Methionine Supplementation Affects Fecal Bacterial Community and Production Performance in Sika Deer (Cervus nippon)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diet
2.2. Sample Collection
2.3. Determination of Apparent Nutrient Digestibility and Nutrient Content
2.4. Determination of Free Amino Acids in Rumen Fluid
2.5. Determination of Fecal Short-Chain Fatty Acids
2.6. Microbial Sequencing and Analysis
2.7. Data Analysis
3. Results
3.1. Methionine Supplementation Improves Apparent Digestibility of Nutrients
3.2. Quality of Sika Deer Antlers Is Enhanced by Methionine Supplementation
3.3. Alteration of Free Amino Acids in the Rumen Fluid of Sika Deer
3.4. Effect of Methionine Supplementation on Short-Chain Fatty Acids in the Feces of Sika Deer
3.5. Bacterial Composition of the Feces of Sika Deer and the Characteristic Bacteria of Each Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niamir-Fuller, M. Towards sustainability in the extensive and intensive livestock sectors. Rev. Sci. Tech. 2016, 35, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The roles of livestock in developing countries. Animal 2013, 7 (Suppl. S1), 3–18. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G. Improving Feed Protein Utilization Rate in Cattle through Nutritional Approaches. Curr. Protein Pept. Sci. 2019, 20, 164–171. [Google Scholar] [CrossRef]
- Huang, J.; Sun, W.-L.; Li, C.-Y.; Liu, H.-L.; Zhang, T.-T.; Bao, K.; Fan, Y.Y.; Li, G.-Y.; Wang, K.Y. Effects of DL-methionine supplement on growth performance and amino acid digestion and plasma concentrations in sika deer calves (Cervus nippon). Anim. Prod. Sci. 2016, 56, 1002. [Google Scholar] [CrossRef]
- Konieczka, P.; Tykałowski, B.; Ognik, K.; Kinsner, M.; Szkopek, D.; Wójcik, M.; Mikulski, D.; Jankowski, J. Increased arginine, lysine, and methionine levels can improve the performance, gut integrity and immune status of turkeys but the effect is interactive and depends on challenge conditions. Vet. Res. 2022, 53, 59. [Google Scholar] [CrossRef]
- Zang, Z.-J.; Tang, H.-F.; Tuo, Y.; Xing, W.-J.; Ji, S.-Y.; Gao, Y.; Deng, C.-H. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice. Asian J. Androl. 2016, 18, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, J.; Yang, X.; Huang, F. Hypoglycemic activity of CPU2206: A novel peptide from sika (Cervus nippon Temminck) antler. J. Food Biochem. 2019, 43, e13063. [Google Scholar] [CrossRef]
- Xia, P.; Liu, D.; Jiao, Y.; Wang, Z.; Chen, X.; Zheng, S.; Fang, J.; Hao, L. Health Effects of Peptides Extracted from Deer Antler. Nutrients 2022, 14, 4183. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Ding, Y.-F.; Sui, H.-J.; Liu, W.; Zhang, Z.-Q.; Li, F. Pilose antler (Cervus elaphus Linnaeus) polysaccharide and polypeptide extract inhibits bone resorption in high turnover type osteoporosis by stimulating the MAKP and MMP-9 signaling pathways. J. Ethnopharmacol. 2023, 304, 116052. [Google Scholar] [CrossRef]
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 2017, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020, 11, 5206. [Google Scholar] [CrossRef] [PubMed]
- Roswall, J.; Olsson, L.M.; Kovatcheva-Datchary, P.; Nilsson, S.; Tremaroli, V.; Simon, M.-C.; Kiilerich, P.; Akrami, R.; Krämer, M.; Uhlén, M.; et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 2021, 29, 765–776.e3. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zuo, B.; Huang, S.; Zeng, B.; Han, D.; Li, T.; Liu, T.; Wu, Z.; Wei, H.; Zhao, J.; et al. Spatial heterogeneity of bacterial colonization across different gut segments following inter-species microbiota transplantation. Microbiome 2020, 8, 161. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, X.; Zhao, D.; Xu, C.; Sun, H.; Yang, Q.; Wei, Q.; Si, H.; Wang, K.; Zhang, T. Effect of Methionine Supplementation on Serum Metabolism and the Rumen Bacterial Community of Sika Deer (Cervus nippon). Animals 2022, 12, 1950. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, L.; Zhang, P.; Zhou, Y.; Huang, X.; Yan, Q.; Tan, Z.; Tang, S.; Wan, F. Alterations in nutrient digestibility and performance of heat-stressed dairy cows by dietary L-theanine supplementation. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2022, 11, 350–358. [Google Scholar] [CrossRef]
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; DeVries, J.W.; Furda, I.; Lee, S.C. Determination of soluble dietary fiber in foods and food products: Collaborative study. J. AOAC Int. 1994, 77, 690–694. [Google Scholar] [CrossRef]
- Chang, M.; Wang, F.; Ma, F.; Jin, Y.; Sun, P. Supplementation with galacto-oligosaccharides in early life persistently facilitates the microbial colonization of the rumen and promotes growth of preweaning Holstein dairy calves. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2022, 10, 223–233. [Google Scholar] [CrossRef]
- Gong, R.Z.; Zhao, H.; Qu, D.; Wang, Y.; Zhang, L.; Liu, C.; Liu, Z.; Sun, Y. Effect of Different Processing Methods and Processed Products on Collagen Content of Cornu Cervi Pantotrichum. Food Sci. 2019, 40, 1–6. [Google Scholar]
- Gong, R.; Wang, Y.; Qi, Y.; Chen, L.; Li, S.; Sun, Y. Effects of Different Processing Methods on Water Soluble polysaccharide Contents and Monosaccharide Compositions in Cervi Cornu Pantotrichum. Chromatography 2019, 37, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, T.-T.; Kun, B.; Li, G.-Y.; Wang, K.-Y. Effect of Supplementation of Lysine and Methionine on Growth Performance, Nutrients Digestibility and Serum Biochemical Indices for Growing Sika Deer (Cervus nippon) Fed Protein Deficient Diet. Ital. J. Anim. Sci. 2015, 14, 3640. [Google Scholar] [CrossRef]
- Minas, K.; Mcewan, N.R.; Newbold, C.J.; Scott, K.P. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol. Lett. 2011, 325, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wright, A.-D.G.; Liu, H.; Bao, K.; Zhang, T.; Wang, K.; Cui, X.; Yang, F.; Zhang, Z.; Li, G. Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervus nippon) fed three different diets. Microb. Ecol. 2015, 69, 307–318. [Google Scholar] [CrossRef] [PubMed]
- McCracken, B.A.; Judkins, M.B.; Krysl, L.J.; Holcombe, D.W.; Park, K.K. Supplemental methionine and time of supplementation effects on ruminal fermentation, digesta kinetics, and in situ dry matter and neutral detergent fiber disappearance in cattle. J. Anim. Sci. 1993, 71, 1932–1939. [Google Scholar] [CrossRef]
- Mahand, C.; Shieldsr, G., Jr. Essential and nonessential amino acid composition of pigs from birth to 145 kilograms of body weight, and comparison to other studies. J. Anim. Sci. 1998, 76, 513–521. [Google Scholar] [CrossRef]
- Bergenw, G. Free amino acids in blood of ruminants—Physiological and nutritional regulation. J. Anim. Sci. 1979, 49, 1577–1589. [Google Scholar] [CrossRef]
- Dai, Z.-L.; Li, X.-L.; Xi, P.-B.; Zhang, J.; Wu, G.; Zhu, W.-Y. Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 2012, 42, 1597–1608. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Huang, H.; Qin, Z.; Liu, C.; Chen, Y. Amino Acid Configuration Affects Volatile Fatty Acid Production during Proteinaceous Waste Valorization: Chemotaxis, Quorum Sensing, and Metabolism. Environ. Sci. Technol. 2022, 56, 8702–8711. [Google Scholar] [CrossRef]
- To, V.; Masagounder, K.; Loewen, M.E. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2021, 255, 110908. [Google Scholar] [CrossRef]
- Qin, T.; Zhang, G.; Zheng, Y.; Li, S.; Yuan, Y.; Li, Q.; Hu, M.; Si, H.; Wei, G.; Gao, X.; et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science 2023, 379, 840–847. [Google Scholar] [CrossRef]
- Xiao, X.; Li, L.; Xu, S.; Mao, M.; Pan, R.; Li, Y.; Wu, J.; Huang, L.; Zheng, X. Evaluation of velvet antler total protein effect on bone marrow-derived endothelial progenitor cells. Mol. Med. Rep. 2017, 16, 3161–3168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, H.; Liu, Y.; Wu, H.; Wang, H.; Jin, S.; Lu, Y.; Chang, S.; Liu, R.; Peng, Y.; et al. Velvet antler methanol extracts (MEs) protects against oxidative stress in Caenorhabditis elegans by SKN-1. Biomed. Pharmacother. 2020, 121, 109668. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, M.; Leng, X.; Liu, M.; Liu, Y.; Hu, Y.; Zhao, D.; Zhao, Y. Antler extracts stimulate chondrocyte proliferation and possess potent anti-oxidative, anti-inflammatory, and immune-modulatory properties. In Vitro Cell Dev. Biol. Anim. 2018, 54, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Luo, J.; Wang, L.; Wang, J.; Wang, Z.; Zhang, J. Sika deer antler protein against acetaminophen-induced nephrotoxicity by activating Nrf2 and inhibition FoxO1 via PI3K/Akt signaling. Int. J. Biol. Macromol. 2019, 141, 961–987. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lin, J.N.; Sui, X.; Li, H.; Kan, M.; Wang, J.-F.; Li, J.; Zhang, Z.; Liu, X.-R.; Ming, S.-T.; et al. Antiapoptotic effects of velvet antler polypeptides on damaged neurons through the hypothalamic-pituitary-adrenal axis. J. Integr. Neurosci. 2020, 19, 469–477. [Google Scholar] [CrossRef]
- Li, L.; Ma, Y.; He, G.; Ma, S.; Wang, Y.; Sun, Y. Pilose antler extract restores type I and III collagen to accelerate wound healing. Biomed. Pharmacother. 2023, 161, 114510. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Xing, X. Comparative antler proteome of sika deer from different developmental stages. Sci. Rep. 2021, 11, 10484. [Google Scholar] [CrossRef]
- Wu, F.; Li, H.; Jin, L.; Li, X.; Ma, Y.; You, J.; Li, S.; Xu, Y. Deer antler base as a traditional Chinese medicine: A review of its traditional uses, chemistry and pharmacology. J. Ethnopharmacol. 2013, 145, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, I.L. The production of extracellular amino acids by rumen bacteria. Can. J. Microbiol. 1978, 24, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Whiting, F.M.; Stull, J.W.; Brown, W.H.; Reid, B. Free amino acid ratios in rumen fluid, blood plasma, milk, and feces during methionine and methionine hydroxy analog supplementary feeding. J. Dairy Sci. 1972, 55, 983–988. [Google Scholar] [CrossRef]
- Hassan, F.-U.; Guo, Y.; Li, M.; Tang, Z.; Peng, L.; Liang, X.; Yang, C. Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate. Microorganisms 2021, 9, 1717. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Guryn, K.; Hubert, N.; Frazier, K.; Urlass, S.; Musch, M.W.; Ojeda, P.; Pierre, J.F.; Miyoshi, J.; Sontag, T.J.; Cham, C.M.; et al. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe 2018, 23, 458–469.e5. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, J.; Zhan, R.; Zhang, L.; Wang, X. Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. J. Ethnopharmacol. 2019, 244, 112139. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Li, Z.-R.; Green, R.S.; Holzmanr, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Kogut, M.H.; Lee, A.; Santin, E. Microbiome and pathogen interaction with the immune system. Poult. Sci. 2020, 99, 1906–1913. [Google Scholar] [CrossRef]
- Lv, F.; Wang, X.; Pang, X.; Liu, G. Effects of supplementary feeding on the rumen morphology and bacterial diversity in lambs. PeerJ 2020, 8, e9353. [Google Scholar] [CrossRef]
- Han, H.; Zhou, Y.; Liu, Q.; Wang, G.; Feng, J.; Zhang, M. Effects of Ammonia on Gut Microbiota and Growth Performance of Broiler Chickens. Animals 2021, 11, 1716. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Li, F.; Li, C.; Li, G.; Zhang, D.; Song, Q.; Li, X.; Zhao, Y.; Wang, W. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Animal 2021, 15, 100161. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, H.; Chen, W.; Liu, C.; Meng, Q.; Zhou, Z. Rumen Microbiome and Metabolome of High and Low Residual Feed Intake Angus Heifers. Front. Vet. Sci. 2022, 9, 812861. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Sun, G.; Duan, J.; Luo, C.; Yangji, C.; Zhong, R.; Chen, L.; Zhu, Y.; Wangdui, B.; Zhang, H. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Front. Microbiol. 2022, 13, 969524. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, H.; Bao, C.; Liu, Y.; Dong, B.; Wang, C.; Shang, Z.; Cao, Y.; Liu, S. Effects of Xylanase in Corn- or Wheat-Based Diets on Cecal Microbiota of Broilers. Front. Microbiol. 2021, 12, 757066. [Google Scholar] [CrossRef]
Item (%) | CON | LMet | HMet | p-Value |
---|---|---|---|---|
Crude protein | 80.23 ± 1.41 | 84.54 ± 1.04 | 82.01 ± 1.24 | 0.09 |
Ether extract | 88.79 ± 1.33 | 90.80 ± 0.60 | 89.33 ± 1.72 | 0.55 |
Dry matter | 77.91 ± 1.03 | 80.68 ± 1.49 | 76.00 ± 1.52 | 0.10 |
Organic matter | 73.79 b ± 1.55 | 82.55 a ± 1.38 | 76.23 b ± 1.25 | <0.01 |
NDF | 79.02 b ± 0.58 | 82.96 a ± 0.49 | 79.42 b ± 0.94 | <0.01 |
ADF | 55.76 b ± 1.89 | 65.47 a ± 1.42 | 58.44 b ± 1.44 | <0.01 |
Item (%) | CON | LMet | HMet | p-Value |
---|---|---|---|---|
Crude protein | 62.01 c ± 0.55 | 65.05 b ± 0.66 | 69.83 a ± 0.31 | <0.01 |
Ether extract | 2.85 ± 0.09 | 3.10 ± 0.04 | 2.96 ± 0.05 | 0.15 |
Collagen protein | 21.45 b ± 0.49 | 24.89 a ± 0.61 | 25.93 a ± 0.23 | <0.01 |
Polysaccharide | 0.84 ± 0.02 | 0.85 ± 0.04 | 0.89 ± 0.03 | 0.57 |
Ca | 7.67 a ± 0.28 | 6.81 ab ± 0.30 | 6.53 b ± 0.20 | 0.03 |
P | 5.97 ± 0.06 | 6.03 ± 0.08 | 5.77 ± 0.14 | 0.21 |
Item (nmol/mL) | CON | LMet | HMet | p-Value |
---|---|---|---|---|
Phosphoserine | 1.09 ± 0.10 | 0.83 ± 0.04 | 0.84 ± 0.05 | 0.05 |
Aspartic acid | 3.22 b ± 0.15 | 5.10 a ± 0.59 | 4.38 ab ± 0.43 | 0.03 |
Threonine | 2.35 ± 0.27 | 2.15 ± 0.31 | 2.43 ± 0.26 | 0.77 |
Serine | 2.42 ± 0.11 | 2.80 ± 0.11 | 2.60 ± 0.06 | 0.06 |
Glutamate | 10.06 ± 0.51 | 10.27 ± 0.74 | 10.52 ± 0.89 | 0.85 |
α-Aminoadipate | 0.10 ± 0.005 | 0.10 ± 0.007 | 0.12 ± 0.008 | 0.32 |
Glycine | 3.12 ± 0.14 | 3.64 ± 0.73 | 3.17 ± 0.46 | 0.35 |
Alanine | 4.92 ± 0.03 | 5.38 ± 0.19 | 5.03 ± 0.18 | 0.15 |
Citrulline | 0.69 a ± 0.06 | 0.37 b ± 0.03 | 0.46 b ± 0.04 | <0.01 |
α-Aminobutyric acid | 0.18 ± 0.01 | 0.19 ± 0.01 | 0.20 ± 0.01 | 0.59 |
Valine | 2.27 b ± 0.13 | 3.00 a ± 0.22 | 2.85 ab ± 0.14 | 0.03 |
Cysteine | 0.24 b ± 0.01 | 0.37 a ± 0.02 | 0.42 a ± 0.01 | <0.01 |
Methionine | 1.05 b ± 0.06 | 1.40 a ± 0.05 | 1.52 a ± 0.04 | <0.01 |
Cystathionine | 0.24 ± 0.01 | 0.28 ± 0.03 | 0.25 ± 0.02 | 0.52 |
Isoleucine | 2.06 ± 0.10 | 2.10 ± 0.13 | 2.11 ± 0.06 | 0.95 |
Leucine | 2.32 ± 0.07 | 2.36 ± 0.09 | 2.42 ± 0.07 | 0.72 |
Tyrosine | 1.39 ± 0.10 | 1.29 ± 0.13 | 1.30 ± 0.02 | 0.75 |
Phenylalanine | 1.17 ± 0.10 | 1.24 ± 0.13 | 1.12 ± 0.05 | 0.70 |
Beta alanine | 0.94 ± 0.03 | 1.02 ± 0.05 | 0.96 ± 0.03 | 0.43 |
γ-Aminobutyric acid | 0.18 ± 0.01 | 0.16 ± 0.02 | 0.18 ± 0.01 | 0.82 |
Ethanolamine | 0.63 ± 0.03 | 0.57 ± 0.08 | 0.56 ± 0.05 | 0.71 |
NH3 | 100.66 ± 6.84 | 97.94 ± 4.21 | 91.57 ± 3.28 | 0.45 |
Hydroxylysine | 0.46 ± 0.01 | 0.45 ± 0.04 | 0.46 ± 0.02 | 0.87 |
Ornithine | 0.55 ± 0.02 | 0.54 ± 0.03 | 0.51 ± 0.01 | 0.61 |
Lysine | 5.38 ± 0.50 | 6.33 ± 0.38 | 5.99 ± 0.82 | 0.34 |
Histidine | 0.28 a ± 0.02 | 0.19 b ± 0.01 | 0.23 ab ± 0.01 | <0.01 |
Proline | 2.83 b ± 0.10 | 4.20 a ± 0.21 | 4.08 a ± 0.18 | <0.01 |
Item (μg/g) | CON | LMet | HMet | p-Value |
---|---|---|---|---|
Acetic acid | 1125.12 ± 60.53 | 1194.64 ± 60.45 | 1223.39 ± 78.63 | 0.58 |
Propionic acid | 370.50 ± 45.32 | 362.41 ± 19.77 | 396.28 ± 38.02 | 0.79 |
Isobutyric acid | 26.50 ± 2.80 | 27.45 ± 3.95 | 26.91 ± 3.10 | 0.98 |
Butyric acid | 348.83 ± 21.62 | 327.24 ± 19.32 | 325.04 ± 22.70 | 0.69 |
Isovaleric acid | 18.10 ± 3.36 | 19.12 ± 2.42 | 19.27 ± 3.70 | 0.96 |
Valeric acid | 48.42 ± 2.88 | 44.39 ± 2.52 | 48.28 ± 1.58 | 0.43 |
Hexanoic acid | 3.50 ± 0.45 | 3.22 ± 0.52 | 3.33 ± 0.41 | 0.91 |
Total SCFA | 1941.00 ± 87.44 | 1978.48 ± 79.41 | 2042.51 ± 82.78 | 0.69 |
Group | Bray Curtis | Weighted UniFrac | Binary Jaccard | Unweighted UniFrac | ||||
---|---|---|---|---|---|---|---|---|
R2 | p | R2 | p | R2 | p | R2 | p | |
CON vs. LMet | 0.145 | 0.446 | 0.130 | 0.625 | 0.192 | 0.124 | 0.192 | 0.079 |
CON vs. HMet | 0.230 | 0.056 | 0.359 | 0.033 | 0.417 | 0.030 | 0.486 | 0.024 |
LMet vs. HMet | 0.175 | 0.119 | 0.240 | 0.072 | 0.241 | 0.061 | 0.293 | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhu, Y.; Guo, X.; Wang, X.; Yuan, W.; Ma, C.; Chen, X.; Xu, C.; Wang, K. Methionine Supplementation Affects Fecal Bacterial Community and Production Performance in Sika Deer (Cervus nippon). Animals 2023, 13, 2606. https://doi.org/10.3390/ani13162606
Wu Y, Zhu Y, Guo X, Wang X, Yuan W, Ma C, Chen X, Xu C, Wang K. Methionine Supplementation Affects Fecal Bacterial Community and Production Performance in Sika Deer (Cervus nippon). Animals. 2023; 13(16):2606. https://doi.org/10.3390/ani13162606
Chicago/Turabian StyleWu, Yan, Yongzhen Zhu, Xiaolan Guo, Xiaoxu Wang, Weitao Yuan, Cuiliu Ma, Xiaoli Chen, Chao Xu, and Kaiying Wang. 2023. "Methionine Supplementation Affects Fecal Bacterial Community and Production Performance in Sika Deer (Cervus nippon)" Animals 13, no. 16: 2606. https://doi.org/10.3390/ani13162606
APA StyleWu, Y., Zhu, Y., Guo, X., Wang, X., Yuan, W., Ma, C., Chen, X., Xu, C., & Wang, K. (2023). Methionine Supplementation Affects Fecal Bacterial Community and Production Performance in Sika Deer (Cervus nippon). Animals, 13(16), 2606. https://doi.org/10.3390/ani13162606