Comparison of Two Preoperative Radiographic Methods for Assessing Tibial Tuberosity Advancement to Achieve a Postoperative Patella Tendon Angle of 90° in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- −
- For CT, first, the observer drew two circles representing the femoral and tibial condyles, marking the center. Next, he connected the two centers with a line and drew a line perpendicular to it, defined as the common tangent. The angle between the common tangent and the line drawn from the caudal margin of the patella to its insertion on the tibial tuberosity corresponded to the PTA. To measure the amount of advancement required, the observer considered the distance between the tibial tuberosity and the line perpendicular to the common tangent starting from the cranial margin of the patella [35] (Figure 1).
- −
- For TAM, the tibial functional axis of the tibia, defined by a line joining the midpoint between the intercondylar tibial tubercles (in the stifle joint) with the center of the talocrural joint, was drawn. Then, the tibial plateau, defined by a line joining the points at the cranial-most and caudal-most edges of the medial tibial condyle, was drawn. Secondly, from the functional axis, a caudally directed 135° angle towards the femur was made. Next, a parallel line through the patellar insertion point on the tibial tuberosity was located. This line intersected the tibial plateau line that was previously drawn. A perpendicular line to the tibial plateau was placed starting from patellar insertion. Next, a parallel line through the intersection point was drawn. The distance between this line and the most-cranial point of the tibial tuberosity, measured along a line perpendicular to the function axis, was recorded as the required advancement [22] (Figure 2).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Witsberger, T.H.; Villamil, J.A.; Schultz, L.G.; Hahn, A.W.; Cook, J.L. Prevalence of and risk factors for hip dysplasia and cranial cruciate ligament deficiency in dogs. J. Am. Vet. Med. Assoc. 2008, 232, 1818–1824. [Google Scholar] [CrossRef]
- Ichinohe, T.; Kanno, N.; Harada, Y.; Yogo, T.; Tagawa, M.; Hara, Y. Histological and immunohistological analysis of degenerative changes in the cranial cruciate ligament in a canine model of excessive tibial plateau angle. Vet. Comp. Orthop. Traumatol. 2015, 28, 240–249. [Google Scholar] [CrossRef]
- Baker, L.A.; Kirkpatrick, B.; Rosa, G.J.M.; Gianola, D.; Valente, B.; Sumner, J.P.; Baltzer, W.; Hao, Z.; Binversie, E.E.; Volstad, N.; et al. Genome-wide association analysis in dogs implicates 99 loci as risk variants for anterior cruciate ligament rupture. PLoS ONE 2017, 12, e0173810. [Google Scholar] [CrossRef]
- Wilke, V.L.; Zhang, S.; Evans, R.B.; Conzemius, M.G.; Rothschild, M.F. Identification of chromosomal regions associated with cranial cruciate ligament rupture in a population of Newfoundlands. Am. J. Vet. Res. 2009, 70, 1013–1017. [Google Scholar] [CrossRef]
- Ragetly, C.A.; Evans, R.; Mostafa, A.A.; Griffon, D.J. Multivariate analysis of morphometric characteristics to evaluate risk factors for cranial cruciate ligament deficiency in Labrador retrievers. Vet. Surg. 2011, 40, 327–333. [Google Scholar] [CrossRef]
- Duval, J.M.; Budsberg, S.C.; Flo, G.L.; Sammarco, J.L. Breed, sex, and body weight as risk factors for rupture of the cranial cruciate ligament in young dogs. J. Am. Vet. Med. Assoc. 1999, 215, 811–814. [Google Scholar]
- Restucci, B.; Sgadari, M.; Fatone, G.; Valle, G.D.; Aragosa, F.; Caterino, C.; Ferrara, G.; Niebauer, G.W. Immunoexpression of Relaxin and Its Receptors in Stifle Joints of Dogs with Cranial Cruciate Ligament Disease. Animals 2022, 12, 819. [Google Scholar] [CrossRef]
- Bleedorn, J.A.; Greuel, E.N.; Manley, P.A.; Schaefer, S.L.; Markel, M.D.; Holzman, G.; Muir, P. Synovitis in dogs with stable stifle joints and incipient cranial cruciate ligament rupture: A cross-sectional study. Vet. Surg. 2011, 40, 531–543. [Google Scholar] [CrossRef]
- Little, J.P.; Bleedorn, J.A.; Sutherland, B.J.; Sullivan, R.; Kalscheur, V.L.; Ramaker, M.A.; Schaefer, S.L.; Hao, Z.; Muir, P. Arthroscopic assessment of stifle synovitis in dogs with cranial cruciate ligament rupture. PLoS ONE 2014, 9, e97329. [Google Scholar] [CrossRef]
- Fuller, M.C.; Hayashi, K.; Bruecker, K.A.; Holsworth, I.G.; Sutton, J.S.; Kass, P.H.; Kantrowitz, B.J.; Kapatkin, A.S. Evaluation of the radiographic infrapatellar fat pad sign of the contralateral stifle joint as a risk factor for subsequent contralateral cranial cruciate ligament rupture in dogs with unilateral rupture: 96 cases (2006–2007). J. Am. Vet. Med. Assoc. 2014, 244, 328–338. [Google Scholar] [CrossRef]
- Taylor-Brown, F.E.; Meeson, R.L.; Brodbelt, D.C.; Church, D.B.; McGreevy, P.D.; Thomson, P.C.; O’Neill, D.G. Epidemiology of cranial cruciate ligament disease diagnosis in dogs attending primary-care veterinary practices in England. Vet. Surg. 2015, 44, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, L.C. The history of canine cruciate ligament surgery from 1952–2005. Vet. Comp. Orthop. Traumatol. 2010, 23, 379–384. [Google Scholar] [CrossRef]
- Aragosa, F.; Caterino, C.; Della Valle, G.; Fatone, G. Tibial Tuberosity Advancement Techniques (TTAT): A Systematic Review. Animals 2022, 12, 2114. [Google Scholar] [CrossRef]
- Montavon, P.M. Advancement of the tibial tuberosity for the treatment of cranial cruciate deficient canine stifle. In Proceedings of the 1st World Orthopaedic Veterinary Congress, Munich, Germany, 5–8 September 2002; Volume 152. [Google Scholar]
- Pillard, P.; Livet, V.; Cabon, Q.; Bismuth, C.; Sonet, J.; Remy, D.; Fau, D.; Carozzo, C.; Viguier, E.; Cachon, T. Comparison of desired radiographic advancement distance and true advancement distance required for patellar tendon–tibial plateau angle reduction to the ideal 90° in dogs by use of the modified Maquet technique. Am. J. Vet. Res. 2016, 77, 1401–1410. [Google Scholar] [CrossRef]
- Della Valle, G.; Caterino, C.; Aragosa, F.; Micieli, F.; Costanza, D.; Di Palma, C.; Piscitelli, A.; Fatone, G. Outcome after Modified Maquet Procedure in dogs with unilateral cranial cruciate ligament rupture: Evaluation of recovery limb function by use of force plate gait analysis. PLoS ONE 2021, 16, e0256011. [Google Scholar] [CrossRef]
- Backstein, D.; Meisami, B.; Gross, A.E. Patella baja after the modified Coventry-Maquet high tibial osteotomy. J. Knee Surg. 2003, 16, 203–208. [Google Scholar]
- Neville-Towle, J.D.; Makara, M.; Johnson, K.A.; Voss, K. Effect of proximal translation of the osteotomized tibial tuberosity during tibial tuberosity advancement on patellar position and patellar ligament angle. BMC Vet. Res. 2016, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Bielecki, M.J.; Schwandt, C.S.; Scharvogel, S. Effect of tibial subluxation on the measurements for tibial tuberosity advancement in dogs with cranial cruciate ligament deficiency: An ex vivo study. Vet. Comp. Orthop. Traumatol. 2014, 27, 470–477. [Google Scholar] [CrossRef]
- Etchepareborde, S.; Brunel, L.; Bollen, G.; Balligand, M. Preliminary experience of a modified maquet technique for repair of cranial cruciate ligament rupture in dogs. Vet. Comp. Orthop. Traumatol. 2011, 24, 223–227. [Google Scholar] [CrossRef]
- Kapler, M.W.; Marcellin-Little, D.J.; Roe, S.C. Planned wedge size compared to achieved advancement in dogs undergoing the modified Maquet procedure. Vet. Comp. Orthop. Traumatol. 2015, 28, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Ness, M.G. The Modified Maquet Procedure (MMP) in Dogs: Technical Development and Initial Clinical Experience. J. Am. Anim. Hosp. Assoc. 2016, 52, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Pillard, P.; Livet, V.; Cabon, Q.; Bismuth, C.; Sonet, J.; Remy, D.; Fau, D.; Carozzo, C.; Viguier, E.; Cachon, T. Evaluation of a new method to determine the tibial tuberosity advancement distance required to reduce the patellar tendon-tibial plateau angle to 90° with the modified Maquet technique in dogs. Am. J. Vet. Res. 2017, 78, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Samoy, Y.; Verhoeven, G.; Bosmans, T.; Van der Vekens, E.; de Bakker, E.; Verleyen, P.; Van Ryssen, B. TTA rapid: Description of the technique and short term clinical trial results of the first 50 cases. Vet. Surg. 2015, 44, 474–484. [Google Scholar] [CrossRef]
- Etchepareborde, S.; Mills, J.; Busoni, V.; Brunel, L.; Balligand, M. Theoretical discrepancy between cage size and efficient tibial tuberosity advancement in dogs treated for cranial cruciate ligament rupture. Vet. Comp. Orthop. Traumatol. 2011, 24, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.W.; Peck, J.N.; Tano, C.A.; Morgan, M.J. Discrepancy between true distance of tibial tuberosity advancement and cage size: An ex vivo study. Vet. Surg. 2019, 48, 186–191. [Google Scholar] [CrossRef]
- Meeson, R.L.; Corah, L.; Conroy, M.C.; Calvo, I. Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure. BMC Vet. Res. 2018, 14, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, M.; Bismuth, C.; Labrunie, A.; Marin, B.; Filleur, A.; Pillard, P.; Sonet, J.; Cachon, T.; Etchepareborde, S. Measurement of the patellar tendon-tibial plateau angle and tuberosity advancement in dogs with cranial cruciate ligament rupture. Vet. Comp. Orthop. Traumatol. 2013, 26, 469–478. [Google Scholar] [PubMed]
- Skinner, O.T.; Kim, S.E.; Lewis, D.D.; Pozzi, A. In vivo femorotibial subluxation during weight-bearing and clinical outcome following tibial tuberosity advancement for cranial cruciate ligament insufficiency in dogs. Vet. J. 2013, 196, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.A.; Bowlt, K.; Gines, J.A.; Owen, M.R. Effect of use of different landmark methods on determining stifle angle and on calculated tibial tuberosity advancement. Vet. Comp. Orthop. Traumatol. 2011, 24, 205–210. [Google Scholar]
- Giansetto, T.; Picavet, P.P.; Lefebvre, M.; Balligand, M. Determination of the Stifle Angle at Standing Position in Dogs. Vet. Sci. 2022, 9, 64. [Google Scholar] [CrossRef]
- Ševčík, K.; Hluchý, M.; Ševčíková, M.; Ledecký, V. Radiographic measurement of canine stifle joint angles using four different landmark methods. Acta Vet. Brno 2021, 90, 399–406. [Google Scholar] [CrossRef]
- Apelt, D.; Kowaleski, M.P.; Boudrieau, R.J. Effect of tibial tuberosity advancement on cranial tibial subluxation in canine cranial cruciate-deficient stifle joints: An in vitro experimental study. Vet. Surg. 2007, 36, 170–177. [Google Scholar] [CrossRef]
- Della Valle, G.; Caterino, C.; Piscitelli, A.; Di Palma, C.; Pasolini, M.P.; Lamagna, F.; Muto, A.; Fatone, G. Reliability of three different methods to measure the amount of tibial tuberosity advancement in the preoperative planning of modified maquet precedure. In Proceedings of the 73rd Scientific Meeting of the Italian Veterinary Sciences Society (SISVet 2019), Olbia, Italy, 19–22 June 2019; p. 174. [Google Scholar]
- Dennler, R.; Kipfer, N.M.; Tepic, S.; Hassig, M.; Montavon, P.M. Inclination of the patellar ligament in relation to flexion angle in stifle joints of dogs without degenerative joint disease. Am. J. Vet. Res. 2006, 67, 1849–1854. [Google Scholar] [CrossRef]
- Medeiros, R.M.; Silva, M.A.M.; Teixeira, P.P.M.; Dias, L.; Chung, D.G.; Zani, C.C.; Feliciano, M.A.R.; Da Conceicao, M.; Machado, M.R.F.; Rocha, A.G. Use of castor bean polymer in developing a new technique for tibial tuberosity advancement for cranial cruciate ligament rupture correction in dogs. Vet. Med. 2016, 61, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Zhalniarovich, Y.; Sobolewski, A.; Waluś, G.; Adamiak, Z. Evaluation, Description of the Technique, and Clinical Outcomes After Tibial Tuberosity Advancement with Cranial Fixation (TTA CF) for Cranial Cruciate Ligament Rupture in 22 Dogs. Top. Companion Anim. Med. 2018, 33, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Trisciuzzi, R.; Fracassi, L.; Martin, H.A.; Monopoli Forleo, D.; Amat, D.; Santos-Ruiz, L.; De Palma, E.; Crovace, A.M. 41 Cases of Treatment of Cranial Cruciate Ligament Rupture with Porous TTA: Three Years of Follow Up. Vet. Sci. 2019, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Cadmus, J.; Palmer, R.H.; Duncan, C. The Effect of Preoperative Planning Method on Recommended Tibial Tuberosity Advancement Cage Size. Vet. Surg. 2014, 43, 995–1000. [Google Scholar] [CrossRef]
- Wolf, R.E.; Scavelli, T.D.; Hoelzler, M.G.; Fulcher, R.P.; Bastian, R.P. Surgical and postoperative complications associated with tibial tuberosity advancement for cranial cruciate ligament rupture in dogs: 458 cases (2007–2009). J. Am. Vet. Med. Assoc. 2012, 240, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Boudrieau, R.J. Tibial plateau leveling osteotomy or tibial tuberosity advancement? Vet. Surg. 2009, 38, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.E.; Kowaleski, M.P.; Johnson, K.A.; Evans, R.B.; Boudrieau, R.J. Ex vivo biomechanical evaluation of the canine cranial cruciate ligament-deficient stifle with varying angles of stifle joint flexion and axial loads after tibial tuberosity advancement. Vet. Surg. 2011, 40, 311–320. [Google Scholar] [CrossRef]
- Schwandt, C.S.; Bohorquez-Vanelli, A.; Tepic, S.; Hassig, M.; Dennler, R.; Vezzoni, A.; Montavon, P.M. Angle between the patellar ligament and tibial plateau in dogs with partial rupture of the cranial cruciate ligament. Am. J. Vet. Res. 2006, 67, 1855–1860. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, S.J.; Kydd, D.M. TTA-Rapid in the treatment of the canine cruciate deficient stifle: Short-and medium-term outcome. J. Small Anim. Pract. 2017, 58, 35–41. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragosa, F.; Della Valle, G.; Caterino, C.; Lamagna, B.; Buonocore, S.; Lamagna, F.; Fatone, G. Comparison of Two Preoperative Radiographic Methods for Assessing Tibial Tuberosity Advancement to Achieve a Postoperative Patella Tendon Angle of 90° in Dogs. Animals 2023, 13, 2310. https://doi.org/10.3390/ani13142310
Aragosa F, Della Valle G, Caterino C, Lamagna B, Buonocore S, Lamagna F, Fatone G. Comparison of Two Preoperative Radiographic Methods for Assessing Tibial Tuberosity Advancement to Achieve a Postoperative Patella Tendon Angle of 90° in Dogs. Animals. 2023; 13(14):2310. https://doi.org/10.3390/ani13142310
Chicago/Turabian StyleAragosa, Federica, Giovanni Della Valle, Chiara Caterino, Barbara Lamagna, Sara Buonocore, Francesco Lamagna, and Gerardo Fatone. 2023. "Comparison of Two Preoperative Radiographic Methods for Assessing Tibial Tuberosity Advancement to Achieve a Postoperative Patella Tendon Angle of 90° in Dogs" Animals 13, no. 14: 2310. https://doi.org/10.3390/ani13142310
APA StyleAragosa, F., Della Valle, G., Caterino, C., Lamagna, B., Buonocore, S., Lamagna, F., & Fatone, G. (2023). Comparison of Two Preoperative Radiographic Methods for Assessing Tibial Tuberosity Advancement to Achieve a Postoperative Patella Tendon Angle of 90° in Dogs. Animals, 13(14), 2310. https://doi.org/10.3390/ani13142310