Nutritional Composition and In Vitro Ruminal Digestibility of Crabgrass (Digitaria sanguinalis (L.) Scop.) in Monoculture or Interseeded with Cowpea (Vigna unguiculata (L.) Walp) and Lablab (Lablab purpureus (L.) Sweet)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Climate Data
2.2. Experimental Design
2.3. Forage Processing and Analyses
2.4. Statistical Analysis
3. Results
Forage Yield, Chemical Composition, and In Vitro Digestibility
4. Discussion
Forage Yield, Chemical Composition, and In Vitro Digestibility
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontaneli, R.S.; Sollenberger, L.E.; Staples, C.R. Yield, yield distribution, and nutritive value of intensively managed warm-season annual grasses. Agron. J. 2001, 93, 1257–1262. [Google Scholar] [CrossRef]
- Dillard, S.L.; Hancock, D.W.; Harmon, D.D.; Mullenix, M.K.; Beck, P.; Soder, K.J. Animal performance and environmental efficiency of cool- and warm-season annual grazing systems. J. Anim. Sci. 2018, 96, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- Mercier, K.; Teutsch, C.; Smith, R.; Burdine, K.; Ritchey, E.; Vanzant, E. Is there an economic advantage to planting diverse summer annual forage mixtures? J. Ext. 2022, 60, 16. [Google Scholar] [CrossRef]
- Ball, D.M.; Hoveland, C.S.; Lacefield, G.D. Legume Inoculation. In Southern Forages: Modern Concepts for Forage Crop Management, 5th ed.; International Plant Nutrition Institute: Norcross, GA, USA, 2015; pp. 123–124. [Google Scholar]
- Brown, A.N.; Ferreira, G.; Teets, C.L.; Thomason, W.E.; Teutsch, C.D. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops. J. Dairy Sci. 2018, 101, 2037–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, K.L.; Albrecht, K.A.; Lauer, J.G.; Riday, H. Intercropping corn with lablab bean, velvet bean, and scarlet runner bean for forage. Crop Sci. 2008, 48, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Oskey, M.; Velasquez, C.; Pena, O.M.; Andrae, J.; Bridges, W.; Ferreira, G.; Aguerre, M.J. Yield, nutritional composition, and digestibility of conventional and brown midrib (BMR) pearl millet as affected by planting and harvesting dates and interseeded cowpea. Animals 2023, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Bryan, W.B.; Materu, M.B. Intercropping maize with climbing beans, cowpeas, and velvet beans. J. Agron. Crop Sci. 1987, 159, 245–250. [Google Scholar] [CrossRef]
- Aleshire, E.B.; Teutsch, C.D. Soil pH Effects on the Shoot and Root Yield of Crabgrass. Forage Grazinglands 2005, 3, 1–6. [Google Scholar] [CrossRef]
- Ogden, R.; Coblentz, W.K.; Coffey, K.P.; Turner, J.E.; Scarbrough, D.A.; Jennings, J.A.; Richardson, M.D. Ruminal in situ disappearance kinetics of dry matter and fiber in growing steers for common crabgrass forages sampled on seven dates in northern Arkansas. J. Anim. Sci. 2005, 83, 1142–1152. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.A.; Hutchison, S.; Stewart, C.B.; Shockey, J.D.; Gunter, S.A. Effect of crabgrass (Digitaria ciliaris) hay harvest interval on forage quality and performance of growing calves fed mixed diets. J. Anim. Sci. 2007, 85, 527–535. [Google Scholar] [CrossRef]
- Keyser, P.; Zechiel, K.E.; Bates, G.; Ashworth, A.J.; Nave, R.; Rhinehart, J.; McIntosh, D.W. Evaluation of five C4 forage grasses in the tall Fescue Belt. Agron. J. 2022, 114, 3347–3357. [Google Scholar] [CrossRef]
- Miguez, F.E.; Bollero, G.A. Winter Cover Crops in Illinois: Evaluation of ecophysiological characteristics of corn. Crop Sci. 2006, 46, 1536–1545. [Google Scholar] [CrossRef] [Green Version]
- Angadi, S.V.; Umesh, M.R.; Begna, S.; Gowda, P. Light interception, agronomic performance, and nutritive quality of annual forage legumes as affected by shade. Field Crops Res. 2022, 275, 108358. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Lauriault, L.M.; Marsalis, M.; Angadi, S.; Puppala, N. Performance of Forage Sorghum-Legume Mixtures in Southern High Plains, USA. Forage Grazinglands 2009, 7, 1–8. [Google Scholar] [CrossRef]
- Contreras-Govea, F.; Soto-Navarro, S.; Calderon-Mendoza, D.; Marsalis, M.; Lauriault, L.M. Dry matter yield and nutritive value of cowpea and lablab in the southern high plains of the USA. Forage Grazinglands 2011, 7, 1–6. [Google Scholar] [CrossRef]
- AOAC International, Official Methods of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2006.
- AOAC International, Official Methods of Analysis, 17th ed.; AOAC International: Rockville, MD, USA, 2000.
- Hall, M.B. Determination of Starch, Including Maltooligosaccharides, in Animal Feeds: Comparison of methods and a method recommended for AOAC collaborative study. J. AOAC Int. 2009, 92, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Soest, J.P.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.; Mertens, D.R. Chemica and physical characteristics of corn silages and their effects on in vitro disappearance. J. Dairy Sci. 2005, 88, 4414–4425. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.L.; Carter, J.N.; Lamb, G.C.; Sollenberger, L.E.; Blount, A.R.; Myer, R.O.; Maddox, M.K.; Adesogan, A.T. Performance of beef cattle creep fed concentrate or creep grazed on warm-season legumes. Crop Sci. 2013, 53, 1818–1825. [Google Scholar] [CrossRef]
- La Guardia Nave, R.; Corbin, M.D. Forage warm-season legumes and grasses intercropped with corn as an alternative for corn silage production. Agronomy 2018, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Govea, F.; Marsalis, M.; Angadi, S.; Smith, G.; Lauriault, L.M.; VanLeeuwen, D. Fermentability and nutritive value of corn and forage sorghum silage when in mixture with lablab bean. Crop Sci. 2011, 51, 1307–1313. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Muck, R.E.; Armstrong, K.L.; Albrecht, K.A. Nutritive value of corn silage in mixture with climbing beans. Anim. Feed Sci. Technol. 2009, 150, 1–8. [Google Scholar] [CrossRef]
- Stoltz, E.; Nadeau, E. Effects of intercropping on yield, weed incidence, forage qualityand soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crops Res. 2014, 169, 21–29. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Kirksey, R.E. Yield and Nutritive Value of Irrigated Winter Cereal Forage Grass–Legume Intercrops in the Southern High Plains, USA. Agron. J. 2004, 96, 352–358. [Google Scholar] [CrossRef]
- Angadi, S.V.; Umesh, M.R.; Contreras-Govea, F.E.; Annadurai, K.; Begna, S.H.; Marsalis, M.A.; Cole, N.A.; Gowda, P.H.; Robert Hagevoort, G.; Lauriault, L.M. In search of annual legumes to improve forage sorghum yield and nutritive value in the southern high plains. Crop Forage Turfgrass Manag. 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Muck, R.E.; Armstrong, K.L.; Albrecht, K.A. Fermentability of corn–lablab bean mixtures from different planting densities. Anim. Feed Sci. Technol. 2009, 149, 298–306. [Google Scholar] [CrossRef]
- Kammes, K.L.; Allen, M.S. Rates of particle size reduction and passage are faster for legume compared with cool-season grass, resulting in lower rumen fill and less effective fiber. J. Dairy Sci. 2012, 95, 3288–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voelker Linton, J.A.; Allen, M.S. Nutrient demand interacts with forage family to affect intake and digestion responses in dairy cows. J. Dairy Sci. 2008, 91, 2694–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | Precipitation | 30-Year Avg. | Temperature | 30-Year Avg. |
---|---|---|---|---|
April | 73.9 | 91.7 | 19.3 | 15.1 |
May | 34.8 | 96.5 | 25.8 | 19.3 |
June | 103.6 | 122.7 | 26.9 | 24.1 |
July | 8.5 | 115.8 | 29.9 | 25.8 |
August | 59.9 | 114.8 | 29.1 | 25.3 |
September | 9.9 | 106.7 | 28.2 | 21.7 |
Item | CG | CWP | LL | CG+CWP | CG+LL | CG+CP+LL | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
DM, % | 31.8 ab | 26.5 c | 31.3 ab | 28.8 bc | 32.7 ab | 30.3 ab | 1.36 | 0.03 |
Ash, % DM | 13.6 c | 16.6 a | 15.4 ab | 14.6 bc | 16.0 a | 14.0 bc | 0.70 | 0.01 |
CP, % DM | 15.7 d | 20.1 a | 18.7 ab | 18.4 b | 16.6 cd | 17.4 bc | 0.49 | <0.01 |
aNDFom, % DM | 55.2 a | 36.2 d | 40.0 cd | 45.0 bc | 47.4 b | 46.1 b | 1.92 | <0.01 |
ADFom, % DM | 32.0 a | 24.0 c | 25.7 c | 28.4 bc | 29.6 ab | 28.7 b | 1.07 | <0.01 |
ADL, % DM | 5.00 | 5.41 | 5.35 | 5.99 | 5.61 | 5.15 | 0.59 | 0.73 |
ADL, % aNDFom | 9.3 | 14.8 | 13.6 | 13.5 | 11.6 | 10.9 | 1.56 | 0.21 |
WSC, % DM | 7.4 | 8.6 | 7.9 | 7.2 | 7.2 | 7.6 | 0.38 | 0.11 |
Item | CG | CWP | LL | CG+CWP | CG+LL | CG+CP+LL | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
uNDF240, % DM 2 | 12.5 a | 9.3 bc | 9.0 c | 10.4 b | 11.5 ab | 10.6 b | 0.56 | <0.01 |
uNDF240, % aNDFom 2 | 23.1 | 25.5 | 22.3 | 22.8 | 24.1 | 22.6 | 1.26 | 0.40 |
pdNDF, % aNDFom 3 | 76.9 | 74.5 | 77.7 | 77.2 | 75.9 | 77.4 | 1.26 | 0.40 |
IVDMD, % DM 4 | 65.8 d | 74.3 a | 73.1 ab | 71.3 b | 68.1 cd | 69.9 bc | 1.29 | <0.01 |
IVTDMD, %DM 5 | 75.5 c | 82.5 a | 81.2 a | 79.9 ab | 77.4 bc | 78.7 ab | 1.41 | 0.01 |
pdNDF, kg DM/ha | 2183 a | 804 c | 804 c | 1300 b | 1585 b | 1342 b | 212 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguerre, M.J.; Peña, O.M.; Velasquez, C.; Ferreira, G. Nutritional Composition and In Vitro Ruminal Digestibility of Crabgrass (Digitaria sanguinalis (L.) Scop.) in Monoculture or Interseeded with Cowpea (Vigna unguiculata (L.) Walp) and Lablab (Lablab purpureus (L.) Sweet). Animals 2023, 13, 2305. https://doi.org/10.3390/ani13142305
Aguerre MJ, Peña OM, Velasquez C, Ferreira G. Nutritional Composition and In Vitro Ruminal Digestibility of Crabgrass (Digitaria sanguinalis (L.) Scop.) in Monoculture or Interseeded with Cowpea (Vigna unguiculata (L.) Walp) and Lablab (Lablab purpureus (L.) Sweet). Animals. 2023; 13(14):2305. https://doi.org/10.3390/ani13142305
Chicago/Turabian StyleAguerre, Matias Jose, Omar Manuel Peña, Cesar Velasquez, and Gonzalo Ferreira. 2023. "Nutritional Composition and In Vitro Ruminal Digestibility of Crabgrass (Digitaria sanguinalis (L.) Scop.) in Monoculture or Interseeded with Cowpea (Vigna unguiculata (L.) Walp) and Lablab (Lablab purpureus (L.) Sweet)" Animals 13, no. 14: 2305. https://doi.org/10.3390/ani13142305
APA StyleAguerre, M. J., Peña, O. M., Velasquez, C., & Ferreira, G. (2023). Nutritional Composition and In Vitro Ruminal Digestibility of Crabgrass (Digitaria sanguinalis (L.) Scop.) in Monoculture or Interseeded with Cowpea (Vigna unguiculata (L.) Walp) and Lablab (Lablab purpureus (L.) Sweet). Animals, 13(14), 2305. https://doi.org/10.3390/ani13142305