Exploring Genetic Markers: Mitochondrial DNA and Genomic Screening for Biodiversity and Production Traits in Donkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Mitochondrial DNA as a Tool for Assessing Donkey Biodiversity
4. Transcriptomic and Whole-Genome Sequencing Analysis for the Screening of Genetic Markers Associated with Production in Donkeys
5. Candidate Gene Approach for the Screening of Genetic Markers Associated with Production in Donkeys
5.1. Genetic Markers Associated with Growth and Meat Production Phenotypic Traits
5.2. Transcriptomic and Candidate Gene Approach for Screening Genetic Markers Associated with Milk Production Traits in Donkeys
5.3. Transcriptomic and Candidate Gene Approach for the Screening of Genetic Markers Associated with Reproductive Traits in Donkeys
6. Why Have Genetic Markers Associated with Milk and Reproductive Traits Been Ignored in Donkey Research?
7. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways of Selected Genes (Table 1) Using a Database for Annotation, Visualization, and Integrated Discovery (David) Bioinformatics Resources to Find the Biological Signaling Pathway
8. Suggestions for the Improvement of Genomic Selection for Production Traits in Donkeys in the Future
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Li, H.; Guo, Y.; Huang, J.; Sun, Y.; Min, J.; Wang, J.; Fang, X.; Zhao, Z.; Wang, S.; et al. Donkey Genomes Provide New Insights into Domestication and Selection for Coat Color. Nat. Commun. 2020, 11, 6014. [Google Scholar] [CrossRef]
- Ma, X.Y.; Ning, T.; Adeola, A.C.; Li, J.; Esmailizadeh, A.; Lichoti, J.K.; Agwanda, B.R.; Isakova, J.; Aldashev, A.A.; Wu, S.F.; et al. Potential Dual Expansion of Domesticated Donkeys Revealed by Worldwide Analysis on Mitochondrial Sequences. Zool. Res. 2020, 41, 51–60. [Google Scholar] [PubMed]
- Smith, D.G.; Pearson, R.A. A Review of the Factors Affecting the Survival of Donkeys in Semi-arid Regions of Sub-Saharan Africa. Trop. Anim. Health Prod. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Kimura, B.; Marshall, F.; Beja-Pereira, A.; Mulligan, C. Donkey Domestication. Afr. Archaeol. Rev. 2013, 30, 83–95. [Google Scholar] [CrossRef]
- Colli, L.; Perrotta, G.; Negrini, R.; Bomba, L.; Bigi, D.; Zambonelli, P.; Verini Supplizi, A.; Liotta, L.; Ajmone-Marsan, P. Detecting Population Structure and Recent Demographic History in Endangered Livestock Breeds: The Case of the Italian Autochthonous Donkeys. Animals 2014, 4, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Rossel, S.; Marshall, F.; Peters, J.; Pilgram, T.; Adams, M.D.; O’Connor, D. Domestication of the Donkey: Timing, Processes, and Indicators. Proc. Natl. Acad. Sci. USA 2008, 105, 3715–3720. [Google Scholar] [CrossRef]
- Bertolini, F.; Scimone, C.; Geraci, C.; Schiavo, G.; Utzeri, V.J.; Chiofalo, V.; Fontanesi, L. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms. PLoS ONE 2015, 10, e0131925. [Google Scholar] [CrossRef]
- Han, L.; Zhu, S.; Ning, C.; Cai, D.; Wang, K.; Chen, Q.; Hu, S.; Yang, J.; Shao, J.; Zhu, H.; et al. Ancient DNA Provides New Insight into the Maternal Lineages and Domestication of Chinese Donkeys. BMC Evol. Biol. 2014, 14, 246. [Google Scholar] [CrossRef]
- Marioni, J.; Mason, C.; Mane, S.; Stephens, M.; Gilad, Y. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008, 18, 1509–1517. [Google Scholar] [CrossRef]
- Maswana, M.; Mugwabana, T.J.; Tyasi, T.L. Morphological Differentiation among Donkey Breeds: A Review. Pakistan J. Zool. 2022, 55, 413–418. [Google Scholar] [CrossRef]
- Yılmaz, O.; Boztepe, S.; Ertuğrul, M. The Domesticated Donkey: II-Types and Breeds. Can. J. Appl. Sci. 2012, 2, 267–286. [Google Scholar] [CrossRef]
- Cozzi, M.C.; Valiati, P.; Cherchi, R.; Gorla, E.; Prinsen, R.T.M.M.; Longeri, M.; Bagnato, A.; Strillacci, M.G. Mitochondrial DNA Genetic Diversity in Six Italian Donkey Breeds (Equus asinus). Mitochondrial DNA A DNA Mapp. Seq. Anal. 2018, 29, 409–418. [Google Scholar]
- Cecchi, F.; Ciampolini, R.; Ciani, E.; Matteoli, B.; Mazzanti, E.; Tancredi, M.; Presciuttini, S. Demographic Genetics of the Endangered Amiata Donkey Breed. Ital. J. Anim. Sci. 2006, 5, 387–391. [Google Scholar] [CrossRef]
- Aranguren-Mendez, J.; Beja-Pereira, A.; Avellanet, R.; Dzama, K.; Jordana, J. Mitochondrial DNA Variation and Genetic Relationships in Spanish Donkey Breeds (Equus asinus). J. Anim. Breed. Genet. 2004, 121, 319–330. [Google Scholar] [CrossRef]
- Aranguren-Méndez, J.; Jordana, J.; Gomez, M. Genetic Diversity in Spanish Donkey Breeds Using Microsatellite DNA Markers. Genet. Sel. Evol. 2001, 33, 433. [Google Scholar] [CrossRef]
- Cinar Kul, B.; Bilgen, N.; Akyuz, B.; Ertugrul, O. Molecular Phylogeny of Anatolian and Cypriot Donkey Populations Based on Mitochondrial DNA and Y-Chromosomal STRs. Animals 2016, 6, 143–149. [Google Scholar]
- Navas, F.J.; Jordana, J.; León, J.M.; Barba, C.; Delgado, J.V. A Model to Infer the Demographic Structure Evolution of Endangered Donkey Populations. Animals 2017, 11, 2129–2138. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, G.; Preick, M.; Hu, S.; Deng, T.; Taron, U.H.; Barlow, A.; Hu, J.; Xiao, B.; Sun, G.; et al. Ancient Mitogenomes Provide New Insights into the Origin and Early Introduction of Chinese Domestic Donkeys. Front. Genet. 2021, 12, 759831. [Google Scholar] [CrossRef]
- Xia, J.; Chang, L.; Xu, D.; Jia, Y.; Ding, Y.; Cao, C.; Geng, Z.; Jin, S. Next-Generation Sequencing of the Complete Huaibei Grey Donkey Mitogenome and Mitogenomic Phylogeny of the Equidae Family. Animals 2023, 13, 531. [Google Scholar] [CrossRef]
- Beja-Pereira, A.; England, P.; Ferrand, N.; Jordan, S.; Bakhiet, A.O.; Abdalla, M.; Mashkour, M.; Jordana, J.; Taberlet, P.; Luikart, G. African Origins of the Domestic Donkey. Science 2004, 304, 1781. [Google Scholar] [CrossRef]
- Kimura, B.; Marshall, F.B.; Chen, S.; Rosenbom, S.; Moehlman, P.D.; Tuross, N.; Sabin, R.C.; Peters, J.; Barich, B.; Yohannes, H.; et al. Ancient DNA from Nubian and Somali Wild Ass Provides Insights into Donkey Ancestry and Domestication. Proc. R. Soc. B Biol. Sci. 2010, 278, 50–57. [Google Scholar] [CrossRef]
- Ivankovic, A.; Kavar, T.; Caput, P.; Mioc, B.; Pavic, V.; Dovc, P. Genetic Diversity of Three Donkey Populations in the Croatian Coastal Region. Anim. Genet. 2002, 33, 169–177. [Google Scholar] [CrossRef]
- Kefena, E.; Dessie, T.; Tegegne, A.; Beja-Pereira, A.; Yusuf Kurtu, M.; Rosenbom, S.; Han, J.L. Genetic Diversity and Matrilineal Genetic Signature of Native Ethiopian Donkeys (Equus asinus) Inferred from Mitochondrial DNA Sequence Polymorphism. Livest. Sci. 2014, 167, 73–79. [Google Scholar] [CrossRef]
- Bordonaro, S.; Guastella, A.M.; Criscione, A.; Zuccaro, A.; Marletta, D. Genetic Diversity and Variability in Endangered Pantesco and Two Other Sicilian Donkey Breeds Assessed by Microsatellite Markers. Animals 2012, 2, 513–528. [Google Scholar] [CrossRef]
- Hassan, Z.M.; Manyelo, T.G.; Nemukondeni, N.; Sebola, A.N.; Selaledi, L.; Mabelebele, M. The Possibility of Including Donkey Meat and Milk in the Food Chain: A Southern African Scenario. Animals 2022, 12, 1073. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and Nutraceutical Quality of Donkey Milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Aspri, M.; Economou, N.; Papademas, P. Donkey Milk: An Overview on Functionality, Technology, and Future Prospects. Foods 2017, 6, 55. [Google Scholar] [CrossRef]
- Brumini, D.; Bø Furlund, C.; Comi, I.; Devold, T.G.; Marletta, D.; Vegarud, G.E. Antiviral Activity of Donkey Milk Protein Fractions on Echovirus Type 5. Int. J. Dairy Technol. 2013, 66, 109–111. [Google Scholar] [CrossRef]
- Cavallarin, L.; Giribaldi, M.; Soto-Del Rio, M.; Valle, E.; Barbarino, G. A survey on the milk chemical and microbiological quality in dairy donkey farms located in North Western Italy. Food Control 2015, 50, 230–235. [Google Scholar] [CrossRef]
- Mecocci, S.; Pietrucci, D.; Milanesi, M.; Pascucci, L.; Filippi, S.; Rosato, V.; Chillemi, G.; Capomaccio, S.; Cappelli, K. Transcriptomic Characterization of Cow, Donkey, and Goat Milk Extracellular Vesicles Reveals Their Anti-Inflammatory and Immunomodulatory Potential. Int. J. Mol. Sci. 2021, 22, 12759. [Google Scholar] [CrossRef] [PubMed]
- Tidona, F.; Sekse, C.; Criscione, A.; Jacobsen, M.; Bordonaro, S.; Marletta, D.; Vegarud, G.E. Antimicrobial Effect of Donkeys’ Milk Digested In Vitro with Human Gastrointestinal Enzymes. Int. Dairy J. 2011, 21, 158–165. [Google Scholar] [CrossRef]
- Chai, W.; Qu, H.; Ma, Q.; Zhu, M.; Li, M.; Zhan, Y.; Liu, Z.; Xu, J.; Yao, H.; Li, Z.; et al. RNA-seq Analysis Identifies Differentially Expressed Genes in Different Types of Donkey Skeletal Muscles. Animals 2022, 12, 1075. [Google Scholar] [CrossRef]
- Chai, W.; Xu, J.; Qu, H.; Ma, Q.; Zhu, M.; Li, M.; Zhan, Y.; Wang, T.; Gao, J.; Yao, H.; et al. Differential Proteomic Analysis to Identify Potential Biomarkers Associated with Quality Traits of Dezhou Donkey Meat Using a Data-Independent Acquisition (DIA) Strategy. Foods 2022, 11, 113792. [Google Scholar] [CrossRef]
- He, H.Y.; Liu, L.L.; Chen, B.; Xiao, H.X.; Liu, W.J. Study on lactation performance and development of KASP marker for milk traits in Xinjiang donkey (Equus asinus). Anim. Biotechnol. 2022, 23, 1–2. [Google Scholar] [CrossRef]
- Li, W.; Qiu, L.; Guan, J.; Sun, Y.; Zhao, J.; Du, M. Comparative Transcriptome Analysis of Longissimus Dorsi Tissues with Different Intramuscular Fat Contents from Guangling Donkeys. BMC Genom. 2022, 23, 1–3. [Google Scholar] [CrossRef]
- Özdil, F. The Genetic Characterization of DGAT1 Gene in Donkey Populations Reared in the Thrace Region of Turkey. J. Agric. Sci. 2020, 26, 8–11. [Google Scholar] [CrossRef]
- Özdil, F.; Bulut, H.; Işık, R. Genetic Diversity of κ-Casein (CSN3) and Lactoferrin (LTF) Genes in the Endangered Turkish Donkey (Equus asinus) Populations. Arch. Anim. Breed. 2019, 62, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Zhou, F.; Xiao, H.; Sha, T.; Wu, S.F.; Zhang, Y.P. Mitochondrial DNA diversity and population structure of four Chinese donkey breeds. Animal Genet. 2006, 37, 427–439. [Google Scholar] [CrossRef]
- Rizzi, R.; Tullo, E.; Cito, A.M.; Caroli, A.; Pieragostini, E. Monitoring of Genetic Diversity in the Endangered Martina Franca Donkey Population. J. Anim. Sci. 2011, 89, 1304–1311. [Google Scholar] [CrossRef]
- Sun, W.; Yang, B.; Liang, C. Phylogenetic Relationship and Genetic Diversity of Chinese Four Domestic Donkeys Using mtDNA D-Loop. China Herbiv. 2007, 27, 7–10. [Google Scholar]
- Ivanković, A.; Bittante, G.; Šubara, G.; Šuran, E.; Ivkić, Z.; Pećina, M.; Konjačić, M.; Kos, I.; Kelava Ugarković, N.; Ramljak, J. Genetic and Population Structure of Croatian Local Donkey Breeds. Diversity 2022, 14, 322. [Google Scholar] [CrossRef]
- Alves, J.S.; da Silva Anjos, M.; Bastos, M.S.; de Oliveira, L.S.; Oliveira, I.P.; Pinto, L.F.; de Oliveira, C.A.; Costa, R.B.; de Camargo, G.M. Variability Analyses of the Maternal Lineage of Horses and Donkeys. Gene 2021, 769, 145231. [Google Scholar] [CrossRef]
- Shen, J.; Yu, J.; Dai, X.; Li, M.; Wang, G.; Chen, N.; Chen, H.; Lei, C.; Dang, R. Genomic analyses reveal distinct genetic architectures and selective pressures in Chinese donkeys. J. Genet. Genom. 2021, 48, 737–745. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Q.; Yang, C.; Wang, X.; Tian, F.; Wang, Y.; Ma, Y.; Ju, Z.; Huang, J.; Zhou, X.; et al. Characterization of complete mitochondrial genome of Dezhou donkey (Equus asinus) and evolutionary analysis. Curr. Genet. 2016, 62, 383–390. [Google Scholar] [CrossRef]
- Renaud, G.; Petersen, B.; Seguin-Orlando, A.; Bertelsen, M.F.; Waller, A.; Newton, R.; Paillot, R.; Bryant, N.; Vaudin, M.; Librado, P.; et al. Improved de novo Genomic Assembly for the Domestic Donkey. Sci. Adv. 2018, 4, eaaq0392. [Google Scholar] [CrossRef] [PubMed]
- Todd, E.T.; Tonasso-Calvière, L.; Chauvey, L.; Schiavinato, S.; Fages, A.; Seguin-Orlando, A.; Clavel, P.; Khan, N.; Pérez Pardal, L.; Patterson Rosa, L.; et al. The Genomic History and Global Expansion of Domestic Donkeys. Science 2022, 377, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Mazzatenta, A.; Vignoli, M.; Caputo, M.; Vignola, G.; Tamburro, R.; De Sanctis, F.; Roig, J.M.; Bucci, R.; Robbe, D.; Carluccio, A. Maternal Phylogenetic Relationships and Genetic Variation among Rare, Phenotypically Similar Donkey Breeds. Genes 2021, 12, 1109. [Google Scholar] [CrossRef] [PubMed]
- Sica, M.; Aceto, S.; Genovese, A.; Gaudio, L. Analysis of five ancient Equine skeletons by mitochondrial DNA sequencing. Anc. Biomol. 2002, 4, 179–184. [Google Scholar] [CrossRef]
- Pérez-Pardal, L.; Grizelj, J.; Traoré, A.; Cubric-Curik, V.; Arsenos, G.; Dovenski, T.; Marković, B.; Fernández, I.; Cuervo, M.; Álvarez, I.; et al. Lack of Mitochondrial DNA Structure in Balkan Donkey Is Consistent with a Quick Spread of the Species after Domestication. Anim. Genet. 2014, 45, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Özkan Ünal, E.; Özdil, F.; Kaplan, S.; Gürcan, E.K.; Genç, S.; Arat, S.; Soysal, M.I. Phylogenetic Relationships of Turkish Indigenous Donkey Populations Determined by Mitochondrial DNA D-Loop Region. Animals 2020, 10, 1970. [Google Scholar] [CrossRef]
- Lei, C.Z.; Chen, H.; Yang, G.S.; Sun, W.B.; Lei, X.Q.; Ge, Q.L.; Wang, Z.F.; Lu, N.; Gao, X.; Hou, W.T. Study on Mitochondrial DNA D-Loop Polymorphism in Chinese Donkeys. Yi Chuan Xue Bao 2005, 32, 481–486. [Google Scholar] [PubMed]
- Lu, C.; Xie, W.; Su, R.; Ge, Q.; Chen, H.; Shen, S.; Lei, C. African Origin of Chinese Domestic Donkeys. Hereditas 2008, 30, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Bao, P.; Pei, J.; Ding, X.; Liang, C.; Yan, P.; Lu, D. Complete Mitochondrial Genome of Qingyang Donkey (Equus asinus). Conserv. Genet. Resour. 2017, 9, 269–271. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Manglai, D.; Min, L.; Pan, Q. Maternal Genetic Diversity and Population Structure of Four Chinese Donkey Breeds. Livestock Science. 2010, 131, 272–280. [Google Scholar] [CrossRef]
- Chen, J.; Song, Z.; Rong, M.; Min, L.; Sun, Y. Association Analysis between Cytb Polymorphism and Growth Traits in Three Chinese Donkey Breeds. Livest. Sci. 2009, 126, 306–309. [Google Scholar] [CrossRef]
- Earnist, S.; Nawaz, S.; Ullah, I.; Bhinder, M.A.; Imran, M.; Rasheed, M.A.; Shehzad, W.; Zahoor, M.Y. Mitochondrial DNA Diversity and Maternal Origins of Pakistani Donkey. Braz. J. Biol. 2022, 84, e256942. [Google Scholar] [CrossRef] [PubMed]
- Unnati, A.B.; Sonali, V.N.; Umesh Goutam, R.A.; Pal, Y.; Kumar, J.; Giri, S.K.; Tripathi, B.N. Mitochondrial DNA Variation and Genetic Relationships in Indian Halari Donkey Breed using D-Loop Region. Indian J. Anim. Res. 2019, 1, 5. [Google Scholar]
- Xia, X.; Yu, J.; Zhao, X.; Yao, Y.; Zeng, L.; Ahmed, Z.; Shen, S.; Dang, R.; Lei, C. Genetic Diversity and Maternal Origin of Northeast African and South American Donkey Populations. Anim. Genet. 2019, 50, 266–270. [Google Scholar] [CrossRef]
- Stanisic, L.J.; Aleksic, J.M.; Dimitrijevic, V.; Simeunovic, P.; Glavinic, U.; Stevanovic, J.; Stanimirovic, Z. New insights into the origin and the genetic status of the Balkan donkey from Serbia. Anim. Genet. 2017, 48, 580–590. [Google Scholar] [CrossRef]
- Rosenbom, S.; Costa, V.; Al-Araimi, N.; Kefena, E.; Abdel-Moneim, A.S.; Abdalla, M.A.; Bakhiet, A.; Beja-Pereira, A. Genetic Diversity of Donkey Populations from the Putative Centers of Domestication. Anim. Genet. 2015, 46, 30–36. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Cánovas, A.; Rincón, G.; Medrano, J.F. RNA-Sequencing: A Tool to Explore New Frontiers in Animal Genetics. Livest. Sci. 2014, 166, 206–216. [Google Scholar] [CrossRef]
- Ayuso, M.; Fernandez, A.; Nunez, Y.; Benitez, R.; Isabel, B.; Fernandez, A.I.; Rey, A.I.; Gonzalez-Bulnes, A.; Medrano, J.F.; Canovas, A.; et al. Developmental Stage, Muscle and Genetic Type Modify Muscle Transcriptome in Pigs: Effects on Gene Expression and Regulatory Factors Involved in Growth and Metabolism. PLoS ONE 2016, 11, e0167858. [Google Scholar] [CrossRef] [PubMed]
- Delseny, M.; Han, B.; Hsing, Y.I. High Throughput DNA Sequencing: The New Sequencing Revolution. Plant Sci. 2010, 179, 407–422. [Google Scholar] [CrossRef]
- Cánovas, A.; Rincón, G.; Islas-Trejo, A.; Jimenez-Flores, R.; Laubscher, A.; Medrano, J.F. RNA Sequencing to Study Gene Expression and Single Nucleotide Polymorphism Variation Associated with Citrate Content in Cow Milk. J. Dairy Sci. 2013, 96, 2637–2648. [Google Scholar]
- Cánovas, A.; Rincón, G.; Bevilacqua, C.; Islas-Trejo, A.; Brenaut, P.; Hovey, R.C.; Boutinaud, M.; Morgenthaler, C.; VanKlompenberg, M.K.; Martin, P.; et al. Comparison of Five Different RNA Sources to Examine the Lactating Bovine Mammary Gland Transcriptome Using RNA-Sequencing. Animals 2014, 4, 463–476. [Google Scholar] [CrossRef]
- Li, B.; Feng, C.; Zhu, S.; Zhang, J.; Irwin, D.M.; Zhang, X.; Wang, Z.; Zhang, S. Identification of Candidate Circular RNAs Underlying Intramuscular Fat Content in the Donkey. Front. Genet. 2020, 11, 587559. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, M.; Chai, W.; Wang, Y.; Song, Y.; Liu, B.; Cai, C.; Song, Y.; Sun, X.; Xue, P.; et al. Determination of the Heterogeneity of Intramuscular Fat and Visceral Adipose Tissue from Dezhou Donkey by Lipidomics and Transcriptomics Profiling. Front. Nutr. 2021, 8, 746684. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Q.; Shi, X.; Yuan, W.; Liu, G.; Wang, C. Comparative Transcriptome Analysis of Slow-Twitch and Fast-Twitch Muscles in Dezhou Donkeys. Genes 2022, 13, 1610. [Google Scholar] [CrossRef]
- Yu, J.; Yang, G.; Li, S.; Li, M.; Ji, C.; Liu, G.; Wang, Y.; Chen, N.; Lei, C.; Dang, R. Identification of Dezhou Donkey Muscle Development-Related Genes and Long Non-Coding RNA Based on Differential Expression Analysis. Anim. Biotechnol. 2022, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, F.; Pei, H.; Li, M.; Bai, F.; Lei, C.; Dang, R. Genome-Wide Analysis Reveals Selection Signatures for Body Size and Drought Adaptation in Liangzhou Donkey. Genomics 2022, 114, 110476. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Li, N.; Chang, S.; Dai, S.; Guo, Y.; Wu, X.; Cheng, Y.; Zeng, S. Genome-wide association study to identify SNPs and candidate genes associated with body size traits in donkeys. Front. Genet. 2023, 14, 298. [Google Scholar] [CrossRef]
- Tan, X.; He, Y.; Qin, Y.; Yan, Z.; Chen, J.; Zhao, R.; Zhou, S.; Irwin, D.M.; Li, B.; Zhang, S. Comparative analysis of differentially abundant proteins between high and low intramuscular fat content groups in donkeys. Front. Vet. Sci. 2022, 9, 951168. [Google Scholar] [CrossRef]
- David, S. A Current Guide to Candidate Gene Association Studies. Trends 2021, 37, 1056–1059. [Google Scholar] [CrossRef]
- Zhu, M.; Zhao, S. Candidate Gene Identification Approach: Progress and Challenges. Int. J. Biol. Sci. 2007, 3, 420. [Google Scholar] [CrossRef]
- Ma, Y.; Khan, M.Z.; Xiao, J.; Alugongo, G.M.; Chen, X.; Chen, T.; Liu, S.; He, Z.; Wang, J.; Shah, M.K.; et al. Genetic Markers Associated with Milk Production Traits in Dairy Cattle. Agriculture 2021, 11, 1018. [Google Scholar] [CrossRef]
- Zamorano-Algandar, R.; Medrano, J.F.; Thomas, M.G.; Enns, R.M.; Speidel, S.E.; Sánchez-Castro, M.A.; Luna-Nevárez, G.; Leyva-Corona, J.C.; Luna-Nevárez, P. Genetic Markers Associated with Milk Production and Thermotolerance in Holstein Dairy Cows Managed in a Heat-Stressed Environment. Biology 2023, 12, 679. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Fan, Y.; Wang, G.; Lai, Z.; Gao, Y.; Wu, F.; Lei, C.; Dang, R. Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals 2020, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Li, S.; Wu, F.; Zhou, Z.; Gao, Y.; Yu, J.; Lei, C.; Dang, R. Genotypes and haplotype combination of ACSL3 gene sequence variants is associated with growth traits in Dezhou donkey. Gene 2020, 743, 144600. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Wu, F.; Zhou, Z.; Li, M.; Gao, Y.; Yin, G.; Yu, J.; Lei, C.; Dang, R. Expression Profiles and Polymorphic Identification of the ACSL1 Gene and Their Association with Body Size Traits in Dezhou Donkeys. Arch. Anim. Breed. 2020, 63, 377. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Li, M.; An, X.; Bai, F.; Wang, F.; Yu, J.; Lei, C.; Dang, R. Association Analysis of IGF2 Gene Polymorphisms with Growth Traits of Dezhou Donkey. Animals 2021, 11, 2173. [Google Scholar] [CrossRef]
- Lai, Z.; Wu, F.; Li, M.; Bai, F.; Gao, Y.; Yu, J.; Li, H.; Lei, C.; Dang, R. Tissue Expression Profile, Polymorphism of IGF1 Gene and Its Effect on Body Size Traits of Dezhou Donkey. Gene 2021, 766, 145118. [Google Scholar] [CrossRef]
- Fang, X.; Lai, Z.; Liu, J.; Zhang, C.; Li, S.; Wu, F.; Zhou, Z.; Lei, C.; Dang, R. A Novel 13 bp Deletion within the NR6A1 Gene Is Significantly Associated with Growth Traits in Donkeys. Animals 2019, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gao, Q.; Wang, T.; Chai, W.; Zhan, Y.; Akhtar, F.; Zhang, Z.; Li, Y.; Shi, X.; Wang, C. Multi-Thoracolumbar Variations and NR6A1 Gene Polymorphisms Potentially Associated with Body Size and Carcass Traits of Dezhou Donkey. Animals 2022, 12, 1349. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.H.; Han, H.Y.; Zhang, X.; Ting, S.U.; Lan, X.Y.; Hong, C.H.; Lei, C.Z.; Dang, R.H. The Genetic Diversity Analysis in the Donkey Myostatin Gene. J. Integr. Agric. 2017, 16, 656–663. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Shi, X.; Wang, X.; Ren, W.; Huang, B.; Wang, C. Identification of LTBP2 Gene Polymorphisms and Their Association with Thoracolumbar Vertebrae Number, Body Size and Carcass Traits in Dezhou Donkey. Front. Genet. 2022, 13, 969959. [Google Scholar] [CrossRef]
- Wang, F.; Wang, G.; Dalielihan, B.; Wang, Z.; Chang, T.; Yang, G.; Lei, C.; Dang, R. A Novel 31 bp Deletion within the CDKL5 Gene is Significantly Associated with Growth Traits in Dezhou Donkey. Animals 2021, 17, 503–507. [Google Scholar]
- Wang, G.; Li, M.; Zhou, J.; An, X.; Bai, F.; Gao, Y.; Yu, J.; Li, H.; Lei, C.; Dang, R. A Novel A > G Polymorphism in the Intron 2 of TBX3 Gene is Significantly Associated with Body Size in Donkeys. Gene 2021, 785, 145602. [Google Scholar] [CrossRef]
- Wang, T.; Shi, X.; Liu, Z.; Ren, W.; Wang, X.; Huang, B.; Kou, X.; Liang, H.; Wang, C.; Chai, W. A Novel A > G Polymorphism in the Intron 1 of LCORL Gene Is Significantly Associated with Hide Weight and Body Size in Dezhou Donkey. Animals 2022, 12, 2581. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Liu, Z.; Shi, X.; Ren, W.; Huang, B.; Liang, H.; Wang, C.; Chai, W. Genotypes and Haplotype Combination of DCAF7 Gene Sequence Variants Are Associated with Number of Thoracolumbar Vertebrae and Carcass Traits in Dezhou Donkey. J. Appl. Anim. Res. 2023, 51, 31–39. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Z.; Wang, X.; Li, Y.; Akhtar, F.; Li, M.; Zhang, Z.; Zhan, Y.; Shi, X.; Ren, W.; et al. Polymorphism Detection of PRKG2 Gene and Its Association with the Number of Thoracolumbar Vertebrae and Carcass Traits in Dezhou Donkey. BMC Genom. Data 2023, 24, 2. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Wang, T.; Ren, W.; Huang, B.; Wang, X.; Liu, Z.; Liang, H.; Kou, X.; Chen, Y.; et al. Association of HOXC8 Genetic Polymorphisms with Multi-Vertebral Number and Carcass Weight in Dezhou Donkey. Genes 2022, 13, 2175. [Google Scholar] [CrossRef]
- Wang, M.; Li, H.; Zhang, X.; Yang, L.; Liu, Y.; Liu, S.; Sun, Y.; Zhao, C. An Analysis of Skin Thickness in the Dezhou Donkey Population and Identification of Candidate Genes by RNA-Seq. Anim. Genet. 2022, 53, 368–379. [Google Scholar] [CrossRef]
- Shi, T.; Hu, W.; Hou, H.; Zhao, Z.; Shang, M.; Zhang, L. Identification and comparative analysis of long non-coding RNA in the skeletal muscle of two Dezhou donkey strains. Genes 2020, 11, 508. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Li, H.; Yang, L.; Zhang, X.; Shi, T.; Wang, X.; Zhao, Z.; Zhang, L. Association between NCAPG-DCAF16 region polymorphisms and growth traits in Dezhou donkeys. Acta Vet. Zootech. Sin. 2019, 50, 302–313. [Google Scholar]
- Dong, H.; Dong, Z.; Wang, F.; Wang, G.; Luo, X.; Lei, C.; Chen, J. Whole Genome Sequencing Provides New Insights Into the Genetic Diversity and Coat Color of Asiatic Wild Ass and Its Hybrids. Front. Genet. 2022, 12, 1197. [Google Scholar] [CrossRef]
- Işık, R.; Özdil, F. Determination of DGAT1 K232A polymorphism in donkey populations reared in Thrace Region of Turkey by DNA sequencing. J. Equine Vet. Sci. 2019, 73, 48–50. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Annunziata, A.L.; Rando, A.; Chianese, L.; Marletta, D.; Iannolino, G.; Nicodemo, D.; Berardino, D.D.; Ramunno, L. Identification and Characterization of the Donkey CSN1S2 I and II cDNAs. Ital. J. Anim. Sci. 2010, 9, e40. [Google Scholar]
- Işık, R.; Özdil, F. Leptin receptor gene polymorphisms in some Turkish donkey populations. J. Equine Vet. Sci. 2020, 84, 102823. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Gai, Y.; Liao, Q.; Zhang, L.; Li, Z.; Li, B.; Bai, M.; Li, N.; Deng, L. An Integrated Analysis of Lactation-Related miRNA and mRNA Expression Profiles in Donkey Mammary Glands. Genes 2022, 13, 1637. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, X.; Yan, J.; Guo, J.; Zhang, F.; Zhu, K.; Liu, S.; Sun, Y.; Shen, W.; Wang, J. Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey. Genes 2022, 13, 2339. [Google Scholar] [CrossRef]
- Tian, F.; Wang, J.; Li, Y.; Yang, C.; Zhang, R.; Wang, X.; Ju, Z.; Jiang, Q.; Huang, J.; Wang, C.; et al. Integrated analysis of mRNA and miRNA in testis and cauda epididymidis reveals candidate molecular markers associated with reproduction in Dezhou donkey. Livest. Sci. 2020, 234, 103885. [Google Scholar] [CrossRef]
- Zhang, F.L.; Zhang, S.E.; Sun, Y.J.; Wang, J.J.; Shen, W. Comparative Transcriptomics Uncover the Uniqueness of Oocyte Development in the Donkey. Front. Genet. 2022, 13, 85. [Google Scholar] [CrossRef]
- Li, Z.; Song, X.; Yin, S.; Yan, J.; Lv, P.; Shan, H.; Cui, K.; Liu, H.; Liu, Q. Single-Cell RNA-seq Revealed the Gene Expression Pattern During the In Vitro Maturation of Donkey Oocytes. Genes 2021, 12, 1640. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Li, Y.; Akhtar, F.; Wang, C.; Zhang, Q. Identification of Circular RNAs of Testis and Caput Epididymis and Prediction of Their Potential Functional Roles in Donkeys. Genes 2023, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocol 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; Van Broeckhoven, C. Newest Methods for Detecting Structural Variations. Trends 2019, 37, 973–982. [Google Scholar] [CrossRef]
Mitochondrial DNA | Major Findings | Breed | Country | Authors |
---|---|---|---|---|
MtDNA D-loop |
| Horses (Crioulo, Mangalarga, Mangalarga Marchador, Pantaneiro, Campolina, Piquira, Campeiro, Brazilian Sport Horse and Brazilian Pony) and Brazilian Donkey | Brazil | [42] |
Mitochondrial Cytochrome b gene (cytb) |
| Luhua, Guanzhong, Yunnan, and Qingyang | China | [38] |
Non-SMC condensin I complex subunit G (NCAPG) and ligand-dependent nuclear receptor corepressor-like (LCORL), Protein tyrosine phosphatase, receptor-type N2 (PTPRN2) |
| 39 North China Plain donkeys (Guangzhong, Taihang, Dezhou, Huaibeihui, Biyang, and Qingyang), 13 Loess Plateau donkeys (Gunsha and Jiami), and 26 Southwest China plateau donkeys (Qinghai, Guoluo, Xinjiang, and Xizang) | [43] | |
mtDNA Cytb gene and 12S rRNA+16S rRNA+13 protein-coding gene |
| Dezhou and Yunnan donkey | [44] | |
MtDNA D-loop |
| Croatian donkeys (Istrian, North Adriatic and Littoral-Dinaric) | Croatia | [22] |
Thirteen microsatellite loci (AHT4, HMS2, HMS7, TKY297, TKY343, ABS23, HMS3, HTG10, TKY312, HMS18, HMS6, HTG7, TKY337) |
| Croatian donkeys (Istrian, North Adriatic, and Littoral-Dinaric) | [41] | |
MGAT4C, NTS, POLR3B, TCP11L2, and TMEM263, KITLG |
| Somali wild ass (E. africanus somaliensis), an Onager (E. hemionus onager), and a Tibetan Kiang (E. kiang) | Denmark | [45] |
MtDNA D-loop |
| Ethiopian donkey | Ethiopia | [23] |
MtDNA D-loop |
| Poitevin | France | [46] |
MtDNA D-loop |
| Italian donkey (Siciliano and Sardo-Asinar) | Italy | [12] |
MtDNA D-loop |
| Italian donkey (Siciliano and Sardo-Asinar) | [47] | |
MtDNA D-loop |
| Italian donkey (Siciliano and Sardo-Asinar) | [48] | |
MtDNA D-loop |
| Balkan donkey | Spain | [49] |
MtDNA D-loop |
| Turkish indigenous donkey | Turkey | [50] |
Genes/miRNAs/LnRNA/Protein | SNP | Associated Trait | Breed | Reference |
---|---|---|---|---|
PRKG2 | g.162153251G>A g.162156524C>T g.162158453C>T g.162163775T>G | Carcass weight | Dezhou donkeys | [90] |
g.162166224G>A g.162166654T>A g.162167165C>A g.162167314A>C g.162172653G>C | Thoracic vertebrae | |||
g.162140112A>G | The number and the length of lumbar vertebrae | |||
g.162163775T>G | The total number of thoracolumbar vertebrae | |||
LTBP2 | c.1381+768T>G c.1381+763G>T | Lumbar vertebrae number | [85] | |
c.1003+704C>T c.1003+651C>T c.1003+626A>G c.812+22526T>G | Chest circumference and carcass weight | |||
NR6A1 | g.18093100G>T g.18094587G>T g.18106043G>T g.18108764G>T g.18110615T>G g.18112000C>T g.18114954T>G | Thoracolumbar vertebrae, body size, and carcass traits | [83] | |
g.18114954T>G | Lumbar vertebrae number, the total number of thoracolumbar, and carcass weight | |||
HOXC8 | g.15179224C>T | Carcass weight and lumbar vertebrae length | [91] | |
g.15179674G>A | The number of lumbar vertebrae | |||
IGF1 | Growth traits (chest circumference and chest depth) | [81] | ||
IGF2 | g.281766G>A g.291322C>T | Body length and rump height | [80] | |
LCORL | g.112558859A>G | Higher body height, body length, chest circumference, and hide weight | [88] | |
NR6A1 | Body lengths and body heights | [82] | ||
CDKL5 | g.176595_176626delATGTCACATGTGGTACTGCCATGTGGAATTT | Chest circumference, body length, chest depth, and rump width | [86] | |
ACSL3 | Body weight and other growth traits | [78] | ||
ACSL1 | Withers height, body length, rump width, and body weight | [79] | ||
TBX3 | Body length, body height, chest depth, chest circumference, body weight, hucklebone width, and rump length | [87] | ||
DCAF7 | g.48978712T>C g.48985896A>G g.48987539C>T g.48988058A>G g.48992171C>T | Number of thoracic vertebrae and carcass traits | [89] | |
DCT, KIT, KITLG, MC1R, MLANA, OCA2, SLC24A5, TRPM1, and TYR | Skin pigmentation (Non-Dun croup skin) | [1] | ||
TBX3 | Dun croup skin | |||
KRT10, KRT1, CLDN9, MHCII and MMP28 | Skin thickness | [92] | ||
lncRNAs (MSTRG.9787.1, MSTRG.3144.1 MSTRG.9886.1) and four candidate genes (ACTN1, CDON, FMOD, BMPR1B). | Growth and development of skeletal muscle | [93] | ||
ARF6, cofilin, IQGAP, AGPAT1, MAP2K3, APOA1, and APOA4 | Meat quality traits | [33] | ||
MYH1, MYH7, TNNC1, TNNI3, TPM3, ALDOA , ENO3, PGK1 | Growth and development of skeletal muscle | [32] | ||
DCN, ITM2A, MUSTN1, ARRDC2 | Skeletal muscle growth and development | [60] | ||
NCAPG-DCAF16 | Donkeys with AA and GA genotypes had significantly higher body weight, body height, and rump height compared to those with the GG genotype at 3 months of age (p < 0.05). Furthermore, at 6 months old, individuals with the AA and GA genotypes exhibited an extremely significant increase in body height and chest circumference compared to those with the GG genotype (p < 0.01). | [94] | ||
SCD, LEPR, CIDEA, DLK1, DGAT2, ITGAL, HMOX1, WNT10B, DGKA | Intramuscular fat, adipocyte differentiation, and adipogenesis | Guangling donkeys | [35] | |
PDE1B, MYLK2 | Meat quality traits | Mongolian Kulan | [95] | |
KITLG | Coat color | |||
CYP4A11 | Heat tolerance | Liangzhou donkey | [70] | |
NCAPG-LCORL | Small body size | |||
DGAT1 | K232A | Meat fat contents | Anatolia Donkeys | [36,96] |
Cytb | Body height | Dezhou donkeys, Liangzhou donkey | [55] | |
Rump width | Yunnan Donkeys | |||
LCORL/NCAPG, FAM184B, TBX3, SCD, IHH | Body height and body size | Chinese local breeds (Biyang, Dezhou, Guangling, Hetian, Jiami, Kulun, Qingyang, Turfan, Tibetan, Xinjiang, and Yunnan) and Spanish donkeys from two breeds (Zamorano~Leonés and Andalusian) | [68] | |
Myostatin gene | g.229T>C g.872A>G g.2014G>A g.2395C>G | Muscle growth | Xinjiang donkey | [84] |
Genes/miRNAs/LnRNA/Protein | SNP | Trait Associated | Breed | Reference |
---|---|---|---|---|
CSN1S2 | Milk fat | Ragusana | [97] | |
NUMB | g.46709914T>G | Milk production traits | Xinjiang donkey | [34] |
ADCY8 | g.48366302T>C | |||
CA8 | g.89567442T>G g.89598328T>A | |||
LEPR | g.713668A>G | Milk production traits | Anatolia donkey | [98] |
CSN3 and LTF | Milk production traits | Anatolia donkey | [37] | |
MircoRNAs (m0032-3p, miR-195, miR-26-5p, miR-23-3p, miR-674-3p, and miR-874-3p ) | Associated with immunity and milk lipid, protein, and vitamin metabolism | Liaoxi donkey | [99] |
Genes/miRNAs/LnRNA/Protein | Trait Associated | Breed | Reference |
---|---|---|---|
Genes (Col6a2, ITGA4, ITGA6, ITGB1, PRKCA, AKT1, COL6A3, AKT1, and KIT), and miRNAs (miR-141, let-7, miR-148, and miR-221) | Donkey reproduction traits (spermatogenesis) | [101] | |
ABCF3,ACP1, ACTG2, ADSL | Normal oocyte development | [102] | |
DPPA3, PTTG1, BTG4, KPNA7, RNF34, UBB, ZP3, CNBP, GDF9, AGR2, ZAR1L, ARG2, BMP15, CALM2, RFC3, LOC106840558, RASL11A, WEE2, CNBP, CCNB1, CENPE, HNRNPA1, LOC106829384 | Oocyte maturation | Dezhou donkey | [103] |
PIWIL2, CATSPERD, CATSPERB, SPATA6, and SYCP1 | Testis development or spermatogenesis | [104] | |
TEX11, PRM1, and PRM2, CLDN8, SLC26A8, and SLC22A3 | Spermatogenesis and sperm maturation | [100] | |
eca-Mir-429, eca-Mir-761, eca-Mir-200a, eca-Mir-191 and eca-Mir-200b | Development of testicular tissues | [100] |
Term | Count | Genes |
---|---|---|
Fat digestion and absorption | 5 | DGAT2, DGAT1, APOA1, APOA4, AGPAT1 |
Melanogenesis | 6 | WNT10B, KITLG, MC1R, DCT, KIT, TYR |
Glycerolipid metabolism | 4 | DGAT2, DGAT1, DGKA, AGPAT1 |
Phospholipase D signaling pathway | 5 | KITLG, DGKA, KIT, AGPAT1, ARF6 |
Metabolic pathways | 15 | DGAT2, DGAT1, PDE1B, ACSL1, DGKA, ACSL3, TYR, AGPAT1, ENO3, DCT, SCD, PGK1, HMOX1, CYTB, ALDOA |
Rap1 signaling pathway | 5 | MAP2K3, KITLG, KIT, IGF1, ITGAL |
Thermogenesis | 5 | MAP2K3, ACSL1, PRKG2, ACSL3, CYTB |
Fatty acid metabolism | 3 | SCD, ACSL1, ACSL3 |
Glycolysis/gluconeogenesis | 3 | PGK1, ALDOA, ENO3 |
Adipocytokine signaling pathway | 3 | ACSL1, LEPR, ACSL3 |
Biosynthesis of amino acids | 3 | PGK1, ALDOA, ENO3 |
TGF-beta signaling pathway | 3 | BMPR1B, FMOD, DCN |
Fatty acid biosynthesis | 2 | ACSL1, ACSL3 |
Ras signaling pathway | 4 | KITLG, KIT, IGF1, ARF6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Khan, M.Z.; Chai, W.; Ullah, Q.; Wang, C. Exploring Genetic Markers: Mitochondrial DNA and Genomic Screening for Biodiversity and Production Traits in Donkeys. Animals 2023, 13, 2725. https://doi.org/10.3390/ani13172725
Huang B, Khan MZ, Chai W, Ullah Q, Wang C. Exploring Genetic Markers: Mitochondrial DNA and Genomic Screening for Biodiversity and Production Traits in Donkeys. Animals. 2023; 13(17):2725. https://doi.org/10.3390/ani13172725
Chicago/Turabian StyleHuang, Bingjian, Muhammad Zahoor Khan, Wenqiong Chai, Qudrat Ullah, and Changfa Wang. 2023. "Exploring Genetic Markers: Mitochondrial DNA and Genomic Screening for Biodiversity and Production Traits in Donkeys" Animals 13, no. 17: 2725. https://doi.org/10.3390/ani13172725
APA StyleHuang, B., Khan, M. Z., Chai, W., Ullah, Q., & Wang, C. (2023). Exploring Genetic Markers: Mitochondrial DNA and Genomic Screening for Biodiversity and Production Traits in Donkeys. Animals, 13(17), 2725. https://doi.org/10.3390/ani13172725