Determination of Haematological Reference Values for Tucúquere (Bubo magellanicus) Habiting in Central Chile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araya, B.; Bernal, M. Aves. In Diversidad Biológica de Chile; Simonetti, J.A., Arroyo, M.T.K., Spotorno, A.E., Lozada, E., Eds.; Comisión Nacional de Investigación Científica y Tecnológica: Santiago, Chile, 1995; pp. 350–360. [Google Scholar]
- Vuilleumier, F. Forest Birds of Patagonia: Ecological Geography, Speciation, Endemism, and Faunal History. Ornithol. Monogr. 1985, 36, 255–304. [Google Scholar] [CrossRef]
- Figueroa, R.; Alvarado, S.; Soraya Corales, E.; Gonzalez-Acuña, D.; Schlatter, R.; Martiínez, D. Los búhos de Chile. In Los Búhos Neotropicales, Diversidad y Conservación; Enríquez, P., Ed.; Ecosur: México City, Mexico, 2015; pp. 173–273. [Google Scholar]
- Ministerio de Agricultura, Gobierno de Chile. Ley de Caza. Ley 19473. 2016. Available online: https://www.sag.gob.cl/sites/default/files/ley_de_caza_y_su_reglamento_2015.pdf (accessed on 22 March 2023).
- CITES. Convención Sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres; CITES: Geneva, Switzerland, 2013; p. 17. [Google Scholar]
- Trejo, A.; Bó, M.S. The owls of Argentina. In Neotropical Owls: Diversity and Conservation; Springer: Cham, Switzerland, 2017; pp. 21–37. [Google Scholar]
- Monserrat, A.L.; Fune, M.C.; Novaro, A.J. Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Rev. Chil. Hist. Nat. 2005, 78, 425–439. [Google Scholar] [CrossRef]
- IUCN. Buho magellanicus, Magellanic Hormed Owl. The IUCB Red List of theratened Species: e.T61752097A95179224. 2017. Available online: https://www.iucnredlist.org/species/61752097/95179224 (accessed on 22 March 2023).
- Gómez-Adaros, J.; Cultrera-Rozowski, A.; Sallaberry-Pincheira, N. Blood Transfusion from a Magellanic Great Horned Owl (Bubo virginianus magellanicus) to a Barn Owl (Tyto alba): A Successful Case of Xenotransfusion. J. Avian Med. Surg. 2022, 36, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Ditchkoff, S.S.; Saalfeld, S.T.; Gibson, C.J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 2006, 9, 5–12. [Google Scholar] [CrossRef]
- Gemeda, D.; Meles, S.K. Impacts of human-wildlife conflict in developing countries. J. Appl. Sci. Environ. Manag. 2018, 22, 1233. [Google Scholar] [CrossRef]
- Grande, J.M.; Orozco-Valor, P.M.; Liébana, M.S.; Sarasola, J.H. Birds of prey in agricultural landscapes: The role of agriculture expansion and intensification. In Birds of Prey: Biology and Conservation in the XXI Century; Springer: Berlin/Heidelberg, Germany, 2018; pp. 197–228. [Google Scholar]
- Bezihalem, N.; Mesele, Y.; Bewuketu, T. Human-wildlife conflict in Choke Mountains, Ethiopia. Int. J. Biodivers. Conserv. 2017, 9, 21D102162309. [Google Scholar] [CrossRef]
- Sherchan, R.; Bhandari, A. Status and trends of human-wildlife conflict: A case study of Lelep and Yamphudin region, Kanchenjunga Conservation Area, Taplejung, Nepal. Conserv. Sci. 2017, 5, 19–25. [Google Scholar] [CrossRef]
- Fackelmann, G.; Gillingham, M.A.F.; Schmid, J.; Heni, A.C.; Wilhelm, K.; Schwensow, N.; Sommer, S. Human encroachment into wildlife gut microbiomes. Commun. Biol. 2021, 4, 800. [Google Scholar] [CrossRef]
- Tazerji, S.S.; Nardini, R.; Safdar, M.; Shehata, A.A.; Duarte, P.M. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens 2022, 11, 1376. [Google Scholar] [CrossRef]
- Goldberg, T.L.; Grant, E.C.; Inendino, K.R.; Kassler, T.W.; Claussen, J.E.; Philipp, D.P. Increased Infectious Disease Susceptibility Resulting from Outbreeding Depression. Conserv. Biol. 2005, 19, 455–462. [Google Scholar] [CrossRef]
- Smith, E.E.; Bush, M. Haematologic parameters on various species of strigiformes and falconiformes. J. Wildl. Dis. 1978, 14, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Gálvez Martínez, C.F.; Ramírez Benavides, G.F.; Osorio, J.H. El laboratorio clínico en hematología de aves exóticas. Biosalud 2009, 8, 178–188. [Google Scholar]
- Minias, P. The use of haemoglobin concentrations to assess physiological condition in birds: A review. Conserv. Physiol. 2015, 3, cov007. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Leenen, L.P.; van Solinge, W.W.; Hietbrink, F.; Huisman, A. Evaluation of hematological parameters on admission for the prediction of 7-day in-hospital mortality in a large trauma cohort. Clin. Chem. Lab. Med. 2011, 49, 493–499. [Google Scholar] [CrossRef]
- Molina-López, R.A.; Casal, J.; Darwich, L. Prognostic indicators associated with early mortality of wild raptors admitted to a wildlife rehabilitation centre in Spain. Vet. Q. 2015, 35, 9–15. [Google Scholar] [CrossRef]
- van Wyk, E.; van der Bank, H.; Verdoorn, G.H. Dynamics of haematology and blood biochemistry in free-living African whitebacked vulture (Pseudogyps africanus) nestlings. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 120, 495–508. [Google Scholar] [CrossRef]
- Copper, J.E. Methods of investigation and treatment. In Birds of Prey: Health and Disease, 3rd ed.; Cooper, J.E., Ed.; Blackwell Publishing: Oxford, UK, 2002; pp. 28–70. [Google Scholar]
- Monclús, L.; Shore, R.F.; Krone, O. Lead contamination in raptors in Europe: A systematic review and meta-analysis. Sci. Total Environ. 2020, 748, 141437. [Google Scholar] [CrossRef]
- Noriega, C. Apuntes de Hematología Aviar: Material Didático Para Curso de Hematologia Aviária. Ph.D. Thesis, Universidad Nacional Autónoma de Mexico, México City, Mexico, 2000; 70p. [Google Scholar]
- Christensen, R.D.; Henry, E.; Jopling, J.; Wiedmeier, S.E. The CBC: Reference Ranges for Neonates. Semin. Perinatol. 2009, 33, 3–11. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Bennett, P.M.; Gascoyne, S.C.; Hart, M.G.; Kirkwood, J.K.; Hawkey, C.M. Development of LYNX: A computer application for disease diagnosis and health monitoring in wild mammals, birds and reptiles. Vet. Rec. 1991, 128, 496–499. [Google Scholar] [CrossRef]
- Horowitz, G.L. Establishment and Use of Reference Values. In Tietz Fundamentlas of Clinical Chemistry and Molecular Diagnostics; Rifai, N., Ed.; Saunders: Philadelphia, PA, USA, 2018; p. 1088. [Google Scholar]
- Brooks, M.B.; Harr, K.E.; Seelig, D.M.; Wardrop, K.J.; Weiss, D.J. Schalm’s Veterinary Hematology, 7th ed.; John and Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–1393. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Gross, W.B.; Siegel, H.S. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.W.; Ellis, C.K. Avian and Exotic Animal Hematology and Cytology; Wiley-Blackwell: Ames, IA, USA, 2007. [Google Scholar]
- 34 R Development Core Team. R: A Language and Environment for Statistical Computing; RCRAN: Auckland, New Zealand, 2021. [Google Scholar]
- Ochs, C.L.; Dawson, R.D. Patterns of variation in leucocyte counts of female tree swallows, Tachycineta bicolor: Repeatability over time and relationships with condition and costs of reproduction. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 150, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Acuña, D.; Morales, M.; Troncoso, I.; Merino, V.; Ardiles, K.; Doussang, D.; Gonzalez, R.; Moreno, L. Comparison of hematological indicators between healthy and injured individuals of three species of raptor maintained in rescue and rehabilitation centers of central and southern Chile. Rev. Chil. Ornitol. 2018, 24, 20–26. [Google Scholar]
- Black, P.A.; McRuer, D.L.; Horne, L.A. Hematologic parameters in raptor species in a rehabilitation setting before release. J. Avian Med. Surg. 2011, 25, 192–198. [Google Scholar] [CrossRef]
- Goulart, M.d.A.; Vaz, F.F.; Koch, M.d.O.; Kroetz, C.C.; Dittrich, R.L. Parâmetros hematológicos e valores de proteínas plasmáticas totais de Strigiformes cativos de ocorrência no Brasil. Semin. Ciências Agrárias 2020, 41, 2129–2142. [Google Scholar] [CrossRef]
- Ammersbach, M.; BeauFrere, H.; Rollick, A.G.; Hoff, B. Normal Hematologic parameters on 11 species of owls. Vetcom 2013, 52, 23–25. [Google Scholar]
- Geffré, A.; Friedrichs, K.; Harr, K.; Concordet, D.; Trumel, C.; Braun, J.P. Reference values: A review. Vet. Clin. Pathol. 2009, 38, 288–298. [Google Scholar] [CrossRef]
- Goulrat, M. Parâmetros Hematológicos, Bioquímicos e Pesquisa de Cepas Produtoras de ESBL e Carbapenemases em Aves de Rapina em Cativeiro no Brasil. Ph.D. Thesis, Univerisdades Federal do Parana, Curitiba, Brazil, 2015. [Google Scholar]
- Fudge, A.M. Laboratory reference ranges for selected avian, mammalian, and reptilian species. In Laboratory Medicine: Avian and Exotic Pets; Fudge, A.M., Ed.; Wb Saunders: Philadelphia, PA, USA, 2000; pp. 376–400. [Google Scholar]
Variable | Mean ± SD | Min–Max | Median | Lower 90%CI | Upper 90%CI |
---|---|---|---|---|---|
RBC (106/μL) | 1.8 ± 0.3 | 0.9–2.6 | 1.78 | 1.7 | 1.9 |
Haematocrit (%) | 36.5 ± 6.2 | 17.0–50.0 | 39.0 | 34.7 | 38.4 |
Hb (g/dL) | 11.5 ± 1.9 | 5.9–16.0 | 12.0 | 10.9 | 12.1 |
MCH (pg/cell) | 62.2 ± 9.5 | 44.0–91.4 | 60.6 | 59.4 | 65.1 |
MCHC (g/dL) | 31.7 ± 1.5 | 30.0–36.2 | 32.0 | 31.2 | 32.2 |
MCV (µ/fL) | 195.4 ± 21.2 | 156.0–236.0 | 186.0 | 189.2 | 201.7 |
WBC (μL) | 14,036 ± 8504 | 3200–52,200 | 11,100 | 11,528 | 16,544 |
Heterophiles (μL) | 9868 ± 6061 | 1728–35,496 | 8008 | 8081 | 11,656 |
Eosinophiles (μL) | 206 ± 163 | 0–702 | 184 | 158 | 255 |
Basophiles (μL) | 0 | 0–0 | 0 | 0 | 0 |
Lymphocytes (μL) | 3314 ± 3100 | 675–15,015 | 2376 | 2400 | 4229 |
Monocytes (μL) | 647 ± 562 | 148–3132 | 462 | 481 | 812 |
Thrombocytes (103/μL) | 186 ± 100 | 20–380 | 188 | 157 | 216 |
Rate H/L | 4.0 ± 2.1 | 0.4–9.5 | 4.1 | 3.4 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Cortes, A.; Boassi, S.; Cañon-Jones, H. Determination of Haematological Reference Values for Tucúquere (Bubo magellanicus) Habiting in Central Chile. Animals 2023, 13, 3000. https://doi.org/10.3390/ani13193000
Jimenez-Cortes A, Boassi S, Cañon-Jones H. Determination of Haematological Reference Values for Tucúquere (Bubo magellanicus) Habiting in Central Chile. Animals. 2023; 13(19):3000. https://doi.org/10.3390/ani13193000
Chicago/Turabian StyleJimenez-Cortes, Alejandro, Sergio Boassi, and Hernan Cañon-Jones. 2023. "Determination of Haematological Reference Values for Tucúquere (Bubo magellanicus) Habiting in Central Chile" Animals 13, no. 19: 3000. https://doi.org/10.3390/ani13193000
APA StyleJimenez-Cortes, A., Boassi, S., & Cañon-Jones, H. (2023). Determination of Haematological Reference Values for Tucúquere (Bubo magellanicus) Habiting in Central Chile. Animals, 13(19), 3000. https://doi.org/10.3390/ani13193000