Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Location
2.3. Experimental Animals, Management, and Characterization of the Production System
- I.
- Traditional System—no shade and no access to the bathing area. In this system, the animals were subjected to pasture without the presence of trees or other elements that could provide shade; they also did not have access to the bathing area.
- II.
- Silvopastoral System—with shade and no access to the bathing area. In this system, the animals were subjected to pasture with the presence of trees and other elements that could provide shade; they also did not have access to the bathing area.
- III.
- Integrated System—with access to shade and bathing area. In this system, the animals were subjected to pasture with trees and other elements that can provide shade, as well as access to the bathing area.
2.4. Meteorological Variables
2.5. Physiological Variables
2.6. Respiratory Rate (RR)
2.7. Rectal Temperature (RT)
2.8. Infrared Thermography
2.9. Body Surface Temperature (BST)
2.10. Heat Storage Calculation
2.11. Index to Assess Thermal Comfort
2.11.1. Temperature and Humidity Index (THI)
2.11.2. Black Globe Temperature and Humidity Index (BGHI)
2.11.3. Benezra Comfort Index (BTCI)
2.11.4. Environmental Stress Index (ESI)
2.11.5. Iberian Heat Tolerance Index (Iberian HTI)
2.12. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, M.A.S.; Júnior, J.D.B.L.; Santana, A.C.; Homma, A.K.O.; Martins, C.M.; Rebello, F.K.; Soares, B.C.; Silva, A.G.M. Comportamento da produção e dos preços de bovinos de corte na Amazônia Brasileira. Semin. Ciências Agrárias 2019, 40, 1639–1652. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Camargo, R.N.C.; Silva, É.B.R.D.; Silva, J.A.R.D.; Picanço, M.L.R.; Santos, M.R.P.D.; Araújo, C.V.; Barbosa, A.V.C.; Bonin, M.N.; Oliveira, A.S.; et al. Perspectives of economic losses due to condemnation of cattle and buffalo carcasses in the northern region of Brazil. PLoS ONE 2023, 18, e0285224. [Google Scholar] [CrossRef]
- Rosanova, C.; Rebouças, G.F.; Silva, M.D.M.P.; Rezende, D.M.L.C.; Rocha, A.S.; Junior, A.P.; Ismar, M.G.; Ferreira, C.C.B.; Silva, E.W. Determinação do ITU–índice de temperatura e umidade da região de Araguaína-TO para avaliação do conforto térmico de bovinos leiteiros. Braz. J. Dev. 2020, 6, 69254–69258. [Google Scholar] [CrossRef]
- Marins, T.N.; Almeida, I.G.B.; Lôbo, B.V.; Pessoa, C.M.B.; Teixeira, R.C.; Alves, B.G.; Gambarini, M.L. Índices de estresse e conforto térmico associados aos parâmetros fisiológicos e perfil energético em vacas Girolando criadas a pasto na savana tropical. Res. Soc. Dev. 2020, 9, e111973672. [Google Scholar] [CrossRef]
- Kemer, A.; Glienke, C.L.; Bosco, L.C. Índices de conforto térmico para bovinos de leite em Santa Catarina Sul do Brasil. Braz. J. Dev. 2020, 6, 29655–29672. [Google Scholar] [CrossRef]
- Campos, J.C.D.; Passini, R.; Sousa, L.J.M.P.; Amaral, A.D.G. Alterações comportamentais de bezerras criadas em bezerreiros tropicais com cobertura alternativa. Ciência Anim. Bras. 2023, 24, 1–9. [Google Scholar]
- Lemos, M.J.; Braga, T.V.S.; Leite, D.K.V.H.; Galindo, E.L.O. Efeito climático sobre a produção de leite de vacas Guzerá criadas em dois ambientes diferentes: Climate effect on milk production of Guzera cows reared in two diferente environments. Braz. J. Anim. Environ. Res. 2023, 6, 1721–1726. [Google Scholar] [CrossRef]
- Silva, W.C.; Martorano, L.G.; Silva, L.K.X.; da Costa Guedes, J.C.; Fernandes, G.B.; dos Santos, A.X.; da Silva, É.B.R. Use of infrared thermography in the assessment of mammary glands and eyeballs in dairy cattle in Western Pará. Res. Soc. Dev. 2020, 9, e46191211421. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Gómez-Prado, J.; Fuente, V.C.; Ghezzi, M.; Boscato-Funes, L.; Barrios-Garcia, H.; Torres-Bernal, F.; Casas-Alvarado, A.; et al. Pathophysiology of fever and application of infrared thermography (IRT) in the detection of sick domestic animals: Recent advances. Animals 2021, 11, 2316. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
- Oliveira, A.V.D.; Reis, E.M.B.; Ferraz, P.F.P.; Barbari, M.; Santos, G.S.; Cruz, M.V.R.; Silva, G.F.; Silva, A.O.L. Infrared thermography as a technique for detecting subclinical bovine mastitis. Arq. Bras. Med. Veterinária Zootec. 2023, 74, 992–998. [Google Scholar] [CrossRef]
- Knizkova, I.; Petr, K.U.N.C.; Gürdil, G.; Pinar, Y.; Selvi, K.Ç. Applications of infrared thermography in animal production. Anadolu Tarım Bilim. Derg. 2007, 22, 329–336. [Google Scholar]
- Mota-Rojas, D.; Pereira, A. Infrared Thermography in Large Ruminants. J. Encycl.—Peer-Rev. Content 2021, 1, 1–15. [Google Scholar]
- Almeida, J.V.N.; Marques, L.R.; Marques, T.C.; Guimarães, K.C.; Leão, K.M. Influência do estresse térmico sobre os aspectos produtivos e reprodutivos de bovinos–Revisão. Res. Soc. Dev. 2020, 9, e230973837. [Google Scholar] [CrossRef]
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared thermography in animal production: An overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Rohleder, L.A.S.; Querino, C.A.S.; Alves, P.V.; Querino, J.K.A.D.S.; Junior, A.L.P.; Vaz, M.A.B. Avaliação de parâmetros ambientais em uma microrregião no sul do estado do Amazonas e suas relações com estresse térmico de bovinos leiteiros. Ciência Anim. Bras. 2022, 23, 1–7. [Google Scholar]
- McDowell, R.E.; Hooven, N.W.; Camoens, J.K. Effects of climate on performance of Holsteins in first lactation. J. Dairy Sci. 1976, 59, 965–973. [Google Scholar] [CrossRef]
- Martorano, L.G.; Nechet, D.; Pereira, L.C. Tipologia climática do Estado do Pará: Adaptação do método de Köppen. Bol. Geogr. Teorética 1993, 23, 45–46. [Google Scholar]
- Martorano, L.G.; Vitorino, M.I.; Silva, B.P.P.C.; Lisboa, L.S.; Sotta, E.D.; Reichardt, K. Climate conditions in the eastern amazon: Rainfall variability in Belem and indicative of soil water deficit. Afr. J. Agric. Res. 2017, 12, 1801–1810. [Google Scholar]
- Feitosa, F.L.F. Exame físico geral ou de rotina. In Semiologia Veterinária: A Arte do Diagnóstico; Roca: Barcelona, Spain, 2014; Volume 3, pp. 51–68. [Google Scholar]
- Dirksen, G.; Stöber, M.; Gründer, H.D. Rosenberger—Exame clínico dos bovinos. In Sistema Digestivo; Dirksen, G., Ed.; Guanabara Koogan: Rio De Janeiro, Brazil, 1993; pp. 166–228. [Google Scholar]
- FLIR T650sc. Manual da FLIR T650sc Systems 6.3v. Wilsonville, OR, EUA. 2015. Available online: https://www.flir.com.br/support/products/t650sc/#Overview (accessed on 1 March 2023).
- Giro, A.; Pezzopane, J.R.M.; Junior, W.B.; Pedroso, A.F.; Lemes, A.P.; Botta, D.; Romanello, N.; Barreto, A.N.; Garcia, A.R. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Sci. Total Environ. 2019, 684, 587–596. [Google Scholar] [CrossRef] [PubMed]
- McGovern, R.E.; Bruce, J.M. A model of the thermal balance for cattle in hot conditions. J. Agric. Eng. Res. 2000, 77, 81–92. [Google Scholar] [CrossRef]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black globe-humidity index (BGHI) as comfort equation for dairy cows. Trans. ASAE 1981, 24, 711–714. [Google Scholar] [CrossRef]
- Benezra, M.V. A new index measuring the adaptability of cattle to tropical conditions. J. Anim. Sci. 1954, 13, 1015. [Google Scholar]
- Moran, D.S.; Pandolf, K.B.; Shapiro, Y.; Heled, Y.; Shani, Y.; Mathew, W.T.; Gonzalez, R.R. An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J. Therm. Biol. 2001, 26, 427–431. [Google Scholar] [CrossRef]
- Baêta, F.C.; Souza, C.F. Ambiência em Edificações Rurais: Conforto Animal; UFV: Viçosa, Brazil, 1997; p. 246. [Google Scholar]
- Rhoad, A.O. The iberia heat tolerance test for cattle. Trop. Agric. 1944, 21, 162–164. [Google Scholar]
- Armstrong, D. Heat stress interaction with shade and cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.C.D.; Printes, O.V.N.; Lima, D.O.; Silva, É.B.R.D.; Santos, M.R.P.D.; Camargo-Júnior, R.N.C.; Barbosa, A.V.C.; Silva, J.A.R.; Silva, A.G.M.; Silva, L.K.X.; et al. Evaluation of the Temperature and Humidity Index (THI) to support the implementation of a rearing system for ruminants in the Western Amazon. Front. Vet. Sci. 2023, 10, 1198678. [Google Scholar] [CrossRef]
- Shioya, S.; Terada, F.; Iwama, Y. Physiological responses of lactating dairy cows under hot environments. Eiyoseirikenkyukaiho 1997, 41, 61–68. [Google Scholar]
- Herbut, P.; Angrecka, S.; Godyń, D. Effect of the duration of high air temperature on cow’s milking performance in moderate climate conditions. Ann. Anim. Sci. 2018, 18, 195. [Google Scholar] [CrossRef]
- McManus, C.M.; Faria, D.A.; Bem, A.D.; Maranhão, A.Q.; Paiva, S.R. Physiology and genetics of heat stress in cattle. CABI Rev. 2020, 53, 1–8. [Google Scholar]
- Lima, S.B.; Stafuzza, N.B.; Pires, B.V.; Bonilha, S.F.; Cyrillo, J.N.; Negrão, J.A.; Paz, C.C. Effect of high temperature on physiological parameters of Nelore (Bos taurus indicus) and Caracu (Bos taurus taurus) cattle breeds. Trop. Anim. Health Prod. 2020, 52, 2233–2241. [Google Scholar] [CrossRef]
- Hooper, H.B.; Titto, C.G.; Gonella-Diaza, A.M.; Henrique, F.L.; Pulido-Rodríguez, L.F.; Longo, A.L.S.; Leme-dos-Santos, T.M.D.C.; Geraldo, A.C.A.P.D.M.; Pereira, A.M.F.; Binelli, M.; et al. Heat loss efficiency and HSPs gene expression of Nellore cows in tropical climate conditions. Int. J. Biometeorol. 2019, 63, 1475–1486. [Google Scholar] [CrossRef]
- Cândido, A.C.T.F.; Martorano, L.G.; Cândido, B.U.F.; Nascimento, W.; Dias, C.T.D.S.; Lisboa, L.S.S.; Beldini, T.P. Infrared Thermal Profiles in Silvopastoral and Full-Sun Pastures in the Eastern Amazon, Brazil. Forests 2023, 14, 1463. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, É.B.R.D.; Santos, M.R.P.D.; Camargo-Junior, R.N.C.; Barbosa, A.V.C.; Silva, J.A.R.D.; Vinhote, J.A.; Sousa, E.D.V.D.; Lourenço-Júnior, J.D.B. Behavior and thermal comfort of light and dark coat dairy cows in the Eastern Amazon. Front. Vet. Sci. 2022, 9, 1006093. [Google Scholar] [CrossRef]
- Romanello, N.; Barreto, A.N.; Sousa, M.A.P.; Balieiro, J.C.C.; Brandão, F.Z.; Tonato, F.; Bernardi, A.C.C.; Pezzopane, J.R.M.; Portugal, J.A.B.; Garcia, A.R. Thermal comfort of Nelore (Bos indicus) and Canchim (Bos taurus x Bos indicus) bulls kept in an integrated crop-livestock-forestry system in a tropical climate. Agric. Syst. 2023, 209, 103687. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, J.A.R.D.; Camargo-Júnior, R.N.C.; Silva, É.B.R.D.; Santos, M.R.P.D.; Viana, R.B.; Lourenço-Júnior, J.D.B. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Front. Vet. Sci. 2023, 10, 1083469. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.K.D.; Giustina, C.D.; Martínez, G.B.; Carnevalli, R.A. Agroforestry Systems for Dairy Production in Capítulo em Livro Técnico; INFOTECA-E, Embrapa: Brazilia, Brazil, 2020; Volume 16, pp. 371–390. [Google Scholar]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Gil, J.; Siebold, M.; Berger, T. Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agric. Ecosyst. Environ. 2015, 199, 394–406. [Google Scholar] [CrossRef]
- Hagenmaier, J.A.; Reinhardt, C.D.; Bartle, S.J.; Thomson, D.U. Effect of shade on animal welfare, growth performance, and carcass characteristics in large pens of beef cattle fed a beta agonist in a commercial feedlot. J. Anim. Sci. 2016, 94, 5064–5076. [Google Scholar] [CrossRef]
- Karvatte, N.; Klosowski, E.S.; Almeida, R.G.; Mesquita, E.E.; Oliveira, C.C.; Alves, F.V. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Int. J. Biometeorol. 2016, 60, 1933–1941. [Google Scholar] [CrossRef]
- Oliveira, C.C.; Alves, F.V.; Almeida, R.G.; Gamarra, E.L.; Villela, S.D.J.; Martins, P.G.M.D.A. Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor. Syst. 2018, 92, 1659–1672. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Nicodemo, M.L.F.; Bosi, C.; Garcia, A.R.; Lulu, J. Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. J. Therm. Biol. 2019, 79, 103–111. [Google Scholar] [CrossRef]
- Deniz, M.; Filho, A.L.S.; Hötzel, M.J.; Sousa, K.T.; Filho, L.C.P.M.; Sinisgalli, P.A. Microclimate and pasture area preferences by dairy cows under high biodiversity silvopastoral system in Southern Brazil. Int. J. Biometeorol. 2020, 64, 1877–1887. [Google Scholar] [CrossRef]
- Barreto, A.N.; Junior, W.B.; Pezzopane, J.R.M.; Bernardi, A.C.C.; Pedroso, A.F.; Marcondes, C.R.; Jacintho, M.A.C.; Romanello, N.; Sousa, M.A.P.; Costa, L.N.; et al. Thermal comfort and behavior of beef cattle in pasture-based systems monitored by visual observation and electronic device. Appl. Anim. Behav. Sci. 2022, 253, 105687. [Google Scholar] [CrossRef]
- Lemes, A.P.; Garcia, A.R.; Pezzopane, J.R.M.; Brandão, F.Z.; Watanabe, Y.F.; Cooke, R.F.; Sponchiado, M.; Paz, C.C.P.; Camplesi, A.C.; Binelli, M.; et al. Silvopastoral system is an alternative to improve animal welfare and productive performance in meat production systems. Sci. Rep. 2021, 11, 14092. [Google Scholar] [CrossRef]
- Santos, M.M.; Souza-Junior, J.B.F.; Dantas, M.R.T.; Costa, L.L.M. An updated review on cattle thermoregulation: Physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environ. Sci. Pollut. Res. 2021, 28, 30471–30485. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, F.; Evangelista, C.; Basiricò, L.; Bernabucci, U. Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review. Animals 2023, 13, 1260. [Google Scholar] [CrossRef] [PubMed]
- Junior, N.A.V.; Silva, M.A.D.A.; Caramori, P.H.; Nitsche, P.R.; Corrêa, K.A.B.; Alves, D.S. Temperature, thermal comfort, and animal ingestion behavior in a silvopastoral system. Semin. Ciências Agrárias 2019, 40, 403–416. [Google Scholar] [CrossRef]
- Huertas, S.M.; Bobadilla, P.E.; Alcántara, I.; Akkermans, E.; Eerdenburg, F.J.V. Benefits of silvopastoral systems for keeping beef cattle. Animals 2021, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Deniz, M.; Sousa, K.T.; Moro, M.F.; Vale, M.M.; Dittrich, J.R.; Machado-Filho, L.C.P.; Hötzel, M.J. Social hierarchy influences dairy cows’ use of shade in a silvopastoral system under intensive rotational grazing. Appl. Anim. Behav. Sci. 2021, 244, 105467. [Google Scholar] [CrossRef]
- Pérez-Lombardini, F.; Mancera, K.F.; Suzán, G.; Campo, J.; Solorio, J.; Galindo, F. Assessing sustainability in cattle silvopastoral systems in the Mexican tropics using the SAFA framework. Animals 2021, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Oyelami, B.A.; Osikabor, B. Adoption of silvopastoral agroforestry system for a sustainable cattle production in Nigeria. J. Appl. Sci. Environ. Manag. 2022, 26, 1397–1402. [Google Scholar] [CrossRef]
- Deniz, M.; De-Sousa, K.T.; Vieira, F.M.C.; Vale, M.M.D.; Dittrich, J.R.; Daros, R.R.; Hötzel, M.J. A systematic review of the effects of silvopastoral system on thermal environment and dairy cows’ behavioral and physiological responses. Int. J. Biometeorol. 2023, 67, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Lomax, S.; Doughty, A.; Islam, M.R.; Jay, O.; Thomson, P.; Clark, C. Automated monitoring of cattle heat stress and its mitigation. Front. Anim. Sci. 2021, 2, 60. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Napolitano, F.; Braghieri, A.; Guerrero-Legarreta, I.; Bertoni, A.; Martínez-Burnes, J.; Cruz-Monterrosa, R.; Gómez, J.; Ramírez-Bribiesca, E.; Barrios-García, H.; et al. Thermal biology in river buffalo in the humid tropics: Neurophysiological and behavioral responses assessed by infrared thermography. J. Anim. Behav. Biometeorol. 2020, 9, 2103. [Google Scholar] [CrossRef]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob. Change Biol. 2021, 27, 5762–5772. [Google Scholar] [CrossRef] [PubMed]
- Brcko, C.C.; Silva, J.A.R.D.; Martorano, L.G.; Vilela, R.A.; Nahúm, B.D.S.; Silva, A.G.M.; Barbosa, A.V.C.; Bezerra, A.S.; Lourenço Júnior, J.D.B. Infrared thermography to assess thermoregulatory reactions of female buffaloes in a humid tropical environment. Front. Vet. Sci. 2020, 7, 180. [Google Scholar] [CrossRef]
- Hernandez, A.; Galina, C.S.; Geffroy, M.; Jung, J.; Westin, R.; Berg, C. Cattle welfare aspects of production systems in the tropics. Anim. Prod. Sci. 2022, 62, 1203–1218. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Haeeb, A.A.M. Buffaloes reproductive and productive traits as affected by heat stress. Trop. Subtrop. Agroecosyst. 2010, 12, 193–217. [Google Scholar]
- Detweiler, N.D.; Vigil, K.G.; Yan, S.; Resta, T.C.; Walker, B.R.; Jernigan, N.L. Contribution of Acid-Sensing Ion Channels to Hypoxia-and Hypercapnia-Induced Ventilatory Drive in Conscious Unrestrained Mice. FASEB J. 2017, 31, 1072–1078. [Google Scholar]
- Godyń, D.; Herbut, P.; Angrecka, S. Measurements of peripheral and deep body temperature in cattle–A review. J. Therm. Biol. 2019, 79, 42–49. [Google Scholar] [CrossRef]
- Garcia, A.R.; Matos, L.B.; Junior, J.D.B.L.; Nahúm, B.D.S.; Costa, N.A.D. Increased reproductive efficiency of dairy buffaloes due to silvopastoral system adoption in the Eastern Amazon. Rev. Vet. 2010, 21, 914–915. [Google Scholar]
- Wang, F.X.; Shao, D.F.; Li, S.L.; Wang, Y.J.; Azarfar, A.; Cao, Z.J. Effects of stocking density on behavior, productivity, and comfort indices of lactating dairy cows. J. Dairy Sci. 2016, 99, 3709–3717. [Google Scholar] [CrossRef]
- Alves, J.R.A.; Andrade, T.A.A.; Assis, D.M.; Gurjão, T.A.; Melo, L.R.B.; Souza, B.B. Productive and reproductive performance, behavior and physiology of cattle under heat stress conditions. J. Anim. Behav. Biometeorol. 2020, 5, 91–96. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Nienaber, J.A.; Eigenberg, R.A.; Mader, T.L.; Morrow, J.L.; Dailey, J.W. Comparison of heat tolerance of feedlot heifers of different breeds. Livest. Sci. 2006, 105, 19–26. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, J.A.; Hahn, G.L. Livestock production system management responses to thermal challenges. Int. J. Biometeorol. 2007, 52, 149–157. [Google Scholar] [CrossRef]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J. Non-invasive physiological indicators of heat stress in cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Arias, R.A.; Mader, T.L. Evaluation of Four Thermal Comfort Indices and Their Relationship with Physiological Variables in Feedlot Cattle. Animals 2023, 13, 1169. [Google Scholar] [CrossRef]
- Hahn, G.; Parkhurst, A.; Gaughan, J. Cattle respiration rate as a function of ambient temperature. Am. Soc. Agric. Biol. Eng. 1997, 121, 1–8. [Google Scholar]
- Mitlöhner, F.M.; Morrow, J.L.; Dailey, J.W.; Wilson, S.C.; Galyean, M.L.; Miller, M.F.; McGlone, J.J. Shade and water misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. J. Anim. Sci. 2001, 79, 2327–2335. [Google Scholar] [CrossRef]
- Becker, C.A.; Stone, A.E. Graduate Student Literature Review: Heat abatement strategies used to reduce negative effects of heat stress in dairy cows. J. Dairy Sci. 2020, 103, 9667–9675. [Google Scholar] [CrossRef] [PubMed]
- Koga, A.; Kuhara, T.; Kanai, Y. Comparison of body water retention during water deprivation between swamp buffaloes and Friesian cattle. J. Agric. Sci. 2004, 138, 435–440. [Google Scholar] [CrossRef]
- Morais, D.A.E.F.; Maia, A.S.C.; Silva, R.G.D.; Vasconcelos, A.M.D.; Lima, P.D.O.; Guilhermino, M.M. Annual thyroid hormone variation and thermo regulators traits of milk cows in hot environment. Rev. Bras. Zootec. 2008, 37, 538–545. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.A.; Tipton, M.J.; Kenny, G.P. Considerations for the measurement of core, skin and mean body temperatures. J. Therm. Biol. 2014, 46, 72–101. [Google Scholar] [CrossRef]
- Falkenberg, S.M.; Ridpath, J.; Ley, B.V.; Bauermann, F.V.; Sanchez, N.B.; Carroll, J.A. Comparison of temperature fluctuations at multiple anatomical locations in cattle during exposure to bovine viral diarrhea virus. Livest. Sci. 2014, 164, 159–167. [Google Scholar] [CrossRef]
- Bharati, J.; Dangi, S.S.; Mishra, S.R.; Chouhan, V.S.; Verma, V.; Shankar, O.; Bharti, M.K.; Paul, A.; Mahato, D.K.; Rajesh, G.; et al. Expression analysis of toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure. J. Therm. Biol. 2017, 65, 48–56. [Google Scholar] [CrossRef]
- Das, S. Impact of climate change on livestock, various adaptive and mitigative measures for sustainable livestock production. Approaches Poult. Dairy Vet. Sci. 2017, 33, 64–70. [Google Scholar] [CrossRef]
- Mishra, S.R. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: An updated review. Trop. Anim. Health Prod. 2021, 53, 400. [Google Scholar] [CrossRef]
- Grandin, T. Evaluation of the welfare of cattle housed in outdoor feedlot pens. Vet. Anim. Sci. 2016, 1, 23–28. [Google Scholar] [CrossRef]
- Edwards-Callaway, L.N.; Cramer, M.C.; Cadaret, C.N.; Bigler, E.J.; Engle, T.E.; Wagner, J.J.; Clark, D.L. Impacts of shade on cattle well-being in the beef supply chain. J. Anim. Sci. 2021, 99, skaa375. [Google Scholar] [CrossRef]
- Castro, A.C.; Lourenço-Júnior, J.D.B.; Santos, N.D.F.A.D.; Monteiro, E.M.M.; Aviz, M.A.B.D.; Garcia, A.R. Sistema silvipastoril na Amazônia: Ferramenta para elevar o desempenho produtivo de búfalos. Ciência Rural. 2008, 38, 2395–2402. [Google Scholar] [CrossRef]
- Silva, J.A.R.D.; Araújo, A.A.D.; Lourenço-Júnior, J.D.B.; Santos, N.D.F.A.D.; Garcia, A.R.; Nahúm, B.D.S. Conforto térmico de búfalas em sistema silvipastoril na Amazônia Oriental. Pesqui. Agropecuária Bras. 2011, 46, 1364–1371. [Google Scholar] [CrossRef]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The impact of heat load on cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef]
- Finch, V.A. Body temperature in beef cattle: Its control and relevance to production in the tropics. J. Anim. Sci. 1986, 62, 531–542. [Google Scholar] [CrossRef]
- Baeta, F.D.C.; Souza, C. Ambiência em Edificações Rurais: Conforto Ambiental; Editora UFV: Viçosa, Brasil, 2010; p. 269. [Google Scholar]
- Abreu, L.V.; Labaki, L.C. Conforto térmico propiciado por algumas espécies arbóreas: Avaliação do raio de influência através de diferentes índices de conforto. Ambiente Construído 2010, 10, 103–117. [Google Scholar] [CrossRef]
- Magalhães, C.A.; Zolin, C.A.; Lulu, J.; Lopes, L.B.; Furtini, I.V.; Vendrusculo, L.G.; Zaiatz, A.P.S.R.; Pedreira, B.C.; Pezzopane, J.R.M. Improvement of thermal comfort indices in agroforestry systems in the southern Brazilian Amazon. J. Therm. Biol. 2020, 91, 102636. [Google Scholar] [CrossRef]
- Yan, G.; Liu, K.; Hao, Z.; Shi, Z.; Li, H. The effects of cow-related factors on rectal temperature, respiration rate, and temperature-humidity index thresholds for lactating cows exposed to heat stress. J. Therm. Biol. 2021, 100, 103041. [Google Scholar] [CrossRef]
- Blackshaw, J.K.; Blackshaw, A.W. Heat stress in cattle and the effect of shade on production and behaviour: A review. Aust. J. Exp. Agric. 1994, 34, 285–295. [Google Scholar] [CrossRef]
- Silva, T.P.D.; Júnior, S.C.S.; Santos, K.R.; Marques, C.A.T.; Torreão, J.N.C. Características termorreguladoras e ganho de peso de cordeiros Santa Inês no sul do estado do Piauí no período de transição seca/águas. Agrar. Acad. J. 2013, 6, 198–204. [Google Scholar]
Variables | Systems | ||
---|---|---|---|
Silvopastoral | Traditional | Integrated | |
Sample size | 10 | 10 | 10 |
Minimum | 23.90 | 34.10 | 31.00 |
Maximum | 30.30 | 36.70 | 40.40 |
Total Amplitude | 6.40 | 2.60 | 9.40 |
Median | 29.45 | 36.30 | 32.15 |
First Quartile (25%) | 29.0250 | 36.1500 | 31.5500 |
Third Quartile (75%) | 29.8750 | 36.3750 | 37.3000 |
Interquartile deviation | 0.8500 | 0.2250 | 5.7500 |
Arithmetic average | 28.98 a | 35.93 b | 34.11 b |
Variance | 3.40 | 0.96 | 15.52 |
Standard deviation | 1.84 | 0.98 | 3.94 |
Standard Error | 0.58 | 0.31 | 1.25 |
Coefficient of variation | 6.36% | 2.73% | 11.55% |
Asymmetry | −2.79 | −1.62 | 1.02 |
Kurtosis | 8.32 | 1.12 | −1.11 |
Variables | Number of Data Points | Silvopastoral | Traditional | Integrated | Average | Standard Deviation |
---|---|---|---|---|---|---|
Head | 2 | 35.05 | 36.7 | 34.9 | 35.05 | 0.815475322 |
Armpit | 2 | 35.6 | 36.25 | 36.1 | 36.1 | 0.277888867 |
Flank | 2 | 38.15 | 35.95 | 36.35 | 36.35 | 0.956846673 |
Rump | 2 | 36.55 | 36.4 | 34.45 | 36.4 | 0.956556323 |
Average | 2 | 35.6 | 36.25 | 36.1 | 36.1 | 0.277888867 |
Standard deviation | - | 1.175996918 | 0.270416346 | 0.796084166 | 0.546008242 | 0.279560169 |
Time | THI | BGHI | ESI | ETI |
---|---|---|---|---|
06:00 | 72.716 | 70.426 | 23.08268 | 26.82964 |
07:00 | 69.62 | 68.43 | 20.85035 | 27.14537 |
08:00 | 73.996 | 71.256 | 23.95235 | 26.70116 |
09:00 | 76.832 | 74.512 | 26.36654 | 26.48436 |
10:00 | 81.35 | 74.82 | 28.16738 | 25.89942 |
11:00 | 81.438 | 73.478 | 27.7384 | 25.81436 |
12:00 | 81.978 | 72.828 | 27.72533 | 25.70745 |
13:00 | 82.818 | 74.308 | 28.51822 | 25.67495 |
14:00 | 84.336 | 75.876 | 29.61209 | 25.5546 |
15:00 | 83.11 | 76.25 | 29.33885 | 25.73756 |
16:00 | 83.686 | 76.826 | 29.33885 | 25.73756 |
17:00 | 83.29 | 76.43 | 29.63687 | 25.73874 |
18:00 | 80.546 | 75.546 | 28.18279 | 26.04266 |
19:00 | 77.646 | 74.646 | 26.74612 | 26.38379 |
20:00 | 77.498 | 75.308 | 26.96888 | 26.43312 |
21:00 | 76.84 | 74.81 | 26.48708 | 26.49706 |
22:00 | 76.976 | 74.796 | 26.48126 | 26.48495 |
23:00 | 74.036 | 72.666 | 24.4403 | 26.76465 |
00:00 | 73.908 | 72.878 | 24.46934 | 26.78917 |
01:00 | 73.9604 | 70.1604 | 23.57642 | 26.65066 |
02:00 | 73.7248 | 69.0548 | 23.13398 | 26.62408 |
03:00 | 73.804 | 68.844 | 22.91858 | 26.6229 |
04:00 | 75.2396 | 70.7796 | 24.34658 | 26.51007 |
05:00 | 72.5236 | 69.3436 | 22.65038 | 26.80276 |
Times | Iberian HTI | BTCI |
---|---|---|
06H | 87.34 | 2.330651 |
12H | 82.54 | 2.418684 |
18H | 79.24 | 2.510365 |
00H | 84.94 | 2.342784 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, W.C.d.; Silva, J.A.R.d.; Silva, É.B.R.d.; Barbosa, A.V.C.; Sousa, C.E.L.; Carvalho, K.C.d.; Santos, M.R.P.d.; Neves, K.A.L.; Martorano, L.G.; Camargo Júnior, R.N.C.; et al. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals 2023, 13, 2735. https://doi.org/10.3390/ani13172735
Silva WCd, Silva JARd, Silva ÉBRd, Barbosa AVC, Sousa CEL, Carvalho KCd, Santos MRPd, Neves KAL, Martorano LG, Camargo Júnior RNC, et al. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals. 2023; 13(17):2735. https://doi.org/10.3390/ani13172735
Chicago/Turabian StyleSilva, Welligton Conceição da, Jamile Andréa Rodrigues da Silva, Éder Bruno Rebelo da Silva, Antônio Vinicius Correa Barbosa, Carlos Eduardo Lima Sousa, Katarina Cardoso de Carvalho, Maria Roseane Pereira dos Santos, Kedson Alexandri Lobo Neves, Lucieta Guerreiro Martorano, Raimundo Nonato Colares Camargo Júnior, and et al. 2023. "Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil" Animals 13, no. 17: 2735. https://doi.org/10.3390/ani13172735
APA StyleSilva, W. C. d., Silva, J. A. R. d., Silva, É. B. R. d., Barbosa, A. V. C., Sousa, C. E. L., Carvalho, K. C. d., Santos, M. R. P. d., Neves, K. A. L., Martorano, L. G., Camargo Júnior, R. N. C., & Lourenço-Júnior, J. d. B. (2023). Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals, 13(17), 2735. https://doi.org/10.3390/ani13172735