Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Probiotics Sources and Selection Criteria
2.1. Probiotics Sources
2.2. Selection Criteria for Probiotics
- (a)
- The microorganism should be able to adhere to and grow in the host. Then, it should be able to tolerate the bile, gastric juice, and host pH.
- (b)
- The probiotic candidate must be free of antibiotic-resistant genes and must not modify heritable traits of the host organism.
- (c)
- The microbe should benefit the host system by enhancing the growth or/and development of the immune system against pathogens. It also should have antimicrobial properties.
- (d)
- The probiotic candidate should not have harmful effects on the host.
3. Technological Aspects and Administration Routes of Probiotics
4. Probiotic Modes of Action in European Sea Bass
4.1. Modulation of Immune Parameters
4.2. Competitive Exclusion for Adhesion Sites
4.3. Production of Inhibitory Substances
4.4. Nutrient Competition: Digestion and Enzymatic Contribution
5. Probiotic Benefits in European Sea Bass Aquaculture
5.1. Increased Growth and Survival Rates
5.2. Disease Resistance and Health Status
5.3. Elevation of Immune Parameters
5.4. Gut Morphology and Changes in Microbial Diversity
6. Highlight Notes for Further Investigation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulusoy, Ş.; Mol, S. Trace Elements in Seabass, Farmed by Turkey, and Health Risks to the Main Consumers: Turkish and Dutch Populations. Environ. Monit. Assess. 2022, 194, 224. [Google Scholar] [CrossRef] [PubMed]
- Mugwanya, M.; Dawood, M.A.O.; Kimera, F.; Sewilam, H. Updating the Role of Probiotics, Prebiotics, and Synbiotics for Tilapia Aquaculture as Leading Candidates for Food Sustainability: A Review. Probiotics Antimicrob. Proteins 2021, 14, 130–157. [Google Scholar] [CrossRef] [PubMed]
- Apromar. La Acuicultura en España 2022 (p. XX) Asociación Empresarial de Productores de Cultivos Marinos. 2022. Available online: https://apromar.es/apromar-publica-su-informe-anual-la-acuicultura-en-espana-2022/ (accessed on 12 April 2023).
- Henriksson, P.J.G.; Rico, A.; Troell, M.; Klinger, D.H.; Buschmann, A.H.; Saksida, S.; Chadag, M.V.; Zhang, W.; Se, P.H. Unpacking Factors Influencing Antimicrobial Use in Global Aquaculture and Their Implication for Management: A Review from a Systems Perspective. Sustain. Sci. 2018, 13, 1105–1120. [Google Scholar] [CrossRef] [Green Version]
- De FreitasSouza, C.; Baldissera, M.D.; Baldisserotto, B.; Heinzmann, B.M.; Martos-Sitcha, J.A.; Mancera, J.M. Essential Oils as Stress-Reducing Agents for Fish Aquaculture: A Review. Front. Physiol. 2019, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Delalay, G.; Berezowski, J.A.; Diserens, N.; Schmidt-Posthaus, H. An Understated Danger: Antimicrobial Resistance in Aquaculture and Pet Fish in Switzerland, a Retrospective Study from 2000 to 2017. J. Fish. Dis. 2020, 43, 1299–1315. [Google Scholar] [CrossRef]
- Sánchez, J.L.F.; Le Breton, A.; Brun, E.; Vendramin, N.; Spiliopoulos, G.; Furones, D.; Basurco, B. NC-ND License Assessing the Economic Impact of Diseases in Mediterranean Grow-out Farms Culturing European Sea Bass. Aquaculture 2021, 547, 737530. [Google Scholar] [CrossRef]
- Muniesa, A.; Basurco, B.; Aguilera, C.; Furones, D.; Reverté, C.; Sanjuan-Vilaplana, A.; Jansen, M.D.; Brun, E.; Tavornpanich, S. Mapping the Knowledge of the Main Diseases Affecting Sea Bass and Sea Bream in Mediterranean. Transbound Emerg. Dis. 2020, 67, 1089–1100. [Google Scholar] [CrossRef] [Green Version]
- Suyamud, B.; Lohwacharin, J.; Yang, Y.; Sharma, V.K. Antibiotic Resistant Bacteria and Genes in Shrimp Aquaculture Water: Identification and Removal by Ferrate(VI). J. Hazard. Mater. 2021, 420, 126572. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, Y.; Zheng, Y.; Meng, F. Antibiotics in Mariculture Systems: A Review of Occurrence, Environmental Behavior, and Ecological Effects. Environ. Pollut. 2022, 293, 118541. [Google Scholar] [CrossRef]
- Pepi, M.; Focardi, S.; Area, M.; Int, J.E. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. Public Health 2021, 18, 5723. [Google Scholar] [CrossRef]
- Iwashita, M.K.P.; Addo, S.; Terhune, J.S. Use of Pre- and Probiotics in Finfish Aquaculture. In Feed and Feeding Practices in Aquaculture; Woodhead Publishing: Sawston, UK, 2015; pp. 235–249. [Google Scholar] [CrossRef]
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.; Godfrey, H.P. Even Therapeutic Antimicrobial Use in Animal Husbandry May Generate Environmental Hazards to Human Health. Environ. Microbiol. 2016, 18, 311–313. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/ (accessed on 12 April 2023).
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, A.; Singh, R. Probiotics in Aquaculture: A Promising Emerging Alternative Approach. Symbiosis 2019, 77, 99–113. [Google Scholar]
- Archacka, M.; Celińska, E.; Białas, W. Techno-Economic Analysis for Probiotics Preparation Production Using Optimized Corn Flour Medium and Spray-Drying Protective Blends. Food Bioprod. Process. 2020, 123, 354–366. [Google Scholar] [CrossRef]
- Ringø, E.; Harikrishnan, R.; Soltani, M.; Ghosh, K. The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp. Animals 2022, 12, 3016. [Google Scholar] [CrossRef]
- Butt, U.D.; Lin, N.; Akhter, N.; Siddiqui, T.; Li, S.; Wu, B. Overview of the Latest Developments in the Role of Probiotics, Prebiotics and Synbiotics in Shrimp Aquaculture. Fish Shellfish Immunol. 2021, 114, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, D.J.W. Control of Luminous Vibrio Species in Penaeid Aquaculture Ponds. Aquaculture 1998, 164, 351–358. [Google Scholar] [CrossRef]
- Van Hai, N.; Fotedar, R. Comparison of the Effects of the Prebiotics (Bio-Mos® and β-1,3-D-Glucan) and the Customised Probiotics (Pseudomonas synxantha and P. aeruginosa) on the Culture of Juvenile Western King Prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture 2009, 289, 310–316. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.O.; Dhama, K.; Abdel-Latif, H.M.R. The Functionality of Probiotics in Aquaculture: An Overview. Fish Shellfish Immunol. 2021, 117, 36–52. [Google Scholar] [CrossRef]
- Hai, N.V. The use of probiotics in aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Kiron, V. Gastrointestinal Microorganisms of Fish and Probiotics. In Dietary Nutrients, Additives, and Fish Health; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 283–303. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D.; Lu, Y. A Review on the Application of Bacillus as Probiotics in Aquaculture. Fish Shellfish Immunol. 2019, 87, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, C.M.; Williams, M.A.; Carrias, A.; Ran, C.; Newman, M.; Tweedie, J.; Allison, E.; Jescovitch, L.N.; Wilson, A.E.; Terhune, J.S.; et al. Bacillus velezensis AP193 Exerts Probiotic Effects in Channel Catfish (Ictalurus punctatus) and Reduces Aquaculture Pond Eutrophication. Aquaculture 2019, 503, 347–356. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Sun, G.; Li, X.; Liu, Z. Growth, Immune Response, Antioxidant Capability, and Disease Resistance of Juvenile Atlantic Salmon (Salmo salar L.) Fed Bacillus velezensis V4 and Rhodotorula mucilaginosa Compound. Aquaculture 2019, 500, 65–74. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhao, F.; Liu, H.; Yu, L.; Zha, J.; Wang, G. Probiotic Potential of Bacillus velezensis JW: Antimicrobial Activity against Fish Pathogenic Bacteria and Immune Enhancement Effects on Carassius auratus. Fish Shellfish Immunol. 2018, 78, 322–330. [Google Scholar] [CrossRef]
- Carnevali, O.; de Vivo, L.; Sulpizio, R.; Gioacchini, G.; Olivotto, I.; Silvi, S.; Cresci, A. Growth Improvement by Probiotic in European Sea Bass Juveniles (Dicentrarchus labrax, L.), with Particular Attention to IGF-1, Myostatin and Cortisol Gene Expression. Aquaculture 2006, 258, 430–438. [Google Scholar] [CrossRef]
- Frouël, S.; Le Bihan, E.; Serpentini, A.; Lebel, J.M.; Koueta, N.; Nicolas, J.L. Preliminary Study of the Effects of Commercial Lactobacilli Preparations on Digestive Metabolism of Juvenile Sea Bass (Dicentrarchus labrax). Microb. Physiol. 2008, 14, 100–106. [Google Scholar] [CrossRef]
- Silvi, S.; Nardi, M.; Sulpizio, R.; Orpianesi, C.; Caggiano, M.; Carnevali, O.; Cresci, A. Effect of the Addition of Lactobacillus delbrueckii Subsp. delbrueckii on the Gut Microbiota Composition and Contribution to the Well-Being of European Sea Bass (Dicentrarchus labrax L.). Microb. Ecol. Health Dis. 2009, 20, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Picchietti, S.; Fausto, A.M.; Randelli, E.; Carnevali, O.; Taddei, A.R.; Buonocore, F.; Scapigliati, G.; Abelli, L. Early Treatment with Lactobacillus delbrueckii Strain Induces an Increase in Intestinal T-Cells and Granulocytes and Modulates Immune-Related Genes of Larval (Dicentrarchus labrax L.). Fish Shellfish Immunol. 2009, 26, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Abelli, L.; Randelli, E.; Carnevali, O.; Picchietti, S. Stimulation of Gut Immune System by Early Administration of Probiotic Strains in Dicentrarchus labrax and Sparus aurata. Ann. N. Y. Acad. Sci. 2009, 1163, 340–342. [Google Scholar] [CrossRef] [Green Version]
- Román, L.; Real, F.; Sorroza, L.; Padilla, D.; Acosta, B.; Grasso, V.; Bravo, J.; Acosta, F. The in Vitro Effect of Probiotic Vagococcus fluvialis on the Innate Immune Parameters of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol. 2012, 33, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Sorroza, L.; Padilla, D.; Acosta, F.; Román, L.; Grasso, V.; Vega, J.; Real, F. Characterization of the Probiotic Strain Vagococcus fluvialis in the Protection of European Sea Bass (Dicentrarchus labrax) against Vibriosis by Vibrio anguillarum. Vet. Microbiol. 2012, 155, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Touraki, M.; Karamanlidou, G.; Karavida, P.; Chrysi, K. Evaluation of the Probiotics Bacillus subtilis and Lactobacillus plantarum Bioencapsulated in Artemia nauplii against Vibriosis in European Sea Bass Larvae (Dicentrarchus labrax, L.). World J. Microbiol. Biotechnol. 2012, 28, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Román, L.; Real, F.; Padilla, D.; Aamri, F.E.; Déniz, S.; Grasso, V.; Acosta, F. Cytokine Expression in Head-Kidney Leucocytes of European Sea Bass (Dicentrarchus labrax L.) after Incubation with the Probiotic Vagococcus fluvialis L-21. Fish Shellfish Immunol. 2013, 35, 1329–1332. [Google Scholar] [CrossRef]
- Piccolo, G.; Bovera, F.; Lombardi, P.; Mastellone, V.; Nizza, S.; Di Meo, C.; Marono, S.; Nizza, A. Effect of Lactobacillus plantarum on Growth Performance and Hematological Traits of European Sea Bass (Dicentrarchus labrax). Aquac. Int. 2015, 23, 1025–1032. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Porcino, C.; Cerezuela, R.; Cuesta, A.; Faggio, C.; Esteban, M.A. Impact of Date Palm Fruits Extracts and Probiotic Enriched Diet on Antioxidant Status, Innate Immune Response and Immune-Related Gene Expression of European Seabass (Dicentrarchus labrax). Fish Shellfish Immunol. 2016, 52, 298–308. [Google Scholar] [CrossRef]
- Lamari, F.; Mahdhi, A.; Chakroun, I.; Esteban, M.A.; Mazurais, D.; Amina, B.; Gatesoupe, F.J. Interactions between Candidate Probiotics and the Immune and Antioxidative Responses of European Sea Bass (Dicentrarchus labrax) Larvae. J. Fish Dis. 2016, 39, 1421–1432. [Google Scholar] [CrossRef]
- Schaeck, M.; Duchateau, L.; Van den Broeck, W.; Van Trappen, S.; De Vos, P.; Coulombet, C.; Boon, N.; Haesebrouck, F.; Decostere, A. Vibrio lentus Protects Gnotobiotic Sea Bass (Dicentrarchus labrax L.) Larvae against Challenge with Vibrio harveyi. Vet. Microbiol. 2016, 185, 41–48. [Google Scholar] [CrossRef]
- Hamza, A.; Fdhila, K.; Zouiten, D.; Masmoudi, A.S. Virgibacillus proomii and Bacillus mojavensis as Probiotics in Sea Bass (Dicentrarchus labrax) Larvae: Effects on Growth Performance and Digestive Enzyme Activities. Fish Physiol. Biochem. 2016, 42, 495–507. [Google Scholar] [CrossRef]
- Mladineo, I.; Bušelic, I.; Hrabar, J.; Radonic, I.; Vrbatovic, A.; Jozic, S.; Trumbic, Ž. Autochthonous Bacterial Isolates Successfully Stimulate In Vitro Peripheral Blood Leukocytes of the European Sea Bass (Dicentrarchus labrax). Front. Microbiol. 2016, 7, 1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeck, M.; Reyes-López, F.E.; Vallejos-Vidal, E.; Van Cleemput, J.; Duchateau, L.; Van den Broeck, W.; Tort, L.; Decostere, A. Cellular and Transcriptomic Response to Treatment with the Probiotic Candidate Vibrio lentus in Gnotobiotic Sea Bass (Dicentrarchus labrax) Larvae. Fish Shellfish Immunol. 2017, 63, 147–156. [Google Scholar] [CrossRef]
- Aerts, J.; Schaeck, M.; De Swaef, E.; Ampe, B.; Decostere, A. Vibrio lentus as a Probiotic Candidate Lowers Glucocorticoid Levels in Gnotobiotic Sea Bass Larvae. Aquaculture 2018, 492, 40–45. [Google Scholar] [CrossRef]
- Torrecillas, S.; Rivero-Ramírez, F.; Izquierdo, M.S.; Caballero, M.J.; Makol, A.; Suarez-Bregua, P.; Fernández-Montero, A.; Rotllant, J.; Montero, D. Feeding European Sea Bass (Dicentrarchus labrax) Juveniles with a Functional Synbiotic Additive (Mannan oligosaccharides and Pediococcus acidilactici): An Effective Tool to Reduce Low Fishmeal and Fish Oil Gut Health Effects? Fish Shellfish Immunol. 2018, 81, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, F.; Esendal, Ö.M. Usage of Lactobacillus rhamnosus as a Probiotic in Sea Bass (Dicentrarchus labrax). J. Anatol. Environ. Anim. Sci. 2020, 5, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Monzón-Atienza, L.; Bravo, J.; Torrecillas, S.; Montero, D.; Canales, A.F.G.-D.; de la Banda, I.G.; Galindo-Villegas, J.; Ramos-Vivas, J.; Acosta, F. Isolation and Characterization of a Bacillus velezensis D-18 Strain, as a Potential Probiotic in European Seabass Aquaculture. Probiotics Antimicrob. Proteins 2021, 13, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Monzón-Atienza, L.; Bravo, J.; Fernández-Montero, Á.; Charlie-Silva, I.; Montero, D.; Ramos-Vivas, J.; Galindo-Villegas, J.; Acosta, F. Dietary Supplementation of Bacillus velezensis Improves Vibrio anguillarum Clearance in European Sea Bass by Activating Essential Innate Immune Mechanisms. Fish Shellfish Immunol. 2022, 124, 244–253. [Google Scholar] [CrossRef]
- Eissa, E.-S.H.; Baghdady, E.S.; Gaafar, A.Y.; El-Badawi, A.A.; Bazina, W.K.; Al-Kareem, O.M.A.; El-Hamed, N.N.B.A. Assessing the Influence of Dietary Pediococcus acidilactici Probiotic Supplementation in the Feed of European Sea Bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on Farm Water Quality, Growth, Feed Utilization, Survival Rate, Body Composition, Blood Biochemical Parameters, and Intestinal Histology. Aquac. Nutr. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Chouayekh, H.; Farhat-Khemakhem, A.; Karray, F.; Boubaker, I.; Mhiri, N.; Abdallah, M.B.; Alghamdi, O.A.; Guerbej, H. Effects of Dietary Supplementation with Bacillus amyloliquefaciens US573 on Intestinal Morphology and Gut Microbiota of European Sea Bass. Probiotics Antimicrob. Proteins 2022, 15, 30–43. [Google Scholar] [CrossRef]
- Salem, A.M.; Ibrahim, H.A. Effects of Dietary Marine Bacillus subtilis HS1 Probiotic, Chitosan Prebiotic and Two Marine Synbiotics Mixtures on the Growth and Oxidative Stress of the European Seabass (Dicentrarchus labrax) Larvae. Egypt J. Aquat. Biol. Fish 2022, 26, 1119–1138. [Google Scholar] [CrossRef]
- Tovar, D.; Zambonino, J.; Cahu, C.; Gatesoupe, F.J.; Vázquez-Juárez, R.; Lésel, R. Effect of Live Yeast Incorporation in Compound Diet on Digestive Enzyme Activity in Sea Bass (Dicentrarchus labrax) Larvae. Aquaculture 2002, 204, 113–123. [Google Scholar] [CrossRef]
- Tovar-Ramírez, D.; Zambonino Infante, J.; Cahu, C.; Gatesoupe, F.J.; Vázquez-Juárez, R. Influence of Dietary Live Yeast on European Sea Bass (Dicentrarchus labrax) Larval Development. Aquaculture 2004, 234, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Tovar-Ramírez, D.; Mazurais, D.; Gatesoupe, J.F.; Quazuguel, P.; Cahu, C.L.; Zambonino-Infante, J.L. Dietary Probiotic Live Yeast Modulates Antioxidant Enzyme Activities and Gene Expression of Sea Bass (Dicentrarchus labrax) Larvae. Aquaculture 2009, 300, 142–147. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, H.S.; Ibrahim, H.A.H.; Beltagy, E.A.; Khairy, H.M. Effects of Short Term Feeding of Some Marine Microalgae on the Microbial Profile Associated with Dicentrarchus labrax Post Larvae. Egypt. J. Aquat. Res. 2014, 40, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Balcázar, J.L.; de Blas, I.; Ruiz-Zarzuela, I.; Cunningham, D.; Vendrell, D.; Múzquiz, J.L. The Role of Probiotics in Aquaculture. Vet. Microbiol. 2006, 114, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.M.; Bøgwald, J.; Castex, M.; Ringø, E. The Current Status and Future Focus of Probiotic and Prebiotic Applications for Salmonids. Aquaculture 2010, 302, 1–18. [Google Scholar] [CrossRef]
- Kesarcodi-Watson, A.; Kaspar, H.; Lategan, M.J.; Gibson, L. Probiotics in Aquaculture: The Need, Principles and Mechanisms of Action and Screening Processes. Aquaculture 2008, 274, 1–14. [Google Scholar] [CrossRef]
- Ross, R.P.; Desmond, C.; Fitzgerald, G.F.; Stanton, C. Overcoming the Technological Hurdles in the Development of Probiotic Foods. J. Appl. Microbiol. 2005, 98, 1410–1417. [Google Scholar] [CrossRef]
- Cámara-Ruiz, M.; Balebona, M.C.; Esteban, M.Á.; Moriñigo, M.Á. Probiotic Shewanella putrefaciens (SpPdp11) as a Fish Health Modulator: A Review. Microorganisms 2020, 8, 1990. [Google Scholar] [CrossRef] [PubMed]
- Amiin, M.K.; Lahay, A.F.; Putriani, R.B.; Reza, M.; Putri, S.M.E.; Sumon, A.A.; Jamal, M.T.; Santanumurti, M.B. The Role of Probiotics in Vannamei Shrimp Aquaculture Performance—A Review. Vet. World 2023, 16, 638–649. [Google Scholar] [CrossRef]
- Jahangiri, L.; Esteban, M.Á. Administration of Probiotics in the Water in Finfish Aquaculture Systems: A Review. Fishes 2018, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Makridis, P.; Kokou, F.; Bournakas, C.; Papandroulakis, N.; Sarropoulou, E. Isolation of Phaeobacter sp. from Larvae of Atlantic Bonito (Sarda sarda) in a Mesocosmos Unit, and Its Use for the Rearing of European Seabass Larvae (Dicentrarchus labrax L.). Microorganisms 2021, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Tinh, N.T.N.; Dierckens, K.; Sorgeloos, P.; Bossier, P. A Review of the Functionality of Probiotics in the Larviculture Food Chain. Mar. Biotechnol. 2008, 10, 1–12. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Llorente, C.; Muñoz, S.; Gil, A. 3rd International Immunonutrition Workshop Session 5: Early Programming of the Immune System and the Role of Nutrition Role of Toll-like Receptors in the Development of Immunotolerance Mediated by Probiotics. Proc. Nutr. Soc. 2010, 69, 373–380. [Google Scholar] [CrossRef]
- Hasan, K.N.; Banerjee, G. Recent Studies on Probiotics as Beneficial Mediator in Aquaculture: A Review. J. Basic Appl. Zool. 2020, 81, 1–16. [Google Scholar] [CrossRef]
- Vinderola, G.; Matar, C.; Perdigon, G. Role of Intestinal Epithelial Cells in Immune Effects Mediated by Gram-Positive Probiotic Bacteria: Involvement of Toll-like Receptors. Clin. Diagn. Lab. Immunol. 2005, 12, 1075–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizoso Pinto, M.G.; Rodriguez Gómez, M.; Seifert, S.; Watzl, B.; Holzapfel, W.H.; Franz, C.M.A.P. Lactobacilli Stimulate the Innate Immune Response and Modulate the TLR Expression of HT29 Intestinal Epithelial Cells In Vitro. Int. J. Food Microbiol. 2009, 133, 86–93. [Google Scholar] [CrossRef]
- Ribeiro, C.M.S.; Hermsen, T.; Taverne-Thiele, A.J.; Savelkoul, H.F.J.; Wiegertjes, G.F. Evolution of Recognition of Ligands from Gram-Positive Bacteria: Similarities and Differences in the TLR2-Mediated Response between Mammalian Vertebrates and Teleost Fish. J. Immunol. 2010, 184, 2355–2368. [Google Scholar] [CrossRef] [Green Version]
- Salinas, I.; Díaz-Rosales, P.; Cuesta, A.; Meseguer, J.; Chabrillón, M.; Moriñigo, M.Á.; Esteban, M.Á. Effect of Heat-Inactivated Fish and Non-Fish Derived Probiotics on the Innate Immune Parameters of a Teleost Fish (Sparus aurata L.). Vet. Immunol. Immunopathol. 2006, 111, 279–286. [Google Scholar] [CrossRef]
- Rohani, M.F.; Islam, S.M.; Hossain, M.K.; Ferdous, Z.; Siddik, M.A.; Nuruzzaman, M.; Padeniya, U.; Brown, C.; Shahjahan, M. Probiotics, Prebiotics and Synbiotics Improved the Functionality of Aquafeed: Upgrading Growth, Reproduction, Immunity and Disease Resistance in Fish. Fish Shellfish Immunol. 2022, 120, 569–589. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D.; Lu, Y.; Hlordzi, V.; Sakyi, M.E.; Afriyie, G.; Wang, Z.; Li, Y.; Xie, C.X.; Kuebutornye, F.K.A.; et al. Mechanisms and the Role of Probiotic Bacillus in Mitigating Fish Pathogens in Aquaculture. Fish Physiol. Biochem. 2020, 46, 819–841. [Google Scholar] [CrossRef]
- Balcázar, J.L.; Vendrell, D.; de Blas, I.; Ruiz-Zarzuela, I.; Gironés, O.; Múzquiz, J.L. In Vitro Competitive Adhesion and Production of Antagonistic Compounds by Lactic Acid Bacteria against Fish Pathogens. Vet. Microbiol. 2007, 122, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.A.O. Nutritional Immunity of Fish Intestines: Important Insights for Sustainable Aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Cai, Y.; Benno, Y.; Nakase, T.; Oh, T.K. Specific Probiotic Characterization of Weissella hellenica DS-12 Isolated from Flounder Intestine. J. Gen. Appl. Microbiol. 1998, 44, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazado, C.C.; Caipang, C.M.A.; Brinchmann, M.F.; Kiron, V. In Vitro Adherence of Two Candidate Probiotics from Atlantic Cod and Their Interference with the Adhesion of Two Pathogenic Bacteria. Vet. Microbiol. 2011, 148, 252–259. [Google Scholar] [CrossRef]
- Servin, A.L. Antagonistic Activities of Lactobacilli and Bifidobacteria against Microbial Pathogens. FEMS Microbiol. Rev. 2004, 28, 405–440. [Google Scholar] [CrossRef] [Green Version]
- Simón, R.; Docando, F.; Nuñez-Ortiz, N.; Tafalla, C.; Díaz-Rosales, P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front. Immunol. 2021, 12, 1. [Google Scholar] [CrossRef]
- Makras, L.; Triantafyllou, V.; Fayol-Messaoudi, D.; Adriany, T.; Zoumpopoulou, G.; Tsakalidou, E.; Servin, A.; De Vuyst, L. Kinetic Analysis of the Antibacterial Activity of Probiotic Lactobacilli towards Salmonella enterica Serovar Typhimurium Reveals a Role for Lactic Acid and Other Inhibitory Compounds. Res. Microbiol. 2006, 157, 241–247. [Google Scholar] [CrossRef]
- Hassan, M.; Kjos, M.; Nes, I.F.; Diep, D.B.; Lotfipour, F. Natural Antimicrobial Peptides from Bacteria: Characteristics and Potential Applications to Fight against Antibiotic Resistance. J. Appl. Microbiol. 2012, 113, 723–736. [Google Scholar] [CrossRef]
- Valero, Y.; Arizcun, M.; Cortés, J.; Ramírez-Cepeda, F.; Guzmán, F.; Mercado, L.; Esteban, M.Á.; Chaves-Pozo, E.; Cuesta, A. NK-Lysin, Dicentracin and Hepcidin Antimicrobial Peptides in European Sea Bass. Ontogenetic Development and Modulation in Juveniles by Nodavirus. Dev. Comp. Immunol. 2020, 103, 103516. [Google Scholar] [CrossRef] [PubMed]
- Schiffrin, E.J.; Blum, S. Interactions between the Microbiota and the Intestinal Mucosa. Eur. J. Clin. Nutr. 2002, 56, S60–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuertz, S.; Schroeder, A.; Wanka, K.M. Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? Water 2021, 13, 1348. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; Zhou, Z. Probiotics as Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef] [Green Version]
- Frawley, E.R.; Fang, F.C. The Ins and Outs of Bacterial Iron Metabolism. Mol. Microbiol. 2014, 93, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol. Med. 2016, 22, 1077–1090. [Google Scholar] [CrossRef] [Green Version]
- Lalloo, R.; Moonsamy, G.; Ramchuran, S.; Görgens, J.; Gardiner, N. Competitive Exclusion as a Mode of Action of a Novel Bacillus cereus Aquaculture Biological Agent. Lett. Appl. Microbiol. 2010, 50, 563–570. [Google Scholar] [CrossRef]
- Khan, A.; Doshi, H.V.; Thakur, M.C. Bacillus spp.: A Prolific Siderophore Producer. Bacilli Agrobiotechnol. 2017, 14, 309–323. [Google Scholar]
- Assan, D.; Kuebutornye, F.K.A.; Hlordzi, V.; Chen, H.; Mraz, J.; Mustapha, U.F.; Abarike, E.D. Effects of Probiotics on Digestive Enzymes of Fish (Finfish and Shellfish); Status and Prospects: A Mini Review. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 257, 110653. [Google Scholar] [CrossRef]
- Ringø, E.; Van Doan, H.; Lee, S.H.; Soltani, M.; Hoseinifar, S.H.; Harikrishnan, R.; Song, S.K. Probiotics, Lactic Acid Bacteria and Bacilli: Interesting Supplementation for Aquaculture. J. Appl. Microbiol. 2020, 129, 116–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Langlois, L.; Akhtar, N.; Tam, K.C.; Dixon, B.; Reid, G. Fishing for the Right Probiotic: Host-Microbe Interactions at the Interface of Effective Aquaculture Strategies. FEMS Microbiol. Rev. 2021, 45, fuab030. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Hellemans, B.; Volckaert, F.A.M. Review on the Immunology of European Sea Bass Dicentrarchus labrax. Vet. Immunol. Immunopathol. 2007, 117, 1–16. [Google Scholar] [CrossRef]
- Serradell, A.; Torrecillas, S.; Makol, A.; Valdenegro, V.; Fernández-Montero, A.; Acosta, F.; Izquierdo, M.S.; Montero, D. Prebiotics and Phytogenics Functional Additives in Low Fish Meal and Fish Oil Based Diets for European Sea Bass (Dicentrarchus labrax): Effects on Stress and Immune Responses. Fish Shellfish Immunol. 2020, 100, 219–229. [Google Scholar] [CrossRef]
- El-Shazly, M.; Wu, H.-C.; Cheyadmi, S.; Chadli, H.; Nhhala, H.; Yamlahi, B.E.; Maadoudi, M.E.; Kounnoun, A.; Cacciola, F.; Ez-Zaaim, A.; et al. Primary and Secondary Physiological Stress Responses of European Sea Bass (Dicentrarchus labrax) Due to Rearing Practices under Aquaculture Farming Conditions in M’diq Bay, Moroccan Mediterranean: The Case of Sampling Operation for Size and Weight Measurement. Life 2022, 13, 110. [Google Scholar] [CrossRef]
- Rollo, A.; Sulpizio, R.; Nardi, M.; Silvi, S.; Orpianesi, C.; Caggiano, M.; Cresci, A.; Carnevali, O. Live Microbial Feed Supplement in Aquaculture for Improvement of Stress Tolerance. Fish Physiol. Biochem. 2006, 32, 167–177. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Parmeggiani, B.; Leipnitz, G.; Verdi, C.M.; Santos, R.C.V.; Stefani, L.M.; Baldisserotto, B. The Disturbance of Antioxidant/Oxidant Balance in Fish Experimentally Infected by Aeromonas caviae: Relationship with Disease Pathophysiology. Microb. Pathog. 2018, 122, 53–57. [Google Scholar] [CrossRef]
- Oliva-Teles, A. Nutrition and Health of Aquaculture Fish. J. Fish Dis. 2012, 35, 83–108. [Google Scholar] [CrossRef]
- Nadal, A.L.; Ikeda-Ohtsubo, W.; Sipkema, D.; Peggs, D.; McGurk, C.; Forlenza, M.; Wiegertjes, G.F.; Brugman, S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front. Immunol. 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wang, M.; Gao, F.; Lu, M.; Chen, G. Effects of Dietary Probiotic Supplementation on the Growth, Gut Health and Disease Resistance of Juvenile Nile Tilapia (Oreochromis niloticus). Anim. Nutr. 2020, 6, 69–79. [Google Scholar] [CrossRef]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.A.O.; Koshio, S. Recent Advances in the Role of Probiotics and Prebiotics in Carp Aquaculture: A Review. Aquaculture 2016, 454, 243–251. [Google Scholar] [CrossRef]
- Hines, I.S.; Santiago-Morales, K.D.; Ferguson, C.S.; Clarington, J.; Thompson, M.; Rauschenbach, M.; Levine, U.; Drahos, D.; Aylward, F.O.; Smith, S.A.; et al. Steelhead Trout (Oncorhynchus mykiss) Fed Probiotic during the Earliest Developmental Stages Have Enhanced Growth Rates and Intestinal Microbiome Bacterial Diversity. Front. Mar. Sci. 2022, 9, 1021647. [Google Scholar] [CrossRef]
- Sokooti, R.; Dezfoulnejad, M.C.; Baboli, M.J.; Sary, A.A.; Mabudi, H. The Effects of Probiotics-Supplemented Diets on Asian Sea Bass (Lates calcarifer): Growth Performance, Microbial Flora, Digestive Enzymes Activity, Serum Biochemical and Non-Specific Immune Indices. Aquac. Res. 2022, 53, 5500–5509. [Google Scholar] [CrossRef]
- Díaz-Rosales, P.; Arijo, S.; Chabrillón, M.; Alarcón, F.J.; Tapia-Paniagua, S.T.; Martínez-Manzanares, E.; Balebona, M.C.; Moriñigo, M.A. Effects of Two Closely Related Probiotics on Respiratory Burst Activity of Senegalese Sole (Solea senegalensis, Kaup) Phagocytes, and Protection against Photobacterium damselae subsp. piscicida. Aquaculture 2009, 293, 16–21. [Google Scholar] [CrossRef]
- Avella, M.A.; Olivotto, I.; Silvi, S.; Ribecco, C.; Cresci, A.; Palermo, F.; Polzonetti, A.; Carnevali, O. Use of Enterococcus faecium to Improve Common Sole (Solea solea) Larviculture. Aquaculture 2011, 315, 384–393. [Google Scholar] [CrossRef]
- Vidal, S.; Tapia-Paniagua, S.T.; Moriñigo, J.M.; Lobo, C.; de la Banda, I.G.; del Carmen Balebona, M.; Moriñigo, M.Á. Effects on Intestinal Microbiota and Immune Genes of Solea senegalensis after Suspension of the Administration of Shewanella putrefaciens Pdp11. Fish Shellfish Immunol. 2016, 58, 274–283. [Google Scholar] [CrossRef]
- Salinas, I.; Abelli, L.; Bertoni, F.; Picchietti, S.; Roque, A.; Furones, D.; Cuesta, A.; Meseguer, J.; Esteban, M.Á. Monospecies and Multispecies Probiotic Formulations Produce Different Systemic and Local Immunostimulatory Effects in the Gilthead Seabream (Sparus aurata L.). Fish Shellfish Immunol. 2008, 25, 114–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guluarte, C.; Reyes-Becerril, M.; Gonzalez-Silvera, D.; Cuesta, A.; Angulo, C.; Esteban, M.Á. Probiotic Properties and Fatty Acid Composition of the Yeast Kluyveromyces lactis M3. In Vivo Immunomodulatory Activities in Gilthead Seabream (Sparus aurata). Fish Shellfish Immunol. 2019, 94, 389–397. [Google Scholar] [CrossRef]
- Dagá, P.; Feijoo, G.; Moreira, M.T.; Costas, D.; Villanueva, A.G.; Lema, J.M. Bioencapsulated Probiotics Increased Survival, Growth and Improved Gut Flora of Turbot (Psetta maxima) Larvae. Aquac. Int. 2013, 21, 337–345. [Google Scholar] [CrossRef]
- Prol-García, M.J.; Pintado, J. Effectiveness of Probiotic Phaeobacter Bacteria Grown in Biofilters against Vibrio anguillarum Infections in the Rearing of Turbot (Psetta maxima) Larvae. Mar. Biotechnol. 2013, 15, 726–738. [Google Scholar] [CrossRef]
- Galindo-Villegas, J.; Garciá-Moreno, D.; De Oliveira, S.; Meseguer, J.; Mulero, V. Regulation of Immunity and Disease Resistance by Commensal Microbes and Chromatin Modifications during Zebrafish Development. Proc. Natl. Acad. Sci. USA 2012, 109, E2605–E2614. [Google Scholar] [CrossRef] [PubMed]
- Dierckens, K.; Rekecki, A.; Laureau, S.; Sorgeloos, P.; Boon, N.; Van Den Broeck, W.; Bossier, P. Development of a Bacterial Challenge Test for Gnotobiotic Sea Bass (Dicentrarchus labrax) Larvae. Environ. Microbiol. 2009, 11, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cui, F.; Wang, D.; Li, T.; Li, J. Quorum Quenching Enzyme (PF-1240) Capable to Degrade AHLs as a Candidate for Inhibiting Quorum Sensing in Food Spoilage Bacterium Hafnia alvei. Foods 2021, 10, 2700. [Google Scholar] [CrossRef]
- Santos, R.A.; Monteiro, M.; Rangel, F.; Jerusik, R.; Saavedra, M.J.; Carvalho, A.P.; Oliva-Teles, A.; Serra, C.R. Bacillus spp. Inhibit Edwardsiella Tarda Quorum-Sensing and Fish Infection. Mar. Drugs 2021, 19, 602. [Google Scholar] [CrossRef]
- Delshad, S.t.; Soltanian, S.; Sharifiyazdi, H.; Bossier, P. Effect of Quorum Quenching Bacteria on Growth, Virulence Factors and Biofilm Formation of Yersinia ruckeri In Vitro and an In Vivo Evaluation of Their Probiotic Effect in Rainbow Trout. J. Fish Dis. 2018, 41, 1429–1438. [Google Scholar] [CrossRef]
- Karakatsouli, N.; Katsakoulis, P.; Leondaritis, G.; Kalogiannis, D.; Papoutsoglou, S.E.; Chadio, S.; Sakellaridis, N. Acute Stress Response of European Sea Bass Dicentrarchus labrax under Blue and White Light. Aquaculture 2012, 364–365, 48–52. [Google Scholar] [CrossRef]
- Tort, L. Stress and Immune Modulation in Fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Tabassum, T.; Mahamud, A.G.M.S.U.; Acharjee, T.K.; Hassan, R.; Snigdha, T.A.; Islam, T.; Alam, R.; Khoiam, M.U.; Akter, F.; Azad, M.R.; et al. Probiotic Supplementations Improve Growth, Water Quality, Hematology, Gut Microbiota and Intestinal Morphology of Nile Tilapia. Aquac. Rep. 2021, 21, 100972. [Google Scholar] [CrossRef]
- Zabidi, A.; Yusoff, F.M.; Nurul Amin, S.M.; Yaminudin, N.J.M.; Puvanasundram, P.; Karim, M.M.A. Effects of Probiotics on Growth, Survival, Water Quality and Disease Resistance of Red Hybrid Tilapia (Oreochromis spp.) Fingerlings in a Biofloc System. Animals 2021, 11, 3514. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.M.; Mohamed, M.F.; John, G. Effect of Probiotics on the Survival, Growth and Challenge Infection in Tilapia Nilotica (Oreochromis niloticus). Aquac. Res. 2008, 39, 647–656. [Google Scholar] [CrossRef]
- Zheng, X.; Duan, Y.; Dong, H.; Zhang, J. Effects of Dietary Lactobacillus plantarum on Growth Performance, Digestive Enzymes and Gut Morphology of Litopenaeus vannamei. Probiotics Antimicrob. Proteins 2018, 10, 504–510. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hossain, M.M.; Mim, Z.T.; Khatun, H.; Hossain, M.T.; Shahjahan, M. Multi-Species Probiotics Improve Growth, Intestinal Microbiota and Morphology of Indian Major Carp Mrigal Cirrhinus cirrhosus. Saudi. J. Biol. Sci. 2022, 29, 103399. [Google Scholar] [CrossRef]
- Büyükdeveci, M.E.; Cengizler, İ.; Balcázar, J.L.; Demirkale, İ. Effects of Two Host-Associated Probiotics Bacillus mojavensis B191 and Bacillus subtilis MRS11 on Growth Performance, Intestinal Morphology, Expression of Immune-Related Genes and Disease Resistance of Nile Tilapia (Oreochromis niloticus) against Streptococcus iniae. Dev. Comp. Immunol. 2023, 138, 104553. [Google Scholar] [CrossRef]
- Li, Z.; Bao, N.; Ren, T.; Han, Y.; Jiang, Z.; Bai, Z.; Hu, Y.; Ding, J. The Effect of a Multi-Strain Probiotic on Growth Performance, Non-Specific Immune Response, and Intestinal Health of Juvenile Turbot, Scophthalmus maximus L. Fish Physiol. Biochem. 2019, 45, 1393–1407. [Google Scholar] [CrossRef]
- Cerezuela, R.; Fumanal, M.; Tapia-Paniagua, S.T.; Meseguer, J.; Morinigo, M.Á.; Esteban, M.Á. Histological Alterations and Microbial Ecology of the Intestine in Gilthead Seabream (Sparus aurata L.) Fed Dietary Probiotics and Microalgae. Cell Tissue Res. 2012, 350, 477–489. [Google Scholar] [CrossRef]
- Cordero, H.; Morcillo, P.; Cuesta, A.; Brinchmann, M.F.; Esteban, M.A. Differential Proteome Profile of Skin Mucus of Gilthead Seabream (Sparus aurata) after Probiotic Intake and/or Overcrowding Stress. J. Proteomics 2016, 132, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Tapia-Paniagua, S.T.; Vidal, S.; Lobo, C.; Prieto-Álamo, M.J.; Jurado, J.; Cordero, H.; Cerezuela, R.; de la Banda, I.G.; Esteban, M.A.; Balebona, M.C.; et al. The Treatment with the Probiotic Shewanella putrefaciens Pdp11 of Specimens of Solea senegalensis Exposed to High Stocking Densities to Enhance Their Resistance to Disease. Fish Shellfish Immunol. 2014, 41, 209–221. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; El-Sabagh, M.; Yokoyama, S.; Wang, W.-L.; Yukun, Z.; Olivier, A. Physiological Response, Blood Chemistry Profile and Mucus Secretion of Red Sea Bream (Pagrus major) Fed Diets Supplemented with Lactobacillus rhamnosus under Low Salinity Stress. Fish Physiol. Biochem. 2017, 43, 179–192. [Google Scholar] [CrossRef]
- Panigrahi, A.; Kiron, V.; Satoh, S.; Watanabe, T. Probiotic Bacteria Lactobacillus rhamnosus Influences the Blood Profile in Rainbow Trout Oncorhynchus mykiss (Walbaum). Fish Physiol. Biochem. 2010, 36, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Villegas, J.; Mulero, I.; García-Alcazar, A.; Muñoz, I.; Peñalver-Mellado, M.; Streitenberger, S.; Scapigliati, G.; Meseguer, J.; Mulero, V. Recombinant TNFa as Oral Vaccine Adjuvant Protects European Sea Bass against Vibriosis: Insights into the Role of the CCL25/CCR9 Axis. Fish Shellfish Immunol. 2013, 35, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Glover, C.N.; Bucking, C.; Wood, C.M. The Skin of Fish as a Transport Epithelium: A Review. J. Comp. Physiol. B 2013, 183, 877–891. [Google Scholar] [CrossRef]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Esteban, M.Á. Dietary Administration of the Probiotic Shewanella putrefaciens to Experimentally Wounded Gilthead Seabream (Sparus aurata L.) Facilitates the Skin Wound Healing. Sci. Rep. 2020, 10, 11029. [Google Scholar] [CrossRef]
Probiotic Bacteria | Doses of Administration and Duration | Observations | References |
Lactobacillus delbrueckii subsp. delbrueckii | 105 bacteria/mL Long treatment: From 11 to 29 days post-hatching: via Brachionus plicatilis From 30 to 70 days post-hatching: via Artemia nauplii Short treatment: From 30 to 70 days post-hatching: via Artemia solely | (↑) Growth performance (↑) Body weight (↓) Cortisol | [30] |
Lactobacillus farciminis CNCM MA27/6R + Lactobacillus rhamnosus CNCM MA27/6B | 108 CFU/g 86 days | (↑) Survival rates (↓) Malformations (↑) Acid phosphatase activity (8 day), trypsin activity (↓) Acid phosphatase activity (23 day), α-amylase activity | [31] |
Lactobacillus delbrueckii subsp. delbrueckii | 105 bacteria/mL Early treatment: From 11 to 29 days post-hatching: via Brachionus plicatilis From 30 to 70 days post-hatching: via Artemia solely Later treatment: From 30 to 70 days post-hatching: via Artemia solely | Modify gut microbiota (↑) Survival (↓) Stress (cortisol) | [32] |
Lactobacillus delbrueckii | 105 bacteria/cm3 From 11–29 days post-hatching: via Brachionus plicatilis From 30–74 days post-hatching: via Artemianauplii | (↑) T cells (↑) Acidophilic granulocytes (↑) TcR-β gene expression (↓) L-1β, IL-10, COX-2, and TGF-β gene expression | [33] |
Lactobacillus delbrueckii | 105 bacteria/mL From 11–29 days post-hatching: via Brachionus plicatilis From 30–74 days post-hatching: via Artemia salina | (↑) T cells (↑) Acidophilic granulocytes (↑) TcR-β gene expression (↓) L-1β, IL-10, COX-2, and TGF-β gene expression | [34] |
Vagococcus fluvialis | 106, 107, and 108 CFU/mL (in vitro) 30 min incubation | 108 CFU/mL as best results: (↑) phagocytosis (108 CFU/mL) (UV>L>H) (↑) Peroxidase (108 CFU/mL) (UV>L>H) (↑) Respiratory burst (108 CFU/mL) (UV>L>H) | [35] |
Vagococcus fluvialis | 109 CFU/g 20 days | (↑) Survival against Vibrio anguillarum | [36] |
Bacillus subtilis | 7 × 109 CFU/mL For 5 days: via Artemia nauplii | (↑) Survival against Vibrio anguillarum | [37] |
Vagococcus fluvialis L-21 | 108 CFU/mL (in vitro) 1 h incubation | Mx gene expression: (↑) 12 h (H), 48 h (L)(H)(UV) (↓) 1 h (L)(H)(UV), 24 h (L)(H)(UV) IL-1β gene expression: (↑) 1 h(L)(H)(UV), 48 h (H). (↓) 12 h (L)(H)(UV), 24 h (L)(H)(UV) IL-6 gene expression: (↑) 1 h (L), 24 h (H), 48 h (L)(H)(UV) (↓) 12 h (L)(H)(UV) TNF-α gene expression: (↑) 1 h (L)(H)(UV) (↓) 12 h (L)(H)(UV), 24 h (L)(H)(UV), 48 h (L)(H)(UV) IL-10 gene expression: (↑) 1 h (L)(H)(UV), 12 h (UV), 48 h (L) (↓) 24 h (L)(H)(UV) COX-2 gene expression: (↑)1 h (L)(H)(UV), 12 h (L)(H), 24 h (L)(H), 48 h (L)(H)(UV) | [38] |
Lactobacillus plantarum | 10 × 109 CFU/kg 90 days | (↑) Survival (↑) Blood cholesterol and triglycerides | [39] |
Lactobacillus casei X2 Pediococcus acidilactici | 107 CFU/g 40 days | Lactobacillus casei X2 (↑) IL-1β gene expression (↑) CAT gene expression (↓) HSP70 gene expression Pediococcus acidilactici (↑) IL-1β gene expression (↓) CAT gene expression (↑) HSP70 gene expression | [41] |
Vibrio lentus | 106 CFU/mL At 4, 6, and 8 days post-hatching | (↑) Disease resistance against V. harveyi SB | [42] |
Virgibacillus proomii + Bacillus mojavensis | 106 CFU/mL 60 days | (↑) Growth performance (↑) Phosphatase alkaline, amylase activity (↑) Survival | [43] |
Pseudoalteromonas sp. Alteromonas sp. Enterovibrio coralii Lactobacillus casei | 107 cells/mL (in vitro) | Pseudoalteromonas sp. (↑) Mx (3 h), TNF-α (3 h), IL-10 (3 h) gene expression (↓) Mx (12 h), Caspase 3 gene expression (↓) Lysozyme (1–3 h) (↑) Phagocytosis (↑) Respiratory burst Alteromonas sp. (↓) Lysozyme (1–3 h) (↓) Mx (3–12 h), Caspase 3 gene expression Enterovibrio coralii (↑) Mx (3–12 h), IL-10 (3 h) gene expression (↓) Caspase 3 gene expression (↑) Respiratory burst Lactobacillus casei (↓) Mx (1 h), Caspase 3 gene expression (↑) Phagocytosis (↑) Respiratory burst | [44] |
Vibrio lentus | 106 CFU/mL At 4, 6, and 8 days post-hatching | (↑) cell proliferation: hematopoiesis, cell death, ROS metabolism, iron transport, and cell adhesion. (↑) Immunomodulatory functions: pathogen recognition, cytokines, chemokines and receptors, humoral and cellular effectors, IFN-mediated response, and cell death | [45] |
Vibrio lentus | 106 CFU/mL 4, 6, and 8 days post-hatching | (↓) Stress | [46] |
Lactobacillus rhamnosus | 106 CFU/mL—Rearing Water or 108 CFU/mL From 9 to 50 days post-hatching: via Artemia nauplii 109 CFU/g From 50 to 125 days post-hatching | (↓) Deformation (↑) Survival rates (↓) Vibrio spp. (after probiotic Artemia) | [48] |
Bacillus velezensis D-18 | 106 CFU/g 20 days | (↑) Survival against V. anguillarum 507 | [49] |
Bacillus velezensis D-18 | 1 × 106 CFU/g 30 days | (↑) Serum killing percentages (↑) Phagocytic activity (↑) Lysozyme activity (↑) Nitric oxide (↑) IL-1β, TNF-α, and COX-2 gene expression (↑) DIC gene expression (↑) Survival against V. anguillarum 507 | [50] |
Pediococcus acidilactici | 1010 CFU/g (2, 2.5, and 3 g) 60 days | (↑) Water quality (↑) Growth performance (↑) Body composition | [51] |
Bacillus amyloliquefaciens | 107 CFU/g 42 days | (↑) Villi length (↑) Goblet cells number (↓) Cyst formation (↓) Actinobacteria phylum and Nocardia genus (↑) Betaproteobacteria and Firmicutes | [52] |
Phaeobacter sp. | 5 × 107 bacteria/mL From 8 to 14 days post-hatching: via Brachionus sp. From 14 to 32 days post-hatching: via Artemia metanauplii | (↑) Survival against Vibrio harveyi | [64] |
Probiotic Bacteria Combinate with Prebiotics | Doses of Administration and Duration | Observations | References |
Shewanella putrefaciens Pdp11 + Date palm fruits extracts | 109 CFU/mL 2 and 4 weeks | Shewanella putrefaciens Pdp11: (↑) Antioxidant potential (2 and 4 weeks) (↓) Respiratory burst (4 weeks) (↑) Phagocytic capacity (2 and 4 weeks) Head-kidney gene expression: (↑) fbl (4 weeks) (↑) IL-1β (2 weeks) (↑) hep (2 and 4 weeks) Gut gene expression: (↑) SOD (4 weeks) (↑) hep (2 weeks) (↑) Lysozyme (2 weeks) (↓) hep (4 weeks) (↓) rbl (2 weeks) Shewanella putrefaciens Pdp11 + date palm fruits extracts: (↑) Antioxidant potential (2 and 4 weeks) (↓) Serum antiprotease activity (2 weeks) (↓) Natural hemolytic complement (4 weeks) (↓) Respiratory burst (4 weeks) (↑) Phagocytic ability (4 weeks) (↑) Phagocytic capacity (4 weeks) Head-kidney gene expression: (↑) rbl (2 and 4 weeks) (↑) IL-1β (2 and 4 weeks) (↑) SOD (2 weeks) (↑) hep (2 and 4 weeks) Gut gene expression: (↓) rbl (2 weeks) (↓) hep (4 weeks) | [40] |
Pediococcus acidilactici (Bactocell®) + Mannanoligosaccharides (MOS) | MOS(%)/BAC: 0/+ (B) 0.6/+ (HPB) 0.3/+ (LPB) 0/0 Control 90 days | B: (↑) TNF-α, IL-1β, COX-2, and IL-10 gene expression (↓) MHCI-α, MHCII-β, CD4, CD8-α, and TCR-β gene expression HPB: (↑) TNF-α, COX-2, CD4, and CD8-α gene expression (↓) IL-1β, IL-10, MHCI-α, MHCII, and TCR-β gene expression LPB: (↑) TNF-α and IL-1β gene expression (↓) COX-2, IL-10, MHCI I-α, and TCR-β gene expression (↑) Survival against V. anguillarum 507 | [47] |
Bacillus subtilis HS1 Bacillus subtilis HS1+ Chitosan | 107 CFU/g From 30 to 45 days post-hatching | Probiotic: (↑) Length, weight (↑) Survival (↑) Aspartate aminotransferase specific activity (↓) ALT (↓) SOD, CAT, and TAC Symbiotic: (↑) Length, weight (↑) Survival (↑) SOD, CAT, and TAC (↑) Alkaline phosphatase, acid phosphatase enzymes, and total and specific activities | [53] |
Probiotic Yeast | Doses of Administration and Duration | Observations | References |
Debaryomyces hansenii HF1 Saccharomyces cerevisiae X2180 | 7 × 105 CFU/g From 10 to 42 days post-hatching | Debaryomyces hansenii HF1 At 27 days post-hatching: (↑) Amylase (↑) Aminopeptidase N, maltase, and alkaline phosphatase At 42 days post-hatching: (↑) Survival (↓) Weight, growth (↓) Malformations Saccharomyces cerevisiae X2180 At 27 days post-hatching: (↓) Amylase, trypsin (↓) Aminopeptidase N, maltase, and alkaline phosphatase At 42 days post-hatching: (↓) Trypsin (↓) Weight | [54] |
Debaryomyces hansenii CBS 8339 | 106 or 6 × 106 CFU/g From 5 to 37 days post-hatching | 106 CFU/g (↑) Survival (↑) Weight/growth (↓) Malformations At 26 days post-hatching: (↑) Trypsin activity, lipase activity, and amylase activity (↑) Aminopeptidase N, maltase, and alkaline phosphatase At 36 days post-hatching: (↑) Trypsin activity and mRNA expression, lipase activity and mRNA expression (↓) Amylase activity and mRNA expression 6 × 106 CFU/g At 26 days post-hatching: (↑) Trypsin activity, lipase activity (↓) Amylase activity (↑) Maltase, alkaline phosphatase At 36 days post-hatching: (↑) Trypsin mRNA expression; lipase activity and mRNA expression (↓) Amylase activity and mRNA expression | [55] |
Debaryomyces hansenii CBS 8339 | 43 g/kg From 6 to 48 days post-hatching | (↑) Growth performance (↓) GPX, SOD | [56] |
Probiotic Microalgae | Doses of Administration and Duration | Observations | References |
Tetraselmis chuii Nannochloropsis salina Isochrysis galbana Chlorella salina | 6 weeks: via water and Artemia metanuplii | (↓) Bacterial pathogens (↑) Growth performance | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monzón-Atienza, L.; Bravo, J.; Serradell, A.; Montero, D.; Gómez-Mercader, A.; Acosta, F. Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review. Animals 2023, 13, 2369. https://doi.org/10.3390/ani13142369
Monzón-Atienza L, Bravo J, Serradell A, Montero D, Gómez-Mercader A, Acosta F. Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review. Animals. 2023; 13(14):2369. https://doi.org/10.3390/ani13142369
Chicago/Turabian StyleMonzón-Atienza, Luis, Jimena Bravo, Antonio Serradell, Daniel Montero, Antonio Gómez-Mercader, and Félix Acosta. 2023. "Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review" Animals 13, no. 14: 2369. https://doi.org/10.3390/ani13142369
APA StyleMonzón-Atienza, L., Bravo, J., Serradell, A., Montero, D., Gómez-Mercader, A., & Acosta, F. (2023). Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review. Animals, 13(14), 2369. https://doi.org/10.3390/ani13142369