In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinformatics Analysis
2.1.1. Sequence Alignment
2.1.2. Structural Analysis
2.2. Cell Lines
2.3. Reagents
2.4. Collection of Tumor-Conditioned Media (TCM) of Canine CMT-U27 Cells
2.5. Canine VEGF Quantitative Assay
2.6. VEGF Binding Assay (In Vitro Potency Assay)
2.7. TCM-Stimulated Microvascular Endothelial Cell Growth
2.8. Statistical Analysis
3. Results
3.1. In Silico Analyses Show High Degree of Human, Equine, Canine and Feline VEGF Protein Homology
3.2. Computational Analyses Predict BEV Interaction with Canine VEGF
3.3. MB02 BEV Biosimilar Is Able to Bind to Canine VEGF In Vitro
3.4. MB02 Reduced the Proliferation of Endothelial Cells Exposed to Canine Mammary Carcinoma-Conditioned Media
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salas, Y.; Marquez, A.; Diaz, D.; Romero, L. Epidemiological Study of Mammary Tumors in Female Dogs Diagnosed during the Period 2002–2012: A Growing Animal Health Problem. PLoS ONE 2015, 10, e0127381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, C.M.; Moore, A.S.; Frimberger, A.E. Surgical treatment of mammary carcinomas in dogs with or without postoperative chemotherapy. Vet. Comp. Oncol. 2016, 14, 252–262. [Google Scholar] [CrossRef]
- Hermo, G.A.; Turic, E.; Angelico, D.; Scursoni, A.M.; Gomez, D.E.; Gobello, C.; Alonso, D.F. Effect of adjuvant perioperative desmopressin in locally advanced canine mammary carcinoma and its relation to histologic grade. J. Am. Anim. Hosp. Assoc. 2011, 47, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, D.F.; Turic, E.; Garona, J. Desmopressin in canine mammary carcinoma: Comments on the importance of the administration route. Vet. Comp. Oncol. 2021, 19, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Tavares, W.L.; Lavalle, G.E.; Figueiredo, M.S.; Souza, A.G.; Bertagnolli, A.C.; Viana, F.A.; Paes, P.R.; Carneiro, R.A.; Cavalcanti, G.A.; Melo, M.M.; et al. Evaluation of adverse effects in tamoxifen exposed healthy female dogs. Acta Vet. Scand. 2010, 52, 67. [Google Scholar] [CrossRef] [Green Version]
- Valdivia, G.; Alonso-Diez, A.; Perez-Alenza, D.; Pena, L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front. Vet. Sci. 2021, 8, 623800. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [Green Version]
- Restucci, B.; Papparella, S.; Maiolino, P.; De Vico, G. Expression of vascular endothelial growth factor in canine mammary tumors. Vet. Pathol. 2002, 39, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Queiroga, F.L.; Pires, I.; Parente, M.; Gregorio, H.; Lopes, C.S. COX-2 over-expression correlates with VEGF and tumour angiogenesis in canine mammary cancer. Vet. J. 2011, 189, 77–82. [Google Scholar] [CrossRef]
- Nascimento, C.; Ferreira, F. Tumor microenvironment of human breast cancer, and feline mammary carcinoma as a potential study model. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188587. [Google Scholar] [CrossRef]
- Nascimento, C.; Gameiro, A.; Ferreira, J.; Correia, J.; Ferreira, F. Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma. Cancers 2021, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, P.; Weiglhofer, W.; Suarez, S.; Kaser-Hotz, B.; Steiner, R.; Ballmer-Hofer, K.; Jaussi, R. Vascular endothelial growth factor (VEGF) and its receptors in tumor-bearing dogs. Biol. Chem. 1999, 380, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, D.S.; Vital, A.F.; Lainetti, P.F.; Leis-Filho, A.F.; Dalmolin, F.; Elias, F.; Calazans, S.G.; Fonseca-Alves, C.E. Deregulation of VEGFR-2 and PDGFR Expression and Microvascular Density in a Triple-Negative Model of Canine Malignant Mammary Tumors with Lymph Node or Lung Metastasis. Vet. Sci. 2019, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef] [Green Version]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef] [Green Version]
- Rosen, L.S.; Jacobs, I.A.; Burkes, R.L. Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Target. Oncol. 2017, 12, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Beirao, B.C.; Raposo, T.; Jain, S.; Hupp, T.; Argyle, D.J. Challenges and opportunities for monoclonal antibody therapy in veterinary oncology. Vet. J. 2016, 218, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Buske, C.; Ogura, M.; Kwon, H.C.; Yoon, S.W. An introduction to biosimilar cancer therapeutics: Definitions, rationale for development and regulatory requirements. Future Oncol. 2017, 13, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Sinn, A.; Garcia-Alvarado, F.; Gonzalez, V.; Huerga, C.; Bullo, F. A randomized, double blind, single dose, comparative study of the pharmacokinetics, safety and immunogenicity of MB02 (bevacizumab biosimilar) and reference bevacizumab in healthy male volunteers. Br. J. Clin. Pharmacol. 2022, 88, 1063–1073. [Google Scholar] [CrossRef]
- Trukhin, D.; Poddubskaya, E.; Andric, Z.; Makharadze, T.; Bellala, R.S.; Charoentum, C.; Yanez Ruiz, E.P.; Fulop, A.; Hyder Ali, I.A.; Syrigos, K.; et al. Efficacy, Safety and Immunogenicity of MB02 (Bevacizumab Biosimilar) versus Reference Bevacizumab in Advanced Non-Small Cell Lung Cancer: A Randomized, Double-Blind, Phase III Study (STELLA). BioDrugs 2021, 35, 429–444. [Google Scholar] [CrossRef]
- Hellmen, E. Characterization of four in vitro established canine mammary carcinoma and one atypical benign mixed tumor cell lines. In Vitro Cell. Dev. Biol. 1992, 28A, 309–319. [Google Scholar] [CrossRef]
- Gonzalez, N.; Cardama, G.A.; Comin, M.J.; Segatori, V.I.; Pifano, M.; Alonso, D.F.; Gomez, D.E.; Menna, P.L. Pharmacological inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in human resistant breast cancer cells. Cell. Signal. 2017, 30, 154–161. [Google Scholar] [CrossRef]
- Gerber, H.P.; Wu, X.; Yu, L.; Wiesmann, C.; Liang, X.H.; Lee, C.V.; Fuh, G.; Olsson, C.; Damico, L.; Xie, D.; et al. Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies. Proc. Natl. Acad. Sci. USA 2007, 104, 3478–3483. [Google Scholar] [CrossRef]
- Zygmuntowicz, A.; Burmanczuk, A.; Markiewicz, W. Selected Biological Medicinal Products and Their Veterinary Use. Animals 2020, 10, 2343. [Google Scholar] [CrossRef]
- Ferrara, N.; Hillan, K.J.; Gerber, H.P.; Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 2004, 3, 391–400. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chen, H.H.; Zheng, L.L.; Sun, L.P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Cao, Y.; Langer, R.; Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug Discov. 2023, 22, 476–495. [Google Scholar] [CrossRef]
- Kelly, C.J.; Mir, F.A. Economics of biological therapies. BMJ 2009, 339, b3276. [Google Scholar] [CrossRef]
- Serna-Gallegos, T.R.; La-Fargue, C.J.; Tewari, K.S. The Ecstacy of Gold: Patent Expirations for Trastuzumab, Bevacizumab, Rituximab, and Cetuximab. Recent Pat. Biotechnol. 2018, 12, 101–112. [Google Scholar] [CrossRef]
- Lazarus, A.; Keshet, E. Vascular endothelial growth factor and vascular homeostasis. Proc. Am. Thorac. Soc. 2011, 8, 508–511. [Google Scholar] [CrossRef]
- Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 2007, 96, 1788–1795. [Google Scholar] [CrossRef]
- Ruppen, I.; Beydon, M.E.; Solis, C.; Sacristan, D.; Vandenheede, I.; Ortiz, A.; Sandra, K.; Adhikary, L. Similarity demonstrated between isolated charge variants of MB02, a biosimilar of bevacizumab, and Avastin(R) following extended physicochemical and functional characterization. Biologicals 2022, 77, 1–15. [Google Scholar] [CrossRef]
- Eto, T.; Karasuyama, Y.; Gonzalez, V.; Del Campo Garcia, A. A randomized, single-dose, pharmacokinetic equivalence study comparing MB02 (proposed biosimilar) and reference bevacizumab in healthy Japanese male volunteers. Cancer Chemother. Pharmacol. 2021, 88, 713–722. [Google Scholar] [CrossRef]
- Schwabe, C.; Cole, A.; Espigares-Correa, A.; Beydon, M.E.; Florez-Igual, A.; Queiruga-Parada, J. A randomized, double-blind, single-dose study to assess bioequivalence of MB02 biosimilar after manufacturing iteration and reference bevacizumab. Pharmacol. Res. Perspect. 2023, 11, e01070. [Google Scholar] [CrossRef]
- Muller, Y.A.; Chen, Y.; Christinger, H.W.; Li, B.; Cunningham, B.C.; Lowman, H.B.; de Vos, A.M. VEGF and the Fab fragment of a humanized neutralizing antibody: Crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. Structure 1998, 6, 1153–1167. [Google Scholar] [CrossRef] [Green Version]
- Muellerleile, L.M.; Buxbaum, B.; Nell, B.; Fux, D.A. In-vitro binding analysis of anti-human vascular endothelial growth factor antibodies bevacizumab and aflibercept with canine, feline, and equine vascular endothelial growth factor. Res. Vet. Sci. 2019, 124, 233–238. [Google Scholar] [CrossRef]
- Yu, L.; Wu, X.; Cheng, Z.; Lee, C.V.; LeCouter, J.; Campa, C.; Fuh, G.; Lowman, H.; Ferrara, N. Interaction between bevacizumab and murine VEGF-A: A reassessment. Investig. Ophthalmol. Vis. Sci. 2008, 49, 522–527. [Google Scholar] [CrossRef]
- Scharf, V.F.; Farese, J.P.; Coomer, A.R.; Milner, R.J.; Taylor, D.P.; Salute, M.E.; Chang, M.N.; Neal, D.; Siemann, D.W. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice. Am. J. Vet. Res. 2013, 74, 771–778. [Google Scholar] [CrossRef]
- Michishita, M.; Uto, T.; Nakazawa, R.; Yoshimura, H.; Ogihara, K.; Naya, Y.; Tajima, T.; Azakami, D.; Kishikawa, S.; Arai, T.; et al. Antitumor effect of bevacizumab in a xenograft model of canine hemangiopericytoma. J. Pharmacol. Sci. 2013, 121, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Ustun-Alkan, F.; Bakirel, T.; Ustuner, O.; Anlas, C.; Cinar, S.; Yildirim, F.; Gurel, A. Effects of Tyrosine Kinase Inhibitor-masitinib Mesylate on Canine Mammary Tumour Cell Lines. J. Vet. Res. 2021, 65, 351–359. [Google Scholar] [CrossRef]
- Mantovani, F.B.; Morrison, J.A.; Mutsaers, A.J. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells. BMC Vet. Res. 2016, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.; Lee, Y.F.; Ge, R. Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol. Sin. 2015, 36, 1177–1190. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, L.M.; McCandless, E.E.; Dunham, S.; Dunkle, B.; Zhu, Y.; Shelly, J.; Lightle, S.; Gonzales, A.; Bainbridge, G. Comparative functional characterization of canine IgG subclasses. Vet. Immunol. Immunopathol. 2014, 157, 31–41. [Google Scholar] [CrossRef]
Species | VEGF Concentration (ng/mL) | EC50 * (ng/mL) | Potency ** |
---|---|---|---|
Human | 50 | 20.61 | 100 |
Canine | 50 | 19.73 | 179.61 |
65 | 18.72 | 189.66 | |
80 | 21.04 | 145.84 | |
107.5 | 25.68 | 108.2 | |
110 | 22.6 | 111.88 | |
112.5 | 26.95 | 93.3 | |
117.5 | 25.62 | 97.16 | |
120 | 24.13 | 95.88 | |
130 | 25.52 | 88.51 | |
Feline | 50 | 18.04 | 117.1 |
55 | 23.78 | 96.17 | |
60 | 25.94 | 83.82 | |
65 | 24.07 | 82.8 | |
80 | 30.55 | 60.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardama, G.A.; Bucci, P.L.; Lemos, J.S.; Llavona, C.; Benavente, M.A.; Hellmén, E.; Fara, M.L.; Medrano, E.; Spitzer, E.; Demarco, I.A.; et al. In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma. Animals 2023, 13, 2507. https://doi.org/10.3390/ani13152507
Cardama GA, Bucci PL, Lemos JS, Llavona C, Benavente MA, Hellmén E, Fara ML, Medrano E, Spitzer E, Demarco IA, et al. In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma. Animals. 2023; 13(15):2507. https://doi.org/10.3390/ani13152507
Chicago/Turabian StyleCardama, Georgina A., Paula L. Bucci, Jesús S. Lemos, Candela Llavona, Micaela A. Benavente, Eva Hellmén, María Laura Fara, Eduardo Medrano, Eduardo Spitzer, Ignacio A. Demarco, and et al. 2023. "In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma" Animals 13, no. 15: 2507. https://doi.org/10.3390/ani13152507
APA StyleCardama, G. A., Bucci, P. L., Lemos, J. S., Llavona, C., Benavente, M. A., Hellmén, E., Fara, M. L., Medrano, E., Spitzer, E., Demarco, I. A., Sabella, P., Garona, J., & Alonso, D. F. (2023). In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma. Animals, 13(15), 2507. https://doi.org/10.3390/ani13152507