Inferring on Speleomantes Foraging Behavior from Gut Contents Examination
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Flying vs. Walking Prey
3.2. Affinity for Surface Species or Opportunism?
3.3. Do Speleomantes Catch Prey from Aquatic Environments?
3.4. “Unfriendly” Prey
3.5. The Myth of Cannibalism
3.6. Do Speleomantes Process Their Food?
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanza, B.; Pastorelli, C.; Laghi, P.; Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti. Mus. Civ. Stor. Nat. Trieste 2006, 52, 5–135. [Google Scholar]
- Chiari, Y.; van der Meijden, A.; Mucedda, M.; Lourenço, J.M.; Hochkirch, A.; Veith, M. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology. PLoS ONE 2012, 7, e32332. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Cimmaruta, R.; Manenti, R. Transgressive niche across a salamander hybrid zone revealed by microhabitat analyses. J. Biogeogr. 2019, 46, 1342–1354. [Google Scholar] [CrossRef]
- Bruni, G.; Chiocchio, A.; Nascetti, G.; Cimmaruta, R. Different patterns of introgression in a three species hybrid zone among European cave salamanders. Ecol. Evol. 2023, 13, e10437. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Cimmaruta, R. The identity of an allochthonous Pyrenean population of Speleomantes cave salamanders. Salamandra 2022, 58, 67–70. [Google Scholar]
- Lucente, D.; Renet, J.; Gailledrat, M.; Tillet, J.; Nascetti, G.; Cimmaruta, R. A new population of European cave salamanders (genus Hydromantes) from west-central France: Relict or introduction? Herpetol. Bull. 2016, 138, 21–23. [Google Scholar]
- Schulz, V.; Gerhardt, P.; Stützer, D.; Seidel, U.; Vences, M. Lungless salamanders of the genus Speleomantes in the Solling, Germany: Genetic identification, Bd/Bsal-screening, and introduction hypothesis. Herpetol. Notes 2021, 14, 421–429. [Google Scholar]
- Ginal, P.; Loske, C.-H.; Hörren, T.; Rödder, D. Cave salamanders (Speleomantes spp.) in Germany: Tentative species identification, estimation of population size and first insights into an introduced salamander. Herpetol. Notes 2021, 14, 815–822. [Google Scholar]
- Cimmaruta, R.; Forti, G.; Lucente, D.; Nascetti, G. Thirty years of artificial syntopy between Hydromantes italicus and H. ambrosii ambrosii (Amphibia, Plethodontidae). Amphib.-Reptil. 2013, 34, 413–420. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection? PeerJ 2015, 3, e1122. [Google Scholar] [CrossRef]
- Howarth, F.G.; Moldovan, O.T. The ecological classification of cave animals and their adaptations. In Cave Ecology; Moldovan, O.T., Kováč, Ľ., Halse, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 41–67. [Google Scholar]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecologica 2014, 55, 29–35. [Google Scholar] [CrossRef]
- Salvidio, S.; Palumbi, G.; Romano, A.; Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 2017, 104, 20. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Canedoli, C.; Padoa-Schioppa, E.; Pennati, R.; Manenti, R. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 2018, 8, 10575. [Google Scholar] [CrossRef]
- Costa, A.; Crovetto, F.; Salvidio, S. European plethodontid salamanders on the forest floor: Local abundance is related to fine-scale environmental factors. Herpetol. Conserv. Biol. 2016, 11, 344–349. [Google Scholar]
- Salvidio, S.; Pasmans, F.; Bogaerts, S.; Martel, A.; van de Loo, M.; Romano, A. Consistency in trophic strategies between populations of the Sardinian endemic salamander Speleomantes imperialis. Anim. Biol. 2017, 67, 1–16. [Google Scholar] [CrossRef]
- Manenti, R. Dry stone walls favour biodiversity: A case-study from the Appennines. Biodivers. Conserv. 2014, 23, 1879–1893. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Mulargia, M.; Cogoni, R.; Barzaghi, B.; Cornago, L.; Avitabile, D.; Veith, M.; Manenti, R.; et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 2018, 5, 180083. [Google Scholar] [CrossRef]
- Lunghi, E.; Corti, C.; Biaggini, M.; Merilli, S.; Manenti, R.; Zhao, Y.; Ficetola, G.F.; Cianferoni, F. Capture-mark-recapture data on the strictly protected Speleomantes italicus. Ecology 2022, 103, e3641. [Google Scholar] [CrossRef] [PubMed]
- Roth, G. Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae). J. Comp. Physiol. A 1976, 109, 47–58. [Google Scholar] [CrossRef]
- Deban, S.M.; Richardson, J.C. Cold-Blooded snipers: Thermal independence of ballistic tongue projection in the salamander Hydromantes platycephalus. J. Exp. Zool. 2011, 315, 618–630. [Google Scholar] [CrossRef]
- Deban, S.M.; O’Reilly, J.C.; Dicke, U.; van Leeuwen, J.L. Extremely high-power tongue projection in plethodontid salamanders. J. Exp. Biol. 2007, 210, 655–667. [Google Scholar] [CrossRef]
- Salvidio, S. Diet and food utilization in a rock-face population of Speleomantes ambrosii (Amphibia, Caudata, Plethodontidae). Vie Milieu 1992, 42, 35–39. [Google Scholar]
- Costa, A.; Salvidio, S.; Posillico, M.; Altea, T.; Matteucci, G.; Romano, A. What goes in does not come out: Different non-lethal dietary methods give contradictory interpretation of prey selectivity in amphibians. Amphib.-Reptil. 2014, 35, 255–262. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Veith, M.; Manenti, R.; Mancinelli, G.; Corti, C.; Ficetola, G.F. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 2018, 13, e0205672. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Zhao, Y.; Manenti, R.; Corti, C.; Ficetola, G.F.; Mancinelli, G. Same diet, different strategies: Variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 2020, 12, 180. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Corti, C.; Zhao, Y.; Manenti, R.; Ficetola, G.F.; Mancinelli, G. The trophic niche of subterranean populations of Speleomantes italicus: A multi-temporal analysis. Sci. Rep. 2022, 12, 18257. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Cianferoni, F.; Ceccolini, F.; Veith, M.; Corti, C.; Ficetola, G.F.; Mancinelli, G. Interspecific and inter-population variation in individual diet specialization: Do environmental factors have a role? Ecology 2020, 101, e03088. [Google Scholar] [CrossRef] [PubMed]
- Salvidio, S.; Oneto, F.; Ottonello, D.; Costa, A.; Romano, A. Trophic specialization at the individual level in a terrestrial generalist salamander. Can. J. Zool. 2015, 93, 79–83. [Google Scholar] [CrossRef]
- Burns, K.C.; Low, J. The psychology of natural history. Trends Ecol. Evol. 2022, 37, 1029–1031. [Google Scholar] [CrossRef]
- Vignoli, L.; Caldera, F.; Bologna, M.A. Trophic niche of cave populations of Speleomantes italicus. J. Nat. Hist. 2006, 40, 1841–1850. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Giachello, S.; Zhao, Y.; Manenti, R.; Corti, C.; Ficetola, G.F. Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes. Sci. Data 2021, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Guillaume, O.; Blaimont, P.; Manenti, R. The first ecological study on the oldest allochthonous population of European cave salamanders (Hydromantes sp.). Amphib.-Reptil. 2018, 39, 113–119. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Merilli, S.; Zhao, Y.; Manenti, R.; Ficetola, G.F.; Corti, C. Ecological observations on hybrid populations of European plethodontid salamanders, genus Speleomantes. Diversity 2021, 13, 285. [Google Scholar] [CrossRef]
- Casali, S.; Pagliarani, M.; Cofani, M.; Cianferoni, F.; Lunghi, E. First data on the consumed prey by Speleomantes italicus from the Republic of San Marino. Acta Herpetol. 2023; in press. [Google Scholar]
- Crovetto, F.; Romano, A.; Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildl. Res. 2012, 39, 266–270. [Google Scholar] [CrossRef]
- Lunghi, E.; Mammola, S.; Martinez, A.; Hesselberg, T. Behavioural adjustments enable the colonization of subterranean environments. Zool. J. Linn. Soc. 2023; in press. [Google Scholar] [CrossRef]
- Lombard, R.E.; Wake, D.B. Tongue evolution in the lungless salamanders, family Plethodontidae. II. Function and evolutionary diversity. J. Morphol. 1977, 153, 39–79. [Google Scholar] [CrossRef]
- Deban, S.M.; Scales, J.A.; Bloom, S.V.; Easterling, C.M.; O’Donnell, M.K.; Olberding, J.P. Evolution of a high-performance and functionally robust musculoskeletal system in salamanders. Proc. Natl. Acad. Sci. USA 2020, 117, 10445–10454. [Google Scholar] [CrossRef]
- Wake, D.B. Adaptive Radiation of Salamanders in Middle American Cloud Forests. Ann. Mo. Bot. Gard. 1987, 74, 242–264. [Google Scholar] [CrossRef]
- O’Donnell, M.K.; Lunghi, E.; Deban, S.M. Cling performance and contact area in European Hydromantes (Speleomantes) salamanders. Integr. Comp. Biol. 2021, 61, E660–E661. [Google Scholar]
- Cogoni, R.; Mulargia, M.; Manca, S.; Croubu, V.; Giachello, S.; Lunghi, E. New observations on the tree-dwelling behaviour of European cave salamanders (genus Speleomantes). In Proceedings of the XIV Congresso Nazionale della Societas Herpetologica Italica, Torino, Italy, 13–17 September 2022. [Google Scholar]
- Casali, S.; Suzzi Valli, A.; Busignani, G.; Tedaldi, G. Costumi arboricoli di Speleomantes italicus (Dunn, 1923) nella Repubblica di San Marino. Ann. Mus. Civ. Storia Nat. Giacomo Doria Genova 2005, 97, 145–152. [Google Scholar]
- Lunghi, E.; Corti, C.; Mulargia, M.; Zhao, Y.; Manenti, R.; Ficetola, G.F.; Veith, M. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers. Data J. 2020, 8, e48623. [Google Scholar] [CrossRef]
- Lunghi, E.; Mascia, C.; Mulargia, M.; Corti, C. Is the Sardinian grass snake (Natrix natrix cetti) an active hunter in underground environments? Spixiana 2018, 41, 160. [Google Scholar]
- Bradley, J.G.; Eason, P.K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 2019, 155, 841–859. [Google Scholar] [CrossRef]
- Roth, G. Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Exp. Brain Res. 1982, 45, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Corti, C.; Biaggini, M.; Zhao, Y.; Cianferoni, F. The trophic niche of two sympatric species of salamanders (Plethodontidae and Salamandridae) from Italy. Animals 2022, 12, 2221. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Lunghi, E.; Canedoli, C.; Bonaccorsi, M.; Ficetola, G.F. Parasitism of the leech, Batracobdella algira (Moquin-Tandon, 1846), on Sardinian cave salamanders (genus Hydromantes) (Caudata: Plethodontidae). Herpetozoa 2016, 29, 27–35. [Google Scholar]
- Lunghi, E.; Corti, C. Predation of European cave salamanders (Speleomantes) by the spider Meta bourneti. Spixiana 2021, 44, 54. [Google Scholar]
- Lunghi, E.; Manenti, R.; Manca, S.; Mulargia, M.; Pennati, R.; Ficetola, G.F. Nesting of cave salamanders (Hydromantes flavus and H. italicus) in natural environments. Salamandra 2014, 50, 105–109. [Google Scholar]
- Oneto, F.; Ottonello, D.; Pastorino, M.V.; Salvidio, S. Maternal care and defence of young by the plethodontid salamander Speleomantes strinatii (Aellen, 1951). In Scripta Herpetologica. Studies on Amphibians and Reptiles in Honour of Benedetto Lanza; Capula, M., Corti, C., Eds.; Edizioni Belvedere: Latina, Italy, 2014; pp. 129–138. [Google Scholar]
- Lunghi, E.; Murgia, R.; De Falco, G.; Buschettu, S.; Mulas, C.; Mulargia, M.; Canedoli, C.; Manenti, R.; Ficetola, G.F. First data on nesting ecology and behaviour in the Imperial cave salamander Hydromantes imperialis. North-West. J. Zool. 2015, 11, 324–330. [Google Scholar]
- Culver, D.C.; Pipan, T. The Biology of Caves and Other Subterranean Habitats, 2nd ed.; Oxford University Press: New York, NY, USA, 2019. [Google Scholar]
- Manenti, R.; Lunghi, E.; Ficetola, G.F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 2015, 134, 242–251. [Google Scholar] [CrossRef]
- Lunghi, E.; Ficetola, G.F.; Zhao, Y.; Manenti, R. Are the neglected Tipuloidea crane flies (Diptera) an important component for subterranean environments? Diversity 2020, 12, 333. [Google Scholar] [CrossRef]
- Roughgarden, J. Evolution of niche width. Am. Nat. 1972, 106, 683–718. [Google Scholar] [CrossRef]
- Christiansen, K.A. Convergence and parallelism in cave Entomobryinae. Evolution 1961, 15, 231–288. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Mulargia, M.; Veith, M.; Corti, C.; Ficetola, G.F. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 2018, 8, 7527. [Google Scholar] [CrossRef]
- Mammola, S.; Isaia, M. Cave Communities and Species Interactions. In Cave Ecology; Moldovan, O.T., Kovác, L., Halse, S., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 255–267. [Google Scholar]
- Barzaghi, B.; Ficetola, G.F.; Pennati, R.; Manenti, R. Biphasic predators provide biomass subsidies in small freshwater habitats: A case study of spring and cave pools. Freshw. Biol. 2017, 62, 1637–1644. [Google Scholar] [CrossRef]
- Lunghi, E.; Valle, B.; Guerrieri, A.; Bonin, A.; Cianferoni, F.; Manenti, R.; Ficetola, G.F. Complex patterns of environmental DNA transfers from surface to subterranean soils revealed by analyses of cave insects and springtails. Sci. Total Environ. 2022, 826, 154022. [Google Scholar] [CrossRef] [PubMed]
- Krab, E.J.; Oorsprong, H.; Berg, M.P.; Cornelissen, J.H.C. Turning northern peatlands upside down: Disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct. Ecol. 2010, 24, 1362–1369. [Google Scholar] [CrossRef]
- Manenti, R.; Barzaghi, B.; Lana, E.; Stocchino, G.A.; Manconi, R.; Lunghi, E. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: Conservation issues. J. Nat. Conserv. 2018, 45, 90–97. [Google Scholar] [CrossRef]
- Franciscolo, M.E. Coleoptera Haliplidae, Hygrobiidae, Gyrinidae, Dytiscidae; Fauna d’Italia, XIV; Calderini: Bologna, Italy, 1979. [Google Scholar]
- Pirisinu, Q. Palpicorni (Coleoptera: Hydraenidae, Helophoridae, Spercheidae, Hydrochidae, Hydrophilidae, Sphaeridiidae). In Guide per il Riconoscimento delle Specie Animali delle Acque Interne Italiane, 13; AQ/1/128; Consiglio Nazionale delle Ricerche: Roma, Italy, 1981. [Google Scholar]
- Moretti, G. Tricotteri (Trichoptera). In Guide per il Riconoscimento delle Specie Animali delle Acque Interne Italiane, 19; AQ/1/196; Consiglio Nazionale delle Ricerche: Roma, Italy, 1983. [Google Scholar]
- O‗Rourke, F.J. Formic acid production among the Formicidae. Ann. Entomol. Soc. Am. 1950, 43, 437–443. [Google Scholar] [CrossRef]
- Grandi, G. Introduzione Allo Studio Dell’entomologia; Calderini Edagricole: Bologna, Italy, 1951; Volume 2. [Google Scholar]
- Makarov, S.E.; Bodner, M.; Reineke, D.; Vujisić, L.V.; Todosijević, M.M.; Antić, D.Ž.; Vagalinski, B.; Lučić, L.R.; Mitić, B.M.; Mitov, P.; et al. Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae). J. Chem. Ecol. 2017, 43, 317–326. [Google Scholar] [CrossRef]
- Conner, W.E.; Boada, R.; Schroeder, F.C.; González, A.; Meinwald, J.; Eisner, T. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc. Natl. Acad. Sci. USA 2000, 97, 14406–14411. [Google Scholar] [CrossRef]
- Tromans, A. The alkaloid defence. Nature 2001, 409, 28. [Google Scholar] [CrossRef] [PubMed]
- O’Hanlon, A.; Williams, C.D.; Gormally, M.J. Terrestrial slugs (Mollusca: Gastropoda) share common anti-predator defence mechanisms but their expression differs among species. J. Zool. 2019, 307, 203–214. [Google Scholar] [CrossRef]
- Manenti, R.; Melotto, A.; Guillaume, O.; Ficetola, G.F.; Lunghi, E. Switching from mesopredator to apex predator: How do responses vary in amphibians adapted to cave living? Behav. Ecol. Sociobiol. 2020, 74, 126. [Google Scholar] [CrossRef]
- Sanna, L.; Bonato, L.; Marcia, P.; Zapparoli, M. First Record of Predation by Plutonium zwierleini Cavanna, 1881 (Chilopoda Scolopendromorpha) on Speleomantes supramontis (Lanza, Nascetti & Bullini, 1986) (Amphibia Plethodontidae) in Sardinia, Italy. In Proceedings of the Unione Zoologica Italiana, 79° Congresso, Lecce, Italy, 25–27 September 2018. [Google Scholar]
- Iorio, C.; Scherini, R.; Fontana, P.; Buzzetti, F.M.; Kleukers, R.; Odé, B.; Massa, B. Grasshoppers & Crickets of Italy; WBA Project Srl: Verona, Italy, 2019. [Google Scholar]
- Christiansen, K.A. Morphological adaptations. In Encyclopedia of Caves; White, W., Culver, D.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 386–397. [Google Scholar]
- Di Russo, C.; Vellei, A.; Carchini, G.; Sbordoni, V. Life cycle and age structure of Dolichopoda populations (Orthoptera, Raphidophoridae) from natural and artificial cave habitats. Boll. Zool. 1987, 4, 337–340. [Google Scholar] [CrossRef]
- Carchini, G.; Rampini, M.; Sbordoni, V. Life cycle and population ecology of the cave cricket Dolichopoda geniculata (Costa) from Valmarino cave (Central Italy). Int. J. Speleol. 1994, 23, 6. [Google Scholar] [CrossRef]
- Lunghi, E.; Corti, C.; Manenti, R.; Barzaghi, B.; Buschettu, S.; Canedoli, C.; Cogoni, R.; De Falco, G.; Fais, F.; Manca, A.; et al. Comparative reproductive biology of European cave salamanders (genus Hydromantes): Nesting selection and multiple annual breeding. Salamandra 2018, 54, 101–108. [Google Scholar]
- Spence, M.; Rull-Garza, M.; Roba, Y.T.; Konow, N. Do salamanders chew? An XROMM analysis of ambystomatid intraoral feeding behaviors. Philos. Trans. R. Soc. B, 2023; in press. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cianferoni, F.; Lunghi, E. Inferring on Speleomantes Foraging Behavior from Gut Contents Examination. Animals 2023, 13, 2782. https://doi.org/10.3390/ani13172782
Cianferoni F, Lunghi E. Inferring on Speleomantes Foraging Behavior from Gut Contents Examination. Animals. 2023; 13(17):2782. https://doi.org/10.3390/ani13172782
Chicago/Turabian StyleCianferoni, Fabio, and Enrico Lunghi. 2023. "Inferring on Speleomantes Foraging Behavior from Gut Contents Examination" Animals 13, no. 17: 2782. https://doi.org/10.3390/ani13172782
APA StyleCianferoni, F., & Lunghi, E. (2023). Inferring on Speleomantes Foraging Behavior from Gut Contents Examination. Animals, 13(17), 2782. https://doi.org/10.3390/ani13172782