Responses to Reduced Feeding Frequency in Captive-Born Cheetahs (Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Animals
2.2. Experimental Design
2.3. Behavioural Data Collection
2.4. Faecal Sample Collection and Consistency Scoring
2.5. Faecal Steroid Extraction and Quantification
2.6. Data Preparation
2.6.1. Behavioural Observations
2.6.2. Faecal Consistency Scores and Glucocorticoid Metabolite Concentrations
2.7. Statistical Analysis
3. Results
3.1. Behavioural Observations
3.2. Faecal Consistency Scores
3.3. Faecal Glucocorticoid Metabolite Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Materials and Methods
Appendix A.1.1. Body Temperature, Heart Rate, and Locomotor Activity Recordings
Appendix A.1.2. Surgical Procedures
Appendix A.1.3. Data Preparation
Appendix A.1.4. Statistical Analysis
Appendix A.2. Results
Variable | Effect | Level | -Level | t | p | df 1 | Cohen’s d | 95% CI 2 for Cohen’s d | |
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Body temperature (°C) | Feeding time | Yes | No | 9.46 | <0.0001 | 16698 | 0.41 | 0.32 | 0.49 |
Feeding time*part of the day | Yes, evening | No, evening | 7.24 | <0.0001 | 16698 | 0.65 | 0.48 | 0.83 | |
Feeding time*part of the day | Yes, afternoon | No, afternoon | 6.22 | <0.0001 | 16698 | 0.54 | 0.37 | 0.71 | |
Treatment Wk 3 | Treatment (Wk 3 3) | Treatment (Wk 3 2) | 6.93 | <0.0001 | 33439 | 0.13 | 0.09 | 0.16 | |
Treatment Wk 3 | Treatment (Wk 3 3) | Control | 6.60 | <0.0001 | 33439 | 0.10 | 0.07 | 0.13 | |
Treatment Wk 3 | Treatment (Wk 3 3) | Treatment (Wk 3 1) | 4.37 | <0.0001 | 33439 | 0.08 | 0.04 | 0.12 | |
Heart rate (bpm) | Study period | Control | Treatment | 7.11 | <0.0001 | 30221 | 0.11 | 0.08 | 0.14 |
Feed/fast day | Feed day | Fast day | 13.26 | <0.0001 | 30221 | 0.20 | 0.17 | 0.23 | |
Study period*feed/fast day | Control, feed day | Treatment, fast day | 18.97 | <0.0001 | 30221 | 0.31 | 0.27 | 0.34 | |
Study period*feed/fast day | Treatment, feed day | Treatment, fast day | 18.05 | <0.0001 | 30221 | 0.30 | 0.26 | 0.33 | |
Study period*feed/fast day | Control, fast day | Treatment, fast day | 7.59 | <0.0001 | 30221 | 0.20 | 0.15 | 0.26 | |
Study period*feed/fast day | Control, feed day | Control, fast day | 4.03 | <0.0001 | 30221 | 0.10 | 0.05 | 0.15 | |
Study period*feed/fast day | Treatment, feed day | Control, fast day | 3.64 | 0.000 | 30221 | 0.09 | 0.04 | 0.14 | |
Treatment Wk 3 | Control | Treatment (Wk 3 2) | 10.33 | <0.0001 | 30221 | 0.17 | 0.13 | 0.20 | |
Treatment Wk 3 | Treatment (Wk 3 1) | Treatment (Wk 3 2) | 6.25 | <0.0001 | 30221 | 0.12 | 0.08 | 0.16 | |
Treatment Wk 3 | Treatment (Wk 3 3) | Treatment (Wk 3 2) | 4.34 | <0.0001 | 30221 | 0.08 | 0.05 | 0.12 | |
Treatment Wk 3 | Control | Treatment (Wk 3 3) | 5.12 | <0.0001 | 30221 | 0.08 | 0.05 | 0.11 | |
Treatment Wk 3 | Control | Treatment (Wk 3 1) | 2.85 | 0.004 | 30221 | 0.05 | 0.01 | 0.08 | |
Feeding time | Yes | No | 1.97 | 0.048 | 14834 | 0.09 | 0.00 | 0.18 | |
Feeding time*part of the day | No, late morning | Yes, late morning | 3.69 | 0.000 | 14834 | 0.14 | 0.07 | 0.21 | |
Locomotor activity (ODBA) | Study period | Treatment | Control | 15.48 | <0.0001 | 33399 | 0.22 | 0.19 | 0.25 |
Feed/fast day | Feed day | Fast day | 0.38 | 0.707 | 33399 | 0.01 | −0.02 | 0.03 | |
Study period*feed/fast day | Treatment, fast day | Control, fast day | 10.13 | <0.0001 | 33399 | 0.26 | 0.21 | 0.31 | |
Study period*feed/fast day | Treatment, feed day | Control, fast day | 9.39 | <0.0001 | 33399 | 0.23 | 0.18 | 0.27 | |
Study period*feed/fast day | Treatment, fast day | Control, feed day | 14.11 | <0.0001 | 33399 | 0.22 | 0.19 | 0.25 | |
Study period*feed/fast day | Treatment, feed day | Control, feed day | 14.44 | <0.0001 | 33399 | 0.18 | 0.16 | 0.21 | |
Study period*feed/fast day | Treatment, fast day | Treatment, feed day | 2.11 | 0.035 | 33399 | 0.03 | 0.00 | 0.06 | |
Treatment Wk 3 | Treatment (Wk 3 1) | Control | 16.66 | <0.0001 | 33399 | 0.25 | 0.22 | 0.28 | |
Treatment Wk 3 | Treatment (Wk 3 2) | Control | 14.14 | <0.0001 | 33399 | 0.21 | 0.19 | 0.24 | |
Treatment Wk 3 | Treatment (Wk 3 3) | Control | 8.68 | <0.0001 | 33399 | 0.13 | 0.10 | 0.16 | |
Treatment Wk 3 | Treatment (Wk 3 1) | Treatment (Wk 3 3) | 6.66 | <0.0001 | 33399 | 0.12 | 0.09 | 0.16 | |
Treatment Wk 3 | Treatment (Wk 3 2) | Treatment (Wk 3 3) | 4.56 | <0.0001 | 33399 | 0.08 | 0.05 | 0.12 | |
Feeding time | Yes | No | 7.74 | <0.0001 | 16686 | 0.33 | 0.25 | 0.42 |
Appendix A.3. Discussion
References
- Hayward, M.W.; Hofmeyr, M.; O’Brien, J.; Kerley, G.I.H. Prey preferences of the cheetah Acinonyx jubatus: Morphological limitations or the need to captive rapidly consumable prey before kleptoparasites arrive? J. Zool. 2006, 270, 615–627. [Google Scholar] [CrossRef]
- Phillips, J.A. Bone consumption by cheetahs at undisturbed kills: Evidence for a lack of focal-palatine erosion. J. Mammal. 1993, 74, 487–492. [Google Scholar] [CrossRef]
- Mills, M.G.L.; Harvey, M. African Predators; Struik Publishers: Cape Town, South Africa, 2001. [Google Scholar]
- Tordiffe, A.S.; Wachter, B.; Heinrich, S.K.; Reyers, F.; Mienie, L.J. Comparative serum fatty acid profiles of captive and free-ranging cheetahs (Acinonyx jubatus) in Namibia. PLoS ONE 2016, 11, e0167608. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse-Tedd, K.M.; Lefebvre, S.L.; Janssens, G.P. Dietary factors associated with faecal consistency and other indicators of gastrointestinal health in the captive cheetah (Acinonyx jubatus). PLoS ONE 2015, 10, e0120903. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J. The importance of food presentation for animal welfare and conservation. Proc. Nutr. Soc. 1997, 56, 1095–1104. [Google Scholar] [CrossRef]
- Tordiffe, A.S.W. Personal Communication; University of Pretoria: Pretoria, South Africa, 2023. [Google Scholar]
- Lane, E.P.; Miller, S.; Lobetti, R.; Caldwell, P.; Bertschinger, H.J.; Burroughs, R.; Kotze, A.; van Dyk, A. Effect of diet on the incidence of and mortality owing to gastritis and renal disease in captive cheetahs (Acinonyx jubatus) in South Africa. Zoo Biol. 2012, 31, 669–682. [Google Scholar] [CrossRef]
- Kotsch, V.; Kubber-Heiss, A.; Url, A.; Walzer, C.; Schmidt, P. Diseases of captive cheetahs (Acinonyx jubatus) within the European endangered species program (EEP)—A 22-year retrospective histopathological study. Wien. Tierarztl. Monatsschr. 2002, 89, 341–350. [Google Scholar]
- Munson, L.; Terio, K.A.; Worley, M.; Jago, M.; Bagot-Smith, A.; Marker, L. Extrinsic factors significantly affect patterns of disease in free-ranging and captive cheetah (Acinonyx jubatus) populations. J. Wildl. Dis. 2005, 41, 542–548. [Google Scholar] [CrossRef]
- Une, Y.; Uchida, C.; Konishi, M.; Ui, T.; Kawakami, S.; Ito, S.; Nomura, Y. Pathological study of cheetahs (Acinonyx jubatus) dying in captivity in Japan. Vet. Pathol. 2001, 38, 585. [Google Scholar]
- Terio, K.A.; Mitchell, E.; Walzer, C.; Schmidt-Küntzel, A.; Marker, L.; Citino, S. Diseases impacting captive and free-ranging cheetahs. In Biodiversity of the World—Cheetahs: Biology and Conservation, 1st ed.; Marker, L., Boast, L.K., Schmidt-Küntzel, A., Eds.; Elsevier: San Diego, CA, USA, 2018; pp. 349–360. [Google Scholar] [CrossRef]
- Eaton, K.A.; Radin, M.J.; Kramer, L.; Wack, R.; Sherding, R.; Krakowka, S.; Fox, J.G.; Morgan, D.R. Epizootic gastritis associated with gastric spiral bacilli in cheetahs (Acinonyx jubatus). Vet. Pathol. 1993, 30, 55–63. [Google Scholar] [CrossRef]
- Terio, K.A.; Munson, L.; Moore, P.F. Characterization of the gastric immune response in cheetahs (Acinonyx jubatus) with Helicobacter-associated gastritis. Vet. Pathol. 2012, 49, 824–833. [Google Scholar] [CrossRef]
- Terio, K.A.; Munson, L.; Marker, L.; Aldridge, B.M.; Solnick, J.V. Comparison of Helicobacter spp. in cheetahs (Acinonyx jubatus) with and without gastritis. J. Clin. Microbiol. 2005, 43, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Vester, B.M.; Beloshapka, A.N.; Middelbos, I.S.; Burke, S.L.; Dikeman, C.L.; Simmons, L.G.; Swanson, K.S. Evaluation of nutrient digestibility and fecal characteristics of exotic felids fed horse- or beef-based diets: Use of the domestic cat as a model for exotic felids. Zoo Biol. 2010, 29, 432–448. [Google Scholar] [CrossRef]
- Becker, A.A.M.J.; Hesta, M.; Hollants, J.; Janssens, G.P.J.; Huys, G. Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae. BMC Microbiol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Wasimuddin; Menke, S.; Melzheimer, J.; Thalwitzer, S.; Heinrich, S.; Wachter, B.; Sommer, S. Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 2017, 26, 5515–5527. [Google Scholar] [CrossRef] [PubMed]
- Depauw, S.; Bosch, G.; Hesta, M.; Whitehouse-Tedd, K.; Hendriks, W.H.; Kaandorp, J.; Janssens, G.P.J. Fermentation of animal components in strict carnivores: A comparative study with cheetah fecal inoculum. J. Anim. Sci. 2012, 90, 2540–2548. [Google Scholar] [CrossRef] [PubMed]
- Depauw, S.; Hesta, M.; Whitehouse-Tedd, K.; Vanhaecke, L.; Verbrugghe, A.; Janssens, G.P.J. Animal fibre: The forgotten nutrient in strict carnivores? First insights in the cheetah. J. Anim. Physiol. Anim. Nutr. 2013, 97, 146–154. [Google Scholar] [CrossRef]
- Rochus, K.; Bosch, G.; Vanhaecke, L.; van de Velde, H.; Depauw, S.; Xu, J.; Fievez, V.; van de Wiele, T.; Hendriks, W.H.; Janssens, G.P.J.; et al. Incubation of selected fermentable fibres with feline faecal inoculum: Correlations between in vitro fermentation characteristics and end products. Arch. Anim. Nutr. 2013, 67, 416–431. [Google Scholar] [CrossRef]
- Depauw, S.; Hesta, M.; Whitehouse-Tedd, K.; Stagegaard, J.; Buyse, J.; Janssens, G.P.J. Blood values of adult captive cheetahs (Acinonyx jubatus) fed either supplemented beef or whole rabbit carcasses. Zoo Biol. 2012, 31, 629–641. [Google Scholar] [CrossRef]
- Depauw, S.; Heilmann, R.M.; Whitehouse-Tedd, K.; Hesta, M.; Steiner, J.M.; Suchodolski, J.S.; Janssens, G.P.J. Effect of diet type on serum and faecal concentration of S100/calgranulins in the captive cheetah. J. Zoo Aquar. Res. 2014, 2, 33–38. [Google Scholar] [CrossRef]
- Niwa, T. Uremic toxicity of indoxyl sulfate. Nagoya J. Med. Sci. 2010, 72, 1–11. [Google Scholar]
- Bolton, L.A.; Munson, L. Glomerulosclerosis in captive cheetahs (Acinonyx jubatus). Vet. Pathol. 1999, 36, 14–22. [Google Scholar] [CrossRef]
- Munson, L. Diseases of captive cheetahs (Acinonyx jubatus): Results of the cheetah research council pathology survey, 1989–1992. Zoo Biol. 1993, 12, 105–124. [Google Scholar] [CrossRef]
- Munson, L.; Nesbit, J.W.; Meltzer, D.G.; Colly, L.P.; Bolton, L.; Kriek, N.P. Diseases of captive cheetahs (Acinonyx jubatus jubatus) in South Africa: A 20-year retrospective survey. J. Zoo Wildl. Med. 1999, 30, 342–347. [Google Scholar]
- Papendick, R.E.; Munson, L.; O’Brien, T.D.; Johnson, K.H. Systemic AA amyloidosis in captive cheetahs (Acinonyx jubatus). Vet. Pathol. 1997, 34, 549–556. [Google Scholar] [CrossRef]
- Bertani, T.; Zoja, C.; Abbate, M.; Rossini, M.; Remuzzi, G. Age-related nephropathy and proteinuria in rats with intact kidneys exposed to diets with different protein content. Lab. Investig. 1989, 60, 196–204. [Google Scholar] [PubMed]
- Brenner, B.M.; Meyer, T.W.; Hostetter, T.H. Dietary protein intake and the progressive nature of kidney disease: The role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 1982, 307, 652–659. [Google Scholar] [CrossRef]
- Olson, J.L.; Heptinstall, R.H. Nonimmunologic mechanisms of glomerular injury. Lab. Investig. 1988, 59, 564–578. [Google Scholar]
- Li, L.; Su, Y.; Li, F.; Wang, Y.; Ma, Z.; Li, Z.; Su, J. The effects of daily fasting hours on shaping gut microbiota in mice. BMC Microbiol. 2020, 20, 65. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xie, C.; Lu, S.; Nichols, R.G.; Tian, Y.; Li, L.; Patel, D.; Ma, Y.; Brocker, C.N.; Yan, T.; et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 2017, 26, 672–685.e4, Erratum in Cell Metab. 2017, 26, 801. [Google Scholar] [CrossRef]
- Maifeld, A.; Bartolomaeus, H.; Löber, U.; Avery, E.G.; Steckhan, N.; Markó, L.; Wilck, N.; Hamad, I.; Šušnjar, U.; Mähler, A.; et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 2021, 12, 1970. [Google Scholar] [CrossRef]
- Patterson, R.E.; Sears, D.D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zou, Q.; Zhao, B.; Zhang, J.; Zhao, W.; Li, Y.; Liu, R.; Liu, X.; Liu, Z. Effects of alternate-day fasting, time-restricted fasting and intermittent energy restriction DSS-induced on colitis and behavioral disorders. Redox Biol. 2020, 32, 101535, Erratum in Redox Biol. 2021, 44, 101955. [Google Scholar] [CrossRef]
- Altman, J.D.; Gross, K.L.; Lowry, S.R. Nutritional and behavioral effects of gorge and fast feeding in captive lions. J. Appl. Anim. Welf. Sci. 2005, 8, 47–57. [Google Scholar] [CrossRef]
- Vester, B.M.; Burke, S.L.; Dikeman, C.L.; Simmons, L.G.; Swanson, K.S. Nutrient digestibility and fecal characteristics are different among captive exotic felids fed a beef-based raw diet. Zoo Biol. 2008, 27, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Nery, J.; Biourge, V.; Tournier, C.; Leray, V.; Martin, L.; Dumon, H.; Nguyen, P. Influence of dietary protein content and source on fecal quality, electrolyte concentrations, and osmolarity, and digestibility in dogs differing in body size. J. Anim. Sci. 2010, 88, 159–169. [Google Scholar] [CrossRef]
- Nery, J.; Goudez, R.; Biourge, V.; Tournier, C.; Leray, V.; Martin, L.; Thorin, C.; Nguyen, P.; Dumon, H. Influence of dietary protein content and source on colonic fermentative activity in dogs differing in body size and digestive tolerance. J. Anim. Sci. 2012, 90, 2570–2580. [Google Scholar] [CrossRef] [PubMed]
- Quirke, T.; O’Riordan, R.M.; Zuur, A. Factors influencing the prevalence of stereotypical behaviour in captive cheetahs (Acinonyx jubatus). Appl. Anim. Behav. Sci. 2012, 142, 189–197. [Google Scholar] [CrossRef]
- Terio, K.A.; Citino, S.B.; Brown, J.L. Fecal cortisol metabolite analysis for noninvasive monitoring of adrenocortical function in the cheetah (Acinonyx jubatus). J. Zoo Wildl. Med. 1999, 30, 484–491. [Google Scholar]
- Brown, K.L. Responses to Potential Captivity-Induced Stressors in Captive-Born Cheetah (Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 31 January 2023. [Google Scholar]
- Badiani, A.; Nanni, N.; Gatta, P.P.; Tolomelli, B.; Manfredini, M. Nutrient profile of horsemeat. J. Food Compos. Anal. 1997, 10, 254–269. [Google Scholar] [CrossRef]
- Tordiffe, A.S.W. Personal Communication; University of Pretoria: Pretoria, South Africa, 2019. [Google Scholar]
- Mistlberger, R.E. Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 1994, 18, 171–195. [Google Scholar] [CrossRef]
- Altmann, J. Observational study of behavior: Sampling methods. Behaviour 1974, 49, 227–267. [Google Scholar] [CrossRef]
- Quirke, T.; O’Riordan, R.M. The effect of different types of enrichment on the behaviour of cheetahs (Acinonyx jubatus) in captivity. Appl. Anim. Behav. Sci. 2011, 133, 87–94. [Google Scholar] [CrossRef]
- Quirke, T.; O’Riordan, R.M. The effect of a randomised enrichment treatment schedule on the behaviour of cheetahs (Acinonyx jubatus). Appl. Anim. Behav. Sci. 2011, 135, 103–109. [Google Scholar] [CrossRef]
- Regaiolli, B.; Rizzo, A.; Ottolini, G.; Miletto Petrazzini, M.E.; Spiezio, C.; Agrillo, C. Motion illusions as environmental enrichment for zoo animals: A preliminary investigation on lions (Panthera leo). Front. Psychol. 2019, 10, 2220. [Google Scholar] [CrossRef] [PubMed]
- Carlstead, K.; Brown, J.L.; Strawn, W. Behavioral and physiological correlates of stress in laboratory cats. Appl. Anim. Behav. Sci. 1993, 38, 143–158. [Google Scholar] [CrossRef]
- Davey, G. Relationships between exhibit naturalism, animal visibility and visitor interest in a Chinese Zoo. Appl. Anim. Behav. Sci. 2006, 96, 93–102. [Google Scholar] [CrossRef]
- Hosey, G. Hediger revisited: How do zoo animals see us? J. Appl. Anim. Welf. Sci. 2013, 16, 338–359. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.N.; Tromborg, C.T. Sources of stress in captivity. Appl. Anim. Behav. Sci. 2007, 102, 262–302. [Google Scholar] [CrossRef]
- Sellinger, R.L.; Ha, J.C. The effects of visitor density and intensity on the behavior of two captive jaguars (Panthera onca). J. Appl. Anim. Welf. Sci. 2005, 8, 233–244. [Google Scholar] [CrossRef]
- Ludwig, C.; Wachter, B.; Silinski-Mehr, S.; Ganswindt, A.; Bertschinger, H.; Hofer, H.; Dehnhard, M. Characterisation and validation of an enzyme-immunoassay for the non-invasive assessment of faecal glucocorticoid metabolites in cheetahs (Acinonyx jubatus). Gen. Comp. Endocrinol. 2013, 180, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Fieß, M.; Heistermann, M.; Hodges, J.K. Patterns of urinary and fecal steroid excretion during the ovarian cycle and pregnancy in the African elephant (Loxodonta africana). Gen. Comp. Endocrinol. 1999, 115, 76–89. [Google Scholar] [CrossRef]
- Ganswindt, A.; Muenscher, S.; Henley, M.; Henley, S.; Heistermann, M.; Palme, R.; Thompson, P.; Bertschinger, H. Endocrine correlates of musth and the impact of ecological and social factors in free-ranging African elephants (Loxodonta africana). Horm. Behav. 2010, 57, 506–514. [Google Scholar] [CrossRef]
- Palme, R.; Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Int. J. Mammal Biol. 1997, 62 (Suppl. II), 192–197. [Google Scholar]
- Ganswindt, A.; Heistermann, M.; Borragan, S.; Hodges, J.K. Assessment of testicular endocrine function in captive African elephants by measurement of urinary and fecal androgens. Zoo Biol. 2002, 21, 27–36. [Google Scholar] [CrossRef]
- Keay, J.M.; Singh, J.; Gaunt, M.C.; Kaur, T. Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: A literature review. J. Zoo Wildl. Med. 2006, 37, 234–244. [Google Scholar] [CrossRef]
- Palme, R. Measuring fecal steroids: Guidelines for practical application. Ann. N. Y. Acad. Sci. 2005, 1046, 75–80. [Google Scholar] [CrossRef]
- Graham, L.H.; Brown, J.L. Cortisol metabolism in the domestic cat and implications for non-invasive monitoring of adrenocortical function in endangered felids. Zoo Biol. 1996, 15, 71–82. [Google Scholar] [CrossRef]
- Maclure, M. The case-crossover design: A method for studying transient effects on the risk of acute events. Am. J. Epidemiol. 1991, 133, 144–153. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 1918, 53, 399–433. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Tigchelaar, E.F.; Bonder, M.J.; Jankipersadsing, S.A.; Fu, J.; Wijmenga, C.; Zhernakova, A. Gut microbiota composition associated with stool consistency. Gut 2016, 65, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Tito, R.Y.; Joossens, M.; Raes, J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016, 65, 57–62. [Google Scholar] [CrossRef]
- Accarie, A.; Vanuytsel, T. Animal models for functional gastrointestinal disorders. Front. Psychiatry 2020, 11, 509681. [Google Scholar] [CrossRef] [PubMed]
- Farzi, A.; Fröhlich, E.E.; Holzer, P. Gut microbiota and the neuroendocrine system. Neurotherapeutics 2018, 15, 5–22. [Google Scholar] [CrossRef]
- Carlstead, K.; Shepherdson, D. Alleviating stress in zoo animals with environmental enrichment. In The Biology of Animal Stress—Basic Principles and Implications for Animal Welfare; Moberg, G.P., Mench, J.A., Eds.; CAB International: New York, NY, USA, 2000; pp. 337–354. [Google Scholar]
- Swaisgood, R.R.; Shepherdson, D.J. Scientific approaches to enrichment and stereotypies in zoo animals: What’s been done and where should we go next? Zoo Biol. 2005, 24, 499–518. [Google Scholar] [CrossRef]
- Bond, J.C.; Lindburg, D.G. Carcass feeding of captive cheetahs (Acinonyx jubatus): The effects of a naturalistic feeding program on oral health and psychological well-being. Appl. Anim. Behav. Sci. 1990, 26, 373–382. [Google Scholar] [CrossRef]
- Skibiel, A.L.; Trevino, H.S.; Naugher, K. Comparison of several types of enrichment for captive felids. Zoo Biol. 2007, 26, 371–381. [Google Scholar] [CrossRef]
- Acaralp-Rehnberg, L.K.; Coleman, G.J.; Magrath, M.J.L.; Melfi, V.; Fanson, K.V.; Bland, I.M. The effect of behind-the-scenes encounters and interactive presentations on the welfare of captive servals (Leptailurus serval). Animals 2020, 10, 743. [Google Scholar] [CrossRef]
- Bashaw, M.J.; Kelling, A.S.; Bloomsmith, M.A.; Maple, T.L. Environmental effects on the behavior of zoo-housed lions and tigers, with a case study of the effects of a visual barrier on pacing. J. Appl. Anim. Welf. Sci. 2007, 10, 95–109. [Google Scholar] [CrossRef]
- Resende, L.D.S.; Neto, G.L.E.; Carvalho, P.G.D.; Landau-Remy, G.; Ramos-Júnior, V.D.A.; Andriolo, A.; Genaro, G. Time budget and activity patterns of oncilla cats (Leopardus tigrinus) in captivity. J. Appl. Anim. Welf. Sci. 2014, 17, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Macri, A.M.; Patterson-Kane, E. Behavioural analysis of solitary versus socially housed snow leopards (Panthera uncia), with the provision of simulated social contact. Appl. Anim. Behav. Sci. 2011, 130, 115–123. [Google Scholar] [CrossRef]
- Moreira, N.; Brown, J.L.; Moraes, W.; Swanson, W.F.; Monteiro-Filho, E.L. Effect of housing and environmental enrichment on adrenocortical activity, behavior and reproductive cyclicity in the female tigrina (Leopardus tigrinus) and margay (Leopardus wiedii). Zoo Biol. 2007, 26, 441–460. [Google Scholar] [CrossRef] [PubMed]
- Shepherdson, D.J.; Carlstead, K.; Mellen, J.D.; Seiden-sticker, J. The influence of food presentation on the behavior of small cats in confined environments. Zoo Biol. 1993, 12, 203–216. [Google Scholar] [CrossRef]
- Weller, S.H.; Bennett, C.L. Twenty-four hour activity budgets and patterns of behavior in captive ocelots (Leopardus pardalis). Appl. Anim. Behav. Sci. 2001, 71, 67–79. [Google Scholar] [CrossRef]
- Coffman, J. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. Future Neurol. 2020, 15, FNL39. [Google Scholar] [CrossRef]
- Romero, L.M.; Wingfield, J.C. Mediators of stress. In Tempests, Poxes, Predators, and People: Stress in Wild Animals and How They Cope, 1st ed.; Oxford University Press: New York, NY, USA, 2015; pp. 23–68. [Google Scholar]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Smail, M.A.; Smith, B.L.; Nawreen, N.; Herman, J.P. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol. Biochem. Behav. 2020, 197, 172993. [Google Scholar] [CrossRef]
- Meehan, C.L.; Mench, J.A. The challenge of challenge: Can problem solving opportunities enhance animal welfare? Appl. Anim. Behav. Sci. 2007, 102, 246–261. [Google Scholar] [CrossRef]
- Ashokan, A.; Sivasubramanian, M.; Mitra, R. Seeding stress resilience through inoculation. Neural. Plast. 2016, 2016, 4928081. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, C.; Ji, Y.; Yang, L. Biological and psychological perspectives of resilience: Is it possible to improve stress resistance? Front. Hum. Neurosci. 2018, 12, 326. [Google Scholar] [CrossRef]
- Crofton, E.J.; Zhang, Y.; Green, T.A. Inoculation stress hypothesis of environmental enrichment. Neurosci. Biobehav. Rev. 2015, 49, 19–31. [Google Scholar] [CrossRef]
- Lyons, D.M.; Parker, K.J.; Katz, M.; Schatzberg, A.F. Developmental cascades linking stress inoculation, arousal regulation, and resilience. Front. Behav. Neurosci. 2009, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.J.; Maestripieri, D. Identifying key features of early stressful experiences that produce stress vulnerability and resilience in primates. Neurosci. Biobehav. Rev. 2011, 35, 1466–1483. [Google Scholar] [CrossRef] [PubMed]
- Sprockett, D.; Fukami, T.; Relman, D.A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 197–205. [Google Scholar] [CrossRef]
- Li, X.; Bi, R.; Xiao, K.; Roy, A.; Zhang, Z.; Chen, X.; Peng, J.; Wang, R.; Yang, R.; Shen, X.; et al. Hen raising helps chicks establish gut microbiota in their early life and improve microbiota stability after H9N2 challenge. Microbiome 2022, 10, 14. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, C.K.; Chen, Y.Y.; Fang, A.; Shaw, G.T.W.; Hung, C.M.; Wang, D. Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests. Microbiome 2020, 8, 129. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kurihara, C.; Furuhashi, H.; Takajo, T.; Maruta, K.; Yasutake, Y.; Sato, H.; Narimatsu, K.; Okada, Y.; Higashiyama, M.; et al. Psychological stress exacerbates NSAID-induced small bowel injury by inducing changes in intestinal microbiota and permeability via glucocorticoid receptor signaling. J. Gastroenterol. 2017, 52, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Song, L.; Wang, Y.; Liu, C.; Zhang, L.; Zhu, S.; Liu, S.; Duan, L. Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced visceral hypersensitivity in rats. J. Gastroenterol. Hepatol. 2019, 34, 1368–1376. [Google Scholar] [CrossRef]
- Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef]
- Shepherdson, D.; Lewis, K.D.; Carlstead, K.; Bauman, J.; Perrin, N. Individual and environmental factors associated with stereotypic behavior and fecal glucocorticoid metabolite levels in zoo housed polar bears. Appl. Anim. Behav. Sci. 2013, 147, 268–277. [Google Scholar] [CrossRef]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef]
- von der Ohe, C.G.; Servheen, C. Measuring stress in mammals using fecal glucocorticoids: Opportunities and challenges. Wildl. Soc. Bull. 2002, 30, 1215–1225. [Google Scholar]
- Palme, R.; Fischer, P.; Schildorfer, H.; Ismail, M.N. Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Anim. Reprod. Sci. 1996, 43, 43–63. [Google Scholar] [CrossRef]
- Wilson, R.P.; Börger, L.; Holton, M.D.; Scantlebury, D.M.; Gómez-Laich, A.; Quintana, F.; Rosell, F.; Graf, P.M.; Williams, H.; Gunner, R.; et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 2020, 89, 161–172. [Google Scholar] [CrossRef]
- Button, C.; Meltzer, D.G.; Mülders, M.S. The electrocardiogram of the cheetah (Acinonyx jubatus). J. S. Afr. Vet. Assoc. 1981, 52, 233–235. [Google Scholar]
- Schumacher, J.; Snyder, P.; Citino, S.B.; Bennett, R.A.; Dvorak, L.D. Radiographic and electrocardiographic evaluation of cardiac morphology and function in captive cheetahs (Acinonyx jubatus). J. Zoo Wildl. Med. 2003, 34, 357–363. [Google Scholar] [CrossRef]
- Siegel, J.M. Clues to the functions of mammalian sleep. Nature 2005, 437, 1264–1271. [Google Scholar] [CrossRef]
- Moncek, F.; Duncko, R.; Johansson, B.B.; Jezova, D. Effect of environmental enrichment on stress related systems in rats. J. Neuroendocrinol. 2004, 16, 423–431. [Google Scholar] [CrossRef]
- Azar, T.A.; Sharp, J.L.; Lawson, D.M. Effects of cage enrichment on heart rate, blood pressure, and activity of female Sprague-Dawley and spontaneously hypertensive rats at rest and after acute challenges. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 339–344. [Google Scholar]
- Marashi, V.; Barnekow, A.; Ossendorf, E.; Sachser, N. Effects of different forms of environmental enrichment on behavioral, endocrinological, and immunological parameters in male mice. Horm. Behav. 2003, 43, 281–292. [Google Scholar] [CrossRef]
- Ravenelle, R.; Santolucito, H.B.; Byrnes, E.M.; Byrnes, J.J.; Donaldson, S.T. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats. Neuroscience 2014, 270, 76–87. [Google Scholar] [CrossRef]
- Sharp, J.; Azar, T.; Lawson, D. Effects of a complex housing environment on heart rate and blood pressure of rats at rest and after stressful challenges. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 52–60. [Google Scholar]
- Sharp, J.L.; Zammit, T.G.; Azar, T.A.; Lawson, D.M. Stress-like responses to common procedures in male rats housed alone or with other rats. Contemp. Top. Lab. Anim. Sci. 2002, 41, 8–14. [Google Scholar]
- Wascher, C.A.F. Heart rate as a measure of emotional arousal in evolutionary biology. Phil. Trans. R. Soc. 2021, 376, 20200479. [Google Scholar] [CrossRef]
- Burton, D.A.; Stokes, K.A.; Hall, G.M. Physiological effects of exercise. Contin. Educ. Anaesth. Crit. Care Pain 2004, 4, 185–188. [Google Scholar] [CrossRef]
- Hetem, R.S.; Mitchell, D.; De Witt, B.A.; Fick, L.G.; Maloney, S.K.; Meyer, L.C.R.; Fuller, A. Body temperature, activity patterns and hunting in free-living cheetah: Biologging reveals new insights. Integr. Zool. 2019, 14, 30–47. [Google Scholar] [CrossRef]
- Hetem, R.S.; Mitchell, D.; De Witt, B.A.; Fick, L.G.; Meyer, L.C.R.; Maloney, S.K.; Fuller, A. Cheetahs do not abandon hunts because they overheat. Biol. Lett. 2013, 9, 20130472. [Google Scholar] [CrossRef]
Group | Identification Number | Housing | DOB 1 (YY-MM-DD) | BM1 2 (kg) | BM2 3 (kg) | Sex |
---|---|---|---|---|---|---|
1 | CH-2205 | Paired (with CH-2206) | 9 June 2016 | 45.0 | 45.0 | M 4 |
CH-2206 | Paired (with CH-2205) | 9 June 2016 | 47.15 | 47.65 | M 4 | |
CH-2207 | Single | 9 June 2016 | 36.6 | 37.1 | F 5 | |
2 | CH-2271 | Single | 28 August 2017 | 37.65 | 41.75 | M 4 |
CH-2276 | Paired (with CH-2277) | 16 September 2017 | 39.9 | 39.35 | F 5 | |
CH-2277 | Paired (with CH-2276) | 16 September 2017 | 43.05 | 43.55 | F 5 |
Group | Identification Number | Reduced Feeding Frequency Schedule (Treatment) | Washout | Routine Feeding Schedule (Control) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | Feeding Days | Feeding Time(s) | Amount Fed/Day | Fasting Day(s) | Period | Feeding Days | Feeding Time(s) | Amount Fed/Day | Fasting Day(s) | |||
1 | CH-2205 | 15 May 2019 to 4 June 2019 | Mon 1, Tues 2, Thurs 3, Fri 4 | 0800–1700 h | 2.7 kg | Wed 5, Sat 6, Sun 7 | 1 day | 6 June 2019 to 26 June 2019 | Mon 1, Tues 2, Wed 5, Thurs 3, Fri 4, Sat 6 | 0800–1200 h, 1500–1700 h | 1.8 kg | Sun 7 |
CH-2206 | ||||||||||||
CH-2207 | 23 April 2019 to 13 May 2019 | 24 days | ||||||||||
2 | CH-2271 | 31 July 2019 to 20 August 2019 | Mon 1, Tues 2, Thurs 3, Fri 4 | 0800–1700 h | 2.5 kg | Wed 5, Sat 6, Sun 7 | 1 day | 22 August 2019 to 11 September 2019 | Mon 1, Tues 2, Wed 5, Thurs 3, Fri 4, Sat 6 | 0800–1200 h, 1500–1700 h | 1.6 kg | Sun 7 |
CH-2276 | 9 July 2019 to 29 July 2019 | 24 days | ||||||||||
CH-2277 |
Inactive | |
Inactive | Laying/asleep, laying/awake, sitting (stationary in a bipedal position) |
Active | |
Individual behaviour | |
Appetitive behaviour | Feeding, food anticipatory activity, stalking |
Attention | Staring at one area or paying attention to any visual or auditory stimulus |
Autogrooming | Licking or scratching of the own body |
Environmental enrichment | Interacting with an enrichment device by biting, dragging, scratching, or carrying it in the mouth |
Locomotion | Jumping, running, solitary play, walking |
Maintenance | Drinking, defecating/urinating, yawning |
Olfactory exploration | Sniffing the air, an object, or the substrate; performing flehmen |
Scent marking | Marking substrates or objects in the enclosure by urine-spraying (releasing urine backwards against a vertical surface or object while standing with tail raised vertically), rolling, and rubbing (leaving scents on the substrate or on any object, respectively) |
Standing | Stationary in a quadrupedal position |
Stereotypical | Pacing (repetitive, apparently functionless locomotory movement along a given route uninterrupted by other behaviours) |
Vocalisation | Chirping, growling, purring, stutter-barking, or yowling |
Social behaviour | |
Affiliative behaviour * | Social play (play-fight, chasing, or playing together with an enrichment item), pawing, or rubbing on a conspecific, social grooming (licking a conspecific or being licked), paying attention to conspecifics by observing them with interest, and interacting with human caretakers |
Agnostic behaviour * | Aggression, dominance mount, threat display |
Interspecific behaviour | Paying attention to another species’ presence |
Not observed | |
Out of sight | Focal animal is not visible from the point of observation/behaviour unknown |
Variable | Effect | Level | -Level | t | p | df 1 | Cohen’s d | 95% CI 2 for Cohen’s d | |
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Behaviour | |||||||||
Locomotion | Treatment Wk 3 | Treatment (Wk 3 3) | Control | 2.99 | 0.004 | 101 | 0.77 | 0.25 | 1.29 |
Faecal consistency score (grade) | Study period | Treatment | Control | 3.31 | 0.001 | 209 | 0.65 | 0.26 | 1.03 |
Study period*feed/fast day | Treatment, fast day | Control, fast day | 3.43 | 0.001 | 209 | 1.23 | 0.51 | 1.94 | |
Study period*feed/fast day | Treatment, feed day | Control, fast day | 3.17 | 0.002 | 209 | 1.07 | 0.40 | 1.74 | |
Study period*feed/fast day | Control, feed day | Control, fast day | 3.04 | 0.003 | 209 | 1.01 | 0.35 | 1.66 | |
Faecal glucocorticoid metabolite concentration (µg/g DW) | Treatment Wk 3 | Treatment (Wk 3 2) | Control | 2.76 | 0.006 | 170 | 0.58 | 0.16 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, K.L.; Ganswindt, A.; Steenkamp, G.; Tordiffe, A.S.W. Responses to Reduced Feeding Frequency in Captive-Born Cheetahs (Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health. Animals 2023, 13, 2783. https://doi.org/10.3390/ani13172783
Brown KL, Ganswindt A, Steenkamp G, Tordiffe ASW. Responses to Reduced Feeding Frequency in Captive-Born Cheetahs (Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health. Animals. 2023; 13(17):2783. https://doi.org/10.3390/ani13172783
Chicago/Turabian StyleBrown, Kelsey Lee, André Ganswindt, Gerhard Steenkamp, and Adrian Stephen Wolferstan Tordiffe. 2023. "Responses to Reduced Feeding Frequency in Captive-Born Cheetahs (Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health" Animals 13, no. 17: 2783. https://doi.org/10.3390/ani13172783
APA StyleBrown, K. L., Ganswindt, A., Steenkamp, G., & Tordiffe, A. S. W. (2023). Responses to Reduced Feeding Frequency in Captive-Born Cheetahs (Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health. Animals, 13(17), 2783. https://doi.org/10.3390/ani13172783