Genetic Correlations between Boar Taint Compound Concentrations in Fat of Purebred Boars and Production and Ham Quality Traits in Crossbred Heavy Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Purebred Animals
2.2. Crossbred Animals
2.3. Statistical Analysis
2.4. Estimates of (Co)Variance Components and Genetic Parameters
3. Results and Discussion
3.1. Descriptive Statistics for the Investigated Traits
3.2. Genetic Parameters of Boar Taint Compound Concentrations
3.3. Genetic Correlation between Boar Taint Compounds and Growth Rate or Carcass Leanness
3.4. Genetic Correlation between Boar Taint Compound Levels and Fatty Acid Profile
3.5. Genetic Correlation between Boar Taint Traits and Other Green Ham Quality Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bee, G.; Chevillon, P.; Bonneau, M. Entire male pig production in Europe. Anim. Prod. Sci. 2015, 55, 1347–1359. [Google Scholar] [CrossRef]
- Backus, G.; Higuera, M.; Juul, N.; Nalon, E.; de Bryne, N. Second Progress Report 2015–2017 on the European Declaration on Alternatives to Surgical Castration of Pigs. Available online: https://www.boarsontheway.com/wp-content/uploads/2018/08/Second-progress-report-2015-2017-final-1.pdf (accessed on 12 March 2023).
- Larzul, C. How to improve meat quality and welfare in entire male pigs by genetics. Animals 2021, 11, 699. [Google Scholar] [CrossRef]
- Bonneau, M.; Weiler, U. Pros and cons of alternatives to piglet castration: Welfare, boar taint, and other meat quality traits. Animals 2019, 9, 884. [Google Scholar] [CrossRef] [Green Version]
- Rius, M.A.; Hortós, M.; García-Regueiro, J.A. Influence of volatile compounds on the development of off-flavours in pig back fat samples classified with boar taint by a test panel. Meat Sci. 2005, 71, 595–602. [Google Scholar] [CrossRef]
- Rius Solé, M.A.; García-Regueiro, J.A. Role of 4-Phenyl-3-buten-2- one in boar taint: Identification of new compounds related to sensorial descriptors in pig fat. J. Agric. Food Chem. 2001, 49, 5303–5309. [Google Scholar] [CrossRef] [PubMed]
- Babol, J.; Zamaratskaia, G.; Juneja, R.K.; Lundström, K. The effect of age on distribution of skatole and indole levels in entire male pigs in four breeds: Yorkshire, Landrace, Hampshire and Duroc. Meat Sci. 2004, 67, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Zamaratskaia, G.; Babol, J.; Madej, A.; Squires, E.; Lundstrom, K. Age-related variation of plasma concentrations of skatole, androstenone, testosterone, oestradiol-17beta, oestrone sulphate, dehydroepiandrosterone sulphate, triiodothyronine and igf-1 in six entire male pigs. Reprod. Domest. Anim. 2004, 39, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Zamaratskaia, G.; Babol, J.; Andersson, H.; Lundström, K. Plasma skatole and androstenone levels in entire male pigs and relationship between boar taint compounds, sex steroids and thyroxine at various ages. Livest. Prod. Sci. 2004, 87, 91–98. [Google Scholar] [CrossRef]
- Windig, J.J.; Mulder, H.A.; ten Napel, J.; Knol, E.F.; Mathur, P.K.; Crump, R.E. Genetic parameters for androstenone, skatole, indole, and human nose scores as measures of boar taint and their relationship with finishing traits. J. Anim. Sci. 2012, 90, 2120–2129. [Google Scholar] [CrossRef] [Green Version]
- Rostellato, R.; Sartori, C.; Bonfatti, V.; Chiarot, G.; Carnier, P. Direct and social genetic effects on body weight at 270 days and carcass and ham quality traits in heavy pigs. J. Anim. Sci. 2015, 93, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Škrlep, M.; Tomašević, I.; Mörlein, D.; Novaković, S.; Egea, M.; Garrido, M.D.; Linares, M.B.; Peñaranda, I.; Aluwé, M.; Font-i-Furnols, M. The Use of Pork from Entire Male and Immunocastrated Pigs for Meat Products—An Overview with Recommendations. Animals 2020, 10, 1754. [Google Scholar] [CrossRef] [PubMed]
- Bosi, P.; Russo, V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004, 3, 309–321. [Google Scholar] [CrossRef] [Green Version]
- RIFT. Rapporto Filiera Suinicola—Ottobre 2022. Available online: https://www.csqa.it/getattachment/CSQA/Download/PROSCIUTTO-DI-PARMA-DOP/REPORT-FILIERA-10-2022.pdf.aspx?lang=it-IT (accessed on 12 March 2023).
- Pambianco. Salumi Italiani, La Top Ten Vale 3 Miliardi. 2020. Available online: https://wine.pambianconews.com/2020/02/salumi-italiani-la-top-ten-vale-3-miliardi/189088 (accessed on 12 March 2023).
- European Commission. Application for Approval of an Amendment in Accordance with the First Subparagraph of Article 53(2) of Regulation (EU) No 1151/2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015XC0801%2801%29 (accessed on 12 March 2023).
- Duarte, D.A.S.; Schroyen, M.; Mota, R.R.; Vanderick, S.; Gengler, N. Recent genetic advances on boar taint reduction as an alternative to castration: A review. J. Appl. Genet. 2021, 62, 137–150. [Google Scholar] [CrossRef]
- Merks, J.W.M. Genotype × Environment Interactions in Pig Breeding Programmes. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1988. [Google Scholar]
- Raschetti, M. Ricerca e Validazione di SNP in Geni Candidati per la Qualità Della Carne e Applicazione Dell’analisi Genomica alla Specie Suina. Ph.D. Thesis, University of Milan, Milan, Italy, 2010. [Google Scholar]
- Dugué, C.; Prunier, A.; Mercat, M.J.; Monziols, M.; Blanchet, B.; Larzul, C. Genetic determinism of boar taint and relationship with growth traits, meat quality and lesions. Animal 2020, 14, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschi, E.; Faggion, S.; Mondin, C.; Carnier, P.; Bonfatti, V. Concentrations of boar taint compounds are weakly associated with sexual behavior of young boars. Animals 2022, 12, 1499. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Decision of 24 January 2014 Authorising Methods for Grading Pig Carcases in Italy [Notified Under Document C (2014) 279]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014D0038 (accessed on 12 March 2023).
- European Commission. Corrigendum to Commission Implementing Decision 2014/38/EU of 24 January 2014 Authorising Methods for Grading Pig Carcasses in Italy (Official Journal of the European Union L23 of 28 January 2014). Available online: https://www.legislation.gov.uk/eudn/2014/38/2020-01-31/data.xht?view=snippet&wrap=true (accessed on 12 March 2023).
- Bonfatti, V.; Rostellato, R.; Carnier, P. Estimation of additive and dominance genetic effects on body weight, carcass and ham quality in heavy pigs. Animals 2021, 11, 481. [Google Scholar] [CrossRef]
- Bonfatti, V.; Boschi, E.; Gallo, L.; Carnier, P. On-site visible–near IR prediction of iodine number and fatty acid composition of subcutaneous fat of raw hams as phenotypes for a heavy pig breeding program. Animal 2021, 15, 100073. [Google Scholar] [CrossRef]
- Bonfatti, V.; Carnier, P. Prediction of dry-cured ham weight loss and prospects of use in a pig breeding program. Animal 2020, 14, 1128–1138. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, D.A.L.S.; Lourenco, Y.; Masuda, I.; Aguilar, A.; Legarra, Z.V. BLUPF90 Family of Programs; The University of Georgia: Athens, GA, USA, 2018. [Google Scholar]
- Sorensen, D.A.; Andersen, S.; Gianola, D.; Korsgaard, I. Bayesian inference in the threshold models using Gibbs sampling. Genet. Sel. Evol. 1995, 27, 229–249. [Google Scholar] [CrossRef]
- Raftery, A.E.; Lewis, S.M. How Many Iterations in the Gibbs Sampler? In Bayesian Statistics 4; Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 763–773. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Baes, C.; Mattei, S.; Luther, H.; Ampuero, S.; Sidler, X.; Bee, G.; Spring, P.; Hofer, A. A performance test for boar taint compounds in live boars. Animal 2013, 7, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Wesoly, R.; Jungbluth, I.; Stefanski, V.; Weiler, U. Pre-slaughter conditions influence skatole and androstenone in adipose tissue of boars. Meat Sci. 2015, 99, 60–67. [Google Scholar] [CrossRef]
- Rostellato, R.; Bonfatti, V.; Larzul, C.; Bidanel, J.P.; Carnier, P. Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age. J. Anim. Sci. 2015, 93, 4267–4276. [Google Scholar] [CrossRef]
- Dugué, C. Relations Entre Le Risque D’odeur De Verrat Et Les Caractères D’intérêt Chez Le Verrat Et Le Porc Charcutier. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2020. Available online: https://oatao.univ-toulouse.fr/28152/1/Dugue.pdf (accessed on 12 March 2023).
- Prosciutto di Parma (Parma Ham). Protected Designation of Origin (Specifications and Dossier Pursuant to Article 4 of Council Regulation EEC no. 2081/92 dated 14 July 1992). Available online: https://www.prosciuttodiparma.com/wp-content/uploads/2019/07/Parma_Ham_Specifications_Disciplinare_Consolidato_Nov_13.pdf (accessed on 12 March 2023).
- Ministero Delle Politiche Agricole Alimentari e Forestali Proposta di Modifica del Disciplinare di Produzione Della Denominazione di Origine Protetta “Prosciutto di San Daniele” (19A07939); GU Serie Generale n. 299, 20 December 2019, pp. 106–113. Available online: https://www.gazzettaufficiale.it/eli/gu/2019/12/21/299/sg/pdf (accessed on 12 March 2023).
- Squires, E.J.; Bone, C.; Cameron, J. Pork production with entire males: Directions for control of boar taint. Animals 2020, 10, 1665. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Squires, E.J. Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal 2009, 3, 1508–1521. [Google Scholar] [CrossRef] [Green Version]
- Wesoly, R.; Weiler, U. Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2012, 2, 221–242. [Google Scholar] [CrossRef]
- Strathe, A.B.; Velander, I.H.; Mark, T.; Kadarmideen, H.N. Genetic parameters for androstenone and skatole as indicators of boar taint and their relationship to production and litter size traits in Danish Landrace. J. Anim. Sci. 2013, 91, 2587–2595. [Google Scholar] [CrossRef] [Green Version]
- Sellier, P.; Le Roy, P.; Fouilloux, M.N.; Gruand, J.; Bonneau, M. Responses to restricted index selection and genetic parameters for fat androstenone level and sexual maturity status of young boars. Livest. Prod. Sci. 2000, 63, 265–274. [Google Scholar] [CrossRef]
- Faggion, S.; Boschi, E.; Veroneze, R.; Carnier, P.; Bonfatti, V. Genomic prediction and genome-wide association study for boar taint compounds. Animals 2023, 13, 2450. [Google Scholar] [CrossRef]
- Bonfatti, V.; Cecchinato, A.; Sturaro, E.; Gallo, L.; Carnier, P. Computer image analysis traits of cross-sectioned dry-cured hams: A genetic analysis. J. Anim. Sci. 2011, 89, 2326–2335. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sánchez, J.A.; Calvo, S.; Suárez-Beloch, J.; Latorre, M.A. Effect of pig slaughter weight on chemical and sensory characteristics of teruel dry-cured ham. Ital. J. Food Sci. 2014, 26, 420–426. [Google Scholar]
- Andresen, O. Concentrations of fat and plasma 5α-androstenone and plasma testosterone in boars selected for rate of body weight gain and thickness of back fat during growth, sexual maturation and after mating. J. Reprod. Fertil. 1976, 48, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Haberland, A.M.; Luther, H.; Hofer, A.; Tholen, E.; Simianer, H.; Lind, B.; Baes, C. Efficiency of different selection strategies against boar taint in pigs. Animal 2014, 8, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Meng, F.; Cao, X.; Du, X.; Bu, G.; Kong, F.; Huang, A.; Zeng, X. Fsh promotes fat accumulation by activating pparγ signaling in surgically castrated, but not immunocastrated, male pigs. Theriogenology 2021, 160, 10–17. [Google Scholar] [CrossRef]
- Kelly, D.M.; Jones, T.H. Testosterone: A metabolic hormone in health and disease. J. Endocrinol. 2013, 217, R25–R45. [Google Scholar] [CrossRef] [Green Version]
- Eisen, E.; Legates, J. Genotype-sex interaction and the genetic correlation between the sexes for body weight in Mus musculus. Genetics 1966, 54, 611–623. [Google Scholar] [CrossRef]
- Saintilan, R.; Sellier, P.; Billon, Y.; Gilbert, H. Genetic correlations between males, females and castrates for residual feed intake, feed conversion ratio, growth rate and carcass composition traits in Large White growing pigs. J. Anim. Breed. Gen. 2012, 129, 103–106. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef]
- Mörlein, D.; Tholen, E. Fatty acid composition of subcutaneous adipose tissue from entire male pigs with extremely divergent levels of boar taint compounds—An exploratory study. Meat Sci. 2015, 99, 1–7. [Google Scholar] [CrossRef]
- Lo Fiego, D.P.; Comellini, M.; Ielo, M.C.; Ulrici, A.; Volpelli, L.A.; Tassone, F.; Costa, N. Preliminary investigation of the use of digital image analysis for raw ham evaluation. Ital. J. Anim. Sci. 2007, 6, 693–695. [Google Scholar] [CrossRef]
N | Summary Statistics | Heritability 1 | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Median | HPD 95% | ||
Purebred | |||||||
Androstenone, log(ng/g) | 1091 | 6.76 | 0.76 | 4.39 | 9.10 | 0.41 | 0.28; 0.55 |
Skatole, log(ng/g) | 1115 | 3.28 | 1.07 | −1.05 | 6.79 | 0.49 | 0.33; 0.67 |
Indole, log(ng/g) | 1115 | 2.62 | 0.92 | 0.24 | 5.25 | 0.37 | 0.23; 0.54 |
Crossbred | |||||||
Body weight at 270 days, kg | 22,097 | 170.22 | 15.71 | 99.70 | 236.40 | 0.50 | 0.46; 0.54 |
Carcass traits | |||||||
Killing out percentage, % | 21,657 | 82.85 | 1.62 | 78.00 | 87.00 | 0.29 | 0.26; 0.32 |
Backfat depth, mm | 17,651 | 27.31 | 5.38 | 10.00 | 54.00 | 0.41 | 0.37; 0.45 |
Lean meat content, % | 7653 | 50.65 | 3.67 | 38.59 | 61.82 | 0.45 | 0.39; 0.51 |
Ham fatness traits | |||||||
Marbling, score | 26,236 | 1.40 | 0.86 | 0.00 | 4.00 | 0.42 | 0.39; 0.46 |
Subcutaneous fat depth, score | 26,099 | 0.05 | 1.56 | −4.00 | 4.00 | 0.39 | 0.36; 0.43 |
Fat depth at biceps femoris muscle, mm | 23,372 | 22.61 | 7.55 | 8.00 | 52.00 | 0.39 | 0.35; 0.42 |
Fat depth at semimembranosus muscle, cm | 17,185 | 0.59 | 0.10 | 0.24 | 1.09 | 0.35 | 0.31; 0.38 |
Ham subcutaneous fat composition | |||||||
Iodine number | 23,914 | 69.01 | 3.68 | 51.40 | 79.93 | 0.43 | 0.39; 0.47 |
PUFA, % | 18,477 | 15.08 | 2.10 | 7.59 | 23.90 | 0.44 | 0.40; 0.48 |
C18:2n6, % | 18,477 | 13.00 | 1.87 | 6.43 | 20.73 | 0.44 | 0.40; 0.48 |
C18:0, % | 18,477 | 11.59 | 1.69 | 5.86 | 18.72 | 0.43 | 0.40; 0.47 |
MUFA/PUFA | 18,477 | 3.31 | 0.49 | 1.34 | 5.28 | 0.41 | 0.37; 0.45 |
Other ham quality traits | |||||||
Round shape, score | 26,238 | 1.72 | 0.87 | 0.00 | 4.00 | 0.37 | 0.34; 0.40 |
Color, score | 26,100 | −0.04 | 1.37 | −4.00 | 4.00 | 0.32 | 0.29; 0.35 |
Veining, score | 26,237 | 1.15 | 0.88 | 0.00 | 4.00 | 0.23 | 0.21; 0.26 |
Weight loss during dry-curing, % | 14,552 | 26.70 | 1.85 | 20.13 | 32.94 | 0.36 | 0.32; 0.41 |
Trait | Androstenone | Skatole | Indole | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
rg | HPD 95% | P0 | P01 | rg | HPD 95% | P0 | P01 | rg | HPD 95% | P0 | P01 | |
Purebred | ||||||||||||
Androstenone | 0.40 | 0.06; 0.66 | 0.99 | 0.95 | 0.57 | 0.28; 0.85 | 1.00 | 0.99 | ||||
Skatole | 0.85 | 0.69; 0.99 | 1.00 | 1.00 | ||||||||
Crossbred | ||||||||||||
Body weight at 270 days | −0.11 | −0.43; 0.18 | 0.72 | 0.51 | −0.07 | −0.49; 0.54 | 0.60 | 0.44 | −0.19 | −0.49; 0.66 | 0.78 | 0.65 |
Carcass traits | ||||||||||||
Killing out percentage | 0.00 | −0.39; 0.50 | 0.50 | 0.38 | −0.40 | −0.65; 0.05 | 0.95 | 0.92 | 0.21 | −0.51; 0.75 | 0.72 | 0.62 |
Backfat depth | −0.26 | −0.53; 0.26 | 0.85 | 0.80 | −0.55 | −0.84; −0.04 | 0.96 | 0.93 | −0.44 | −0.75; −0.10 | 0.99 | 0.95 |
Lean meat content | 0.06 | −0.26; 0.53 | 0.63 | 0.41 | −0.20 | −0.59; 0.35 | 0.71 | 0.65 | −0.35 | −0.63; 0.30 | 0.73 | 0.68 |
Ham fatness traits | ||||||||||||
Marbling | −0.26 | −0.50; 0.00 | 0.98 | 0.89 | 0.11 | −0.32; 0.34 | 0.71 | 0.53 | 0.04 | −0.43; 0.30 | 0.56 | 0.37 |
Subcutaneous fat depth | −0.14 | −0.48; 0.33 | 0.63 | 0.54 | 0.11 | −0.12; 0.35 | 0.82 | 0.52 | −0.17 | −0.42; 0.12 | 0.88 | 0.70 |
Fat depth at biceps femoris muscle | −0.15 | −0.43; 0.17 | 0.81 | 0.64 | 0.54 | 0.08; 0.77 | 0.99 | 0.96 | −0.07 | −0.35; 0.29 | 0.68 | 0.43 |
Fat depth at semimembranosus muscle | 0.16 | −0.15; 0.47 | 0.81 | 0.66 | 0.43 | 0.20; 0.70 | 1.00 | 0.99 | 0.05 | −0.53; 0.34 | 0.56 | 0.40 |
Ham subcutaneous fat composition | ||||||||||||
Iodine number | −0.07 | −0.38; 0.24 | 0.70 | 0.44 | −0.64 | −0.89; −0.37 | 1.00 | 1.00 | −0.54 | −0.83; −0.17 | 1.00 | 1.00 |
PUFA | −0.20 | −0.47; 0.14 | 0.90 | 0.77 | −0.33 | −0.59; 0.33 | 0.84 | 0.76 | −0.13 | −0.43; 0.39 | 0.68 | 0.55 |
C18:2n6 | −0.21 | −0.49; 0.11 | 0.91 | 0.80 | −0.32 | −0.60; 0.31 | 0.84 | 0.76 | −0.12 | −0.44; 0.38 | 0.67 | 0.54 |
C18:0 | 0.02 | −0.35; 0.39 | 0.53 | 0.36 | 0.25 | −0.24; 0.66 | 0.69 | 0.62 | 0.21 | −0.07; 0.77 | 0.89 | 0.68 |
MUFA/PUFA | 0.41 | −0.24; 0.62 | 0.82 | 0.79 | 0.50 | 0.09; 0.88 | 0.99 | 0.95 | 0.25 | −0.02; 0.87 | 0.93 | 0.77 |
Other ham quality traits | ||||||||||||
Round shape | 0.01 | −0.38; 0.52 | 0.52 | 0.35 | 0.05 | −0.20; 0.45 | 0.61 | 0.41 | 0.24 | −0.08; 0.60 | 0.87 | 0.75 |
Color | 0.16 | −0.10; 0.58 | 0.85 | 0.59 | −0.13 | −0.46; 0.28 | 0.73 | 0.58 | −0.16 | −0.57; 0.23 | 0.78 | 0.57 |
Veining | −0.08 | −0.52; 0.28 | 0.64 | 0.48 | −0.01 | −0.49; 0.33 | 0.52 | 0.32 | 0.25 | −0.08; 0.52 | 0.92 | 0.83 |
Weight loss during dry-curing | 0.01 | −0.33; 0.38 | 0.52 | 0.29 | −0.13 | −0.38; 0.33 | 0.71 | 0.56 | −0.02 | −0.38; 0.43 | 0.55 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faggion, S.; Carnier, P.; Bonfatti, V. Genetic Correlations between Boar Taint Compound Concentrations in Fat of Purebred Boars and Production and Ham Quality Traits in Crossbred Heavy Pigs. Animals 2023, 13, 2445. https://doi.org/10.3390/ani13152445
Faggion S, Carnier P, Bonfatti V. Genetic Correlations between Boar Taint Compound Concentrations in Fat of Purebred Boars and Production and Ham Quality Traits in Crossbred Heavy Pigs. Animals. 2023; 13(15):2445. https://doi.org/10.3390/ani13152445
Chicago/Turabian StyleFaggion, Sara, Paolo Carnier, and Valentina Bonfatti. 2023. "Genetic Correlations between Boar Taint Compound Concentrations in Fat of Purebred Boars and Production and Ham Quality Traits in Crossbred Heavy Pigs" Animals 13, no. 15: 2445. https://doi.org/10.3390/ani13152445
APA StyleFaggion, S., Carnier, P., & Bonfatti, V. (2023). Genetic Correlations between Boar Taint Compound Concentrations in Fat of Purebred Boars and Production and Ham Quality Traits in Crossbred Heavy Pigs. Animals, 13(15), 2445. https://doi.org/10.3390/ani13152445