Associations between Surface and Rectal Temperature Profiles of Low-Birth-Weight Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Housing and Management
2.2. Experimental Design
2.3. Statistical Analysis
3. Results
Relationships between Rectal and Surface Temperatures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kammersgaard, T.S.; Pedersen, L.J.; Jørgensen, E. Hypothermia in neonatal piglets: Interactions and causes of individual differences. J. Anim. Sci. 2011, 89, 2073–2085. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.M.; Pedersen, L.J. Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets. Animal 2016, 10, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Garcíaa, D.; Mota-Rojasb, D.; Martínez-Burnesc, J.; Mora-Medinae, P.; Salmerónf, C.; Gómezb, J.; Boscatob, L.; Gutiérrez-Pérezf, O.; Cruzf, V.; Reyesb, B.; et al. Hypothermia in newly born piglets: Mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometerology 2021, 9, 2101. [Google Scholar] [CrossRef]
- Caldara, F.R.; Dos Santos, L.S.; Machado, S.T.; Moi, M.; de Alencar Naas, I.; Foppa, L.; Garcia, R.G.; de Kassia Silva Dos Santos, R. Piglets’ surface temperature change at different weights at birth. Asian-Australas. J. Anim. Sci. 2014, 27, 431–438. [Google Scholar] [CrossRef]
- Vande Pol, K.D.; Cooper, N.; Tolosa, A.; Ellis, M.; Shull, C.M.; Brown, K.; Alencar, S. Effect of method of drying piglets at birth on rectal temperature over the first 24 hours after birth. Transl. Anim. Sci. 2020, 97, 4–5. [Google Scholar] [CrossRef]
- Gómez-Prado, J.; Pereira, A.M.F.; Wang, D.; Villanueva-García, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front. Vet. Sci. 2022, 9, 1023294. [Google Scholar] [CrossRef]
- Bienboire-Frosini, C.; Muns, R.; Marcet-Rius, M.; Gazzano, A.; Villanueva-García, D.; Martínez-Burnes, J.; Domínguez-Oliva, A.; Lezama-García, K.; Casas-Alvarado, A.; Mota-Rojas, D. Vitality in Newborn Farm Animals: Adverse Factors, Physiological Responses, Pharmacological Therapies, and Physical Methods to Increase Neonate Vigor. Animals 2023, 13, 1542. [Google Scholar] [CrossRef]
- Rooke, J.A.; Bland, I.M. The acquisition of passive immunity in the new-born piglet. Livest. Prod. Sci. 2002, 78, 13–23. [Google Scholar] [CrossRef]
- Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 2014, 8, 1021–1030. [Google Scholar] [CrossRef]
- Pandolfi, F.; Edwards, S.A.; Robert, F.; Kyriazakis, I. Risk factors associated with the different categories of piglet perinatal mortality in French farms. Prev. Vet. Med. 2017, 137, 1–12. [Google Scholar] [CrossRef]
- Cooper, N.; Vande Pol, K.D.; Ellis, M.; Xiong, Y.; Gates, R. Effect of piglet birth weight and drying on post-natal changes in rectal temperature. J. Anim. Sci. 2019, 97, 4. [Google Scholar] [CrossRef]
- Herpin, P.; Damon, M.; Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 2002, 78, 25–45. [Google Scholar] [CrossRef]
- Bienboire-Frosini, C.; Wang, D.; Marcet-Rius, M.; Villanueva-García, D.; Gazzano, A.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Hernández-Ávalos, I.; Lezama-García, K.; Verduzco-Mendoza, A.; et al. The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period. Animals 2023, 13, 2173. [Google Scholar] [CrossRef]
- Declerck, I.; Dewulf, J.; Decaluwé, R.; Maes, D. Effects of energy supplementation to neonatal (very) low birth weight piglets on mortality, weaning weight, daily weight gain and colostrum intake. Livest. Sci. 2016, 183, 48–53. [Google Scholar] [CrossRef]
- Vande Pol, K.; Tolosa, A.; Shull, C.; Brown, C.; Alencar, S.; Ellis, M. Effect of drying and warming piglets at birth on pre-weaning mortality. Transl. Anim. Sci. 2021, 5, txab016. [Google Scholar] [CrossRef] [PubMed]
- Tucker, B.S.; Petrovski, K.R.; Kirkwood, R.N. Neonatal piglet temperature changes: Effect of intraperitoneal warm saline injection. Animals 2022, 12, 1312. [Google Scholar] [CrossRef] [PubMed]
- Gimsa, U.; Brückmann, R.; Tuchscherer, A.; Tuchscherer, M.; Kanitz, E. Early-life maternal deprivation affects the mother-offspring relationship in domestic pigs, as well as the neuroendocrine development and coping behavior of piglets. Front. Behav. Neurosci. 2022, 16, 980350. [Google Scholar] [CrossRef]
- Kammersgaard, T.S.; Malmkvist, J.; Pedersen, L.J. Infrared thermography--a non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature. Animal 2013, 7, 2026–2034. [Google Scholar] [CrossRef]
- Zakari, F.O.; Akefe, I.O.; Uchendu, C. Comparison of diurnal rectal and body surface temperatures in large white piglets during the hot-dry season in a tropical Guinea savannah. J. Therm. Biol. 2021, 99, 102953. [Google Scholar] [CrossRef]
- Schmid, S.M.; Büscher, W.; Steinhoff-Wagner, J. Suitability of different thermometers for measuring body core and skin temperatures in suckling piglets. Animals 2021, 11, 1004. [Google Scholar] [CrossRef]
- Soerensen, D.; Clausen, S.; Mercer, J.; Pedersen, L. Determining the emissivity of pig skin for accurate infrared thermography. Comput. Electron. Agric. 2014, 109, 52–58. [Google Scholar] [CrossRef]
- Hue, D.T.; Williams, J.L.; Petrovski, K.; Bottema, C.D.K. Predicting colostrum and calf blood components based on refractometry. J. Dairy Res. 2021, 88, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, D.D.; Pedersen, L.J. Infrared skin temperature measurements for monitoring health in pigs: A review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar] [CrossRef] [PubMed]
- Muns, R.; Nuntapaitoon, M.; Tummaruk, P. Non-infectious causes of pre-weaning mortality in piglets. Livest. Sci. 2016, 184, 46–57. [Google Scholar] [CrossRef]
- Decaluwé, R.; Maes, D.; Wuyts, B.; Cools, A.; Piepers, S.; Janssens, G.P.J. Piglets’ colostrum intake associates with daily weight gain and survival until weaning. Livest. Sci. 2014, 162, 185–192. [Google Scholar] [CrossRef]
- Devillers, N.; Le Dividich, J.; Prunier, A. Influence of colostrum intake on piglet survival and immunity. Animal 2011, 5, 1605–1612. [Google Scholar] [CrossRef]
- Magnani, D.; Gatto, M.; Cafazzo, S.; Stelletta, C.; Morgante, M.; Nanni Costa, L. Difference of surface body temperature in piglets due to the backtest and environmental condition. In Proceedings of the Animal Hygiene and Sustainable Livestock Production; the XVth International Congress of the International Scociety for Animal Hygiene, Vienna, Austria, 3–7 July 2011; pp. 1029–1032. [Google Scholar]
- Lu, M.; He, J.; Chen, C.; Okinda, C.; Shen, M.; Liu, L.; Yao, W.; Norton, T.; Berckmans, D. An automatic ear base temperature extraction method for top view piglet thermal image. Comput. Electron. Agric. 2018, 155, 339–347. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucker, B.S.; Petrovski, K.R.; Craig, J.R.; Morrison, R.S.; Smits, R.J.; Kirkwood, R.N. Associations between Surface and Rectal Temperature Profiles of Low-Birth-Weight Piglets. Animals 2023, 13, 3259. https://doi.org/10.3390/ani13203259
Tucker BS, Petrovski KR, Craig JR, Morrison RS, Smits RJ, Kirkwood RN. Associations between Surface and Rectal Temperature Profiles of Low-Birth-Weight Piglets. Animals. 2023; 13(20):3259. https://doi.org/10.3390/ani13203259
Chicago/Turabian StyleTucker, Bryony S., Kiro R. Petrovski, Jessica R. Craig, Rebecca S. Morrison, Robert J. Smits, and Roy N. Kirkwood. 2023. "Associations between Surface and Rectal Temperature Profiles of Low-Birth-Weight Piglets" Animals 13, no. 20: 3259. https://doi.org/10.3390/ani13203259
APA StyleTucker, B. S., Petrovski, K. R., Craig, J. R., Morrison, R. S., Smits, R. J., & Kirkwood, R. N. (2023). Associations between Surface and Rectal Temperature Profiles of Low-Birth-Weight Piglets. Animals, 13(20), 3259. https://doi.org/10.3390/ani13203259