. J. Anim. Breed. Gen. 2003, S120, 119–125. [Google Scholar] [CrossRef]
- Skewes, O.; Cádiz, P.; Merino, V.; Islas, A.; Morales, R. Muscle fibre characteristics, enzyme activity and meat colour of wild boar (Sus scrofa s. L.) muscle with 2n = 36 compared to those of phenotypically similar crossbreeds (2n = 37 and 2n = 38). Meat. Sci. 2014, 98, 272–278. [Google Scholar] [CrossRef]
- Razmaitė, V.; Kerzienė, S.; Jatkauskiene, V. Body and carcass measurements and organ weights of Lithuanian indigenous pigs and their wild boar hybrids. Anim. Sci. Pap. Rep. 2009, 27, 331–342. [Google Scholar]
- Müller, E.; Moser, G.; Bartenschlager, H.; Geldermann, H. Trait values of growth, carcass and meat quality in wild boar, Meishan and Pietrain pigs as well as their crossbreed generations. J. Anim. Breed. Genet. 2000, 117, 189–202. [Google Scholar] [CrossRef]
- Aravena, P.; Skewes, O. European wild boar purebred and Sus scrofa intercrosses. Discrimination proposals. A review. Agro-Ciencia 2007, 23, 133–147. [Google Scholar]
- Andersson-Eklund, L.; Marklund, L.; Lundström, K.; Haley, C.S.; Andersson, K.; Hansson, I.; Moller, M.; Andersson, L. Mapping quantitative trait loci for carcass and meat quality traits in a wild boar × Large White intercross. J. Anim. Sci. 1998, 76, 694–700. [Google Scholar] [CrossRef] [Green Version]
- Grubešić, M.; Konjević, D.; Severin, K.; Hadžiosmanović, M.; Tomljanović, K.; Mašek, T.; Margaletić, J.; Slavica, A. Dressed and undressed weight in naturally bred wild boar (Sus scrofa): The possible influence of crossbreeding. Acta Aliment. 2011, 40, 502–508. [Google Scholar] [CrossRef]
- Żochowska-Kujawska, J.; Lachowicz, K.; Sobczak, M.; Gajowiecki, L.; Kotowicz, M.; Żych, A.; Mędrala, D. Effects of massaging on hardness, rheological properties, and structure of four wild boar muscles of different fibre type content and age. Meat Sci. 2007, 75, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Pette, D.; Staron, R.R. Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 1997, 170, 143–223. [Google Scholar] [PubMed]
- Neethling, J.; Hoffman, L.C.; Muller, M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016, 113, 139–153. [Google Scholar] [CrossRef]
- Lammers, M.; Dietze, K.; Ternes, W. A comparison of the volatile profiles of frying European and Australian wild boar meat with industrial genotype pork by dynamic headspace-CG/MS analysis. J. Muscle Foods 2009, 20, 255–274. [Google Scholar] [CrossRef]
- Pedrazzoli, M.; Dal Bosco, A.; Castellini, C.; Ranucci, D.; Mattioli, S.; Pauselli, M.; Roscini, V. Effect of age and feeding area on meat quality of wild boars. It. J. Anim. Sci. 2017, 16, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Tomasevic, I.; Novakovic, S.; Solowiej, B.; Zdolec, N.; Skunca, D.; Krocko, M.; Nedomova, S.; Kolaj, R.; Aleksiev, G.; Djekic, I. Consumers’ perceptions, attitudes and perceived quality of game meat in ten European countries. Meat Sci. 2018, 142, 5–13. [Google Scholar] [CrossRef]
- Bowker, B.C.; Grant, A.L.; Forrest, J.C.; Gerrard, D.E. Muscle metabolism and PSE pork. J. Anim. Sci. 2000, 79, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Quaresma, M.A.G.; Alves, S.P.; Trigo-Rodrigues, I.; Pereira-Silva, R.; Santos, N.; Lemos, J.P.C.; Barreto, A.S.; Bessa, R.J.B. Nutritional evaluation of the lipid fraction of feral wild boar (Sus scrofa scrofa) meat. Meat Sci. 2011, 89, 457–461. [Google Scholar] [CrossRef]
- Marsico, G.; Rasulo, A.; Dimatteo, S.; Tarricone, S.; Pinto, F.; Ragni, M. Pig, F1 (wild boar × pig) and wild boar meat quality. It. J. Anim. Sci. 2007, 6, 701–703. [Google Scholar] [CrossRef]
- Commission Internationale de l’Eclairage (CIE). Colorimetry: Official Recommendations of the International Commission on Illumination; Publication CIE No.15 (E-1.3.1): Paris, France, 1976; Boreau Central de la CIE. [Google Scholar]
- Tarricone, S.; Marsico, G.; Melodia, L.; Ragni, M.; Colangelo, D.; Karatosidi, D.; Rasulo, A.; Pinto, F. Meat quality of pigs, F1, F2, reared and wild wild boars. Prog. Nutr. 2010, 11, 261–271. [Google Scholar]
- Chin, S.F.; Liu, W.; Storkson, J.M.; Ha, Y.L.; Pariza, M.W. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Compos. Anal. 1992, 5, 185–197. [Google Scholar] [CrossRef]
- Razmaitė, V.; Švirmickas, G.J.; Šiukščius, A. Effect of weight, sex and hunting period on fatty acid composition of intramuscular and subcutaneous fat from wild boar. It. J. Anim. Sci. 2012, 11, 174–179. [Google Scholar] [CrossRef]
- Palazzo, M.; Tavaniello, S.; Petrecca, V.; Zejnelhoxha, S.; Wu, M.; Mucci, R.; Maiorano, G. Quality and safety of meat from wild boar hunted in Molise region. It. J. Anim. Sci. 2021, 20, 1889–1898. [Google Scholar] [CrossRef]
- Dannenberger, D.; Nuernberg, G.; Nuernberg, K.; Hagemann, E. The effects of gender, age and region on macroand micronutrient contents and fatty acid profiles in the muscles of roe deer and wild boar in Mecklenburg Western Pomerania (Germany). Meat Sci. 2013, 94, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Amici, A.; Danieli, P.P.; Russo, C.; Primi, R.; Ronchi, B. Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the province of Viterbo, Central Italy. It. J. Anim. Sci. 2012, 11, e65. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.; Guider, J.; Skovgaar, I.M.; Staun, H.; Skibsted, L.H.; Jensen, S.K.; Møller, A.J.; Buckley, J.; Bertelsen, G. Effects of dietary α-tocopheryl acetate supplemen tation on α-tocopherol deposition in porcine m. psoas major and m. longissimus dorsi and on drip loss, colour stability and oxidative stability of pork meat. Meat Sci. 1997, 45, 491–500. [Google Scholar] [CrossRef]
- Maiorano, G.; Cavone, C.; McCormick, R.J.; Ciarlariello, A.; Gambacorta, M.; Manchisi, A. The effect of dietary energy and vitamin E administration on performance and intramuscular collagen properties of lambs. Meat Sci. 2007, 76, 182–188. [Google Scholar] [CrossRef]
- Paleari, M.A.; Moretti, V.M.; Baretta, G.; Mentasti, T.; Bersani, C. Cured products from different animal species. Meat Sci. 2003, 63, 485–489. [Google Scholar] [CrossRef]
- Gimeno, O.; Ansorena, D.; Astiasaran, I.; Bello, J. Characterization of chorizo de Pamplona: Instrumental measurements of colour and texture. Food Chem. 2000, 69, 195–200. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, C.; Santos, E.M.; Rovira, J.; Jaime, I. The effect of sugar concentration and starter culture on instrumental and sensory textural properties of chorizo-Spanish dry-cured sausage. Meat Sci. 2006, 74, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Saccani, G.; Fornelli, G.; Zanardi, E. Characterization of textural properties and changes of myofibrillar and sarcoplasmic proteins in salame felino during ripening. Int. J. Food Prop. 2013, 16, 1460–1471. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, P.; Vali, S.; Bauer, F. Quality traits of wild boar mould-ripened salami manufactured with different selections of meat and fat tissue, and with and without bacterial starter cultures. Meat Sci. 2011, 89, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Cruz, B.; Gómez, L.; Mariscal, C.; García Ruiz, A. Proteolysis, physicochemical characteristics and free fatty acid composition of dry sausages made with deer (Cervus elaphus) or wild boar (Sus scrofa) meat: A preliminary study. Food Chem. 2006, 96, 173–184. [Google Scholar] [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassi, E.; Gazzola, A.; Bongi, P.; Scandura, M.; Apollonio, M. Relative impact of human harvest and wolf predation on two ungulate species in Central Italy. Ecol. Res. 2020, 35, 662–674. [Google Scholar] [CrossRef]
- Berentsen, A.R.; Miller, R.S.; Misiewicz, R.; Malmberg, J.L.; Dunbar, M.R. Characteristics of white-tailed deer visits to cattle farms: Implications for disease transmission at the wildlife–livestock interface. Eur. J. Wildl. Res. 2014, 60, 161–170. [Google Scholar] [CrossRef] [Green Version]
- San Miguel, A.; García-Calvo, R.P.; García-Olalla, M. Wild ungulates vs extensive livestock. Looking back to face the future. Options Méditerranneenes 2010, 92, 27–34. [Google Scholar]
- Felton, A.M.; Felton, A.; Cromsigt, J.P.G.M.; Edenius, L.; Malmsten, J.; Wam, H.K. Interactions between ungulates, forests, and supplementary feeding: The role of nutritional balancing in determining outcomes. Mamm. Res. 2017, 62, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gortázar, C.; Diez-Delgado, I.; Barasona, J.A.; Vicente, J.; De La Fuente, J.; Boadella, M. The wild side of disease control at the wildlife-livestock-human interface: A review. Front. Vet. Sci. 2014, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Morán, L.; Insausti, K.; Barron, L.J.R.; Aldai, N. Wild Boar—Production, Meat Quality Traits and Derived Products. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J., Munekata, P., Barba, F., Toldrá, F., Eds.; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 211–226. [Google Scholar]
- Hoffman, L.C.; Wiklund, E. Game and venison—Meat for the modern consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O. Microbiological conditions of meat from large game animals and birds. Meat Sci. 2007, 77, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Malmsten, A.; Dalin, A.M.; Pettersson, J.; Persson, S. Concentrations of cadmium, lead, arsenic, and some essential metals in wild boar from Sweden. Eur. J. Wildl. Res. 2021, 67, 18. [Google Scholar] [CrossRef]
- Gipson, P.S.; Hlavachick, B.; Berger, T. Range expansion by wild hogs across the central United States. Wildl. Soc. Bull. 1998, 26, 279–286. [Google Scholar]
- Spencer, P.B.S.; Hampton, J.O. Illegal Translocation and Genetic Structure of Feral Pigs in Western Australia. J. Wildl. Manag. 2005, 69, 377–384. [Google Scholar] [CrossRef]
- Bevins, S.N.; Pedersen, K.; Lutman, M.W.; Gidlewski, T.; Deliberto, T.J. Consequences Associated with the Recent Range Expansion of Nonnative Feral Swine. BioScience 2014, 64, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, S.; Polanco, C.; Aceiton, L.; Lopez, I. Pasture intake and grazing behaviour of growing European wild boar (Sus scrofa L.) and domestic pigs (Sus scrofa domesticus, Landrace × Large White) in a semi-extensive production system. J. Agric. Sci. 2017, 155, 1659–1668. [Google Scholar] [CrossRef]
- Hodgkinson, S.M.; Schmidt, M.; Ulloa, N. Comparison of the digestible energy content of maize, oats and alfalfa between the European wild boar (Sus scrofa L.) and landrace × large white pig (Sus scrofa domesticus). Anim. Feed. Sci. Technol. 2008, 144, 167–173. [Google Scholar] [CrossRef]
- Rivero, J.; López, I.; Hodgkinson, S. Pasture consumption and grazing behaviour of European wild boar (Sus scrofa L.) under continuous and rotational grazing systems. Livest. Sci. 2013, 154, 175–183. [Google Scholar] [CrossRef]
- Rivero, J.; López, I.; Hodgkinson, S.M. Pasture dry matter consumption in European wild boars (Sus scrofa L.) as affected by herbage allowance. J. Anim. Sci. 2013, 91, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Rivero, J.; Hodgkinson, S.M.; López-Villalobos, N. Definition of the breeding goal and determination of breeding objectives for European wild boar (Sus scrofa L.) in a semi-extensive production system. Livest. Sci. 2013, 157, 38–47. [Google Scholar] [CrossRef]
- Tinarelli, S.; Ribani, A.; Utzeri, V.J.; Taurisano, V.; Bovo, C.; Dall’Olio, S.; Nen, F.; Bovo, S.; Schiavo, G.; Gallo, M.; et al. Redefinition of the Mora Romagnola Pig Breed Herd Book Standard Based on DNA Markers Useful to Authenticate Its “Mono-Breed” Products: An Example of Sustainable Conservation of a Livestock Genetic Resource. Animals 2021, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Pollard, J.C.; Littlejohn, R.P.; Asher, G.W.; Pearse, A.J.T.; Stevenson-Barry, J.M.; McGregor, S.K.; Manley, T.R.; Duncan, S.J.; Sutton, C.M.; Pollock, K.L.; et al. A comparison of biochemical and meat quality variables in red deer (Cervus elaphus) following either slaughter at pasture or killing at a deer slaughter plant. Meat Sci. 2002, 60, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, E.; Stevenson-Barry, J.M.; Duncan, S.J.; Littlejohn, R. Electrical stimulation of red deer (Cervus elaphus) carcasses effect on rate of pH-decline, meat tenderness, colour stability and water-holding capacity. Meat Sci. 2001, 59, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Vergara, H.; Gallego, L.; García, A.; Landete-Castillejos, T. Conservation of Cervus elaphus meat in modified atmospheres. Meat Sci. 2003, 65, 779–783. [Google Scholar] [CrossRef] [PubMed]
Characteristic | WB (n = 4) | RWB (n = 4) | WBDP (n = 4) | DP (n = 4) | SED a |
---|---|---|---|---|---|
Physical | |||||
pH45 | 6.35 | 6.41 | 6.61 | 6.04 | 0.251 |
pH24 | 5.48 | 5.94 | 5.74 | 5.49 | 0.193 |
L* (lightness) b | 43.62 | 45.92 | 47.85 | 50.42 | 2.591 |
a* (redness) | 12.39 | 7.26 | 6.37 | 5.28 | 0.968 |
b* (yellowness) | 11.97 | 10.64 | 10.23 | 9.61 | 1.539 |
WBS (kg/cm2) c | 2.42 | 2.54 | 2.85 | 4.39 | 1.041 |
Cooking loss (%) | 31.22 | 18.52 | 14.96 | 11.86 | 3.476 |
Chemical (%) | |||||
Moisture | 70.50 | 73.41 | 73.65 | 71.37 | 1.367 |
Protein | 25.87 | 22.50 | 22.24 | 21.35 | 0.893 |
Fat | 1.55 | 2.00 | 2.15 | 4.56 | 1.010 |
Ash | 1.23 | 1.30 | 1.27 | 0.86 | 0.127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lestingi, A. Use of Wild Boar (Sus scrofa) as a Sustainable Alternative in Pork Production. Animals 2023, 13, 2258. https://doi.org/10.3390/ani13142258
Lestingi A. Use of Wild Boar (Sus scrofa) as a Sustainable Alternative in Pork Production. Animals. 2023; 13(14):2258. https://doi.org/10.3390/ani13142258
Chicago/Turabian StyleLestingi, Antonia. 2023. "Use of Wild Boar (Sus scrofa) as a Sustainable Alternative in Pork Production" Animals 13, no. 14: 2258. https://doi.org/10.3390/ani13142258
APA StyleLestingi, A. (2023). Use of Wild Boar (Sus scrofa) as a Sustainable Alternative in Pork Production. Animals, 13(14), 2258. https://doi.org/10.3390/ani13142258