A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Expression of Various Tyrosine Kinases in Normal Feline Tissues
3.2. Expression and Therapeutic Targeting of Tyrosine Kinases in Feline Malignancies
3.2.1. Mast Cell Tumors
Tyrosine Kinase Expression in Feline Mast Cell Tumors
Targeting Tyrosine Kinases in Feline Mast Cell Tumors
3.2.2. Mammary Tumors
Tyrosine Kinase Expression in Feline Mammary Tumors
Targeting Tyrosine Kinases in Feline Mammary Tumors
3.2.3. Squamous Cell Carcinomas
Tyrosine Kinase Expression in Feline Squamous Cell Carcinomas
Targeting Tyrosine Kinases in Feline Squamous Cell Carcinomas
3.2.4. Injection-Site Sarcomas
Tyrosine Kinase Expression in Feline Injection-Site Sarcomas
Targeting Tyrosine Kinases in Feline Injection-Site Sarcomas
Location | TK Expression | Prognostic Implications of TK Expression | TKI Use In Vitro | Clinical TKI Use | |
---|---|---|---|---|---|
Mast cell tumor | Cutaneous | KIT+ on IHC in 55–93% [62,63,64,69,70,71] | CTP expression associated with worse prognosis (univar. analysis) [62,63] | Imatinib, dasatinib, nilotinib, midostaurin inhibit growth and induce apoptosis in splenic MCT [67] | Toceranib (n = 50): CB 80% (CR 26%, PR 44%, SD 24%), mRD 32 weeks; various locations [77] Imatinib (n = 13): CR 8%, PR 70%, SD/no response 23%; mRD not evaluated; various locations [17,19,78,79] |
Splenic | KIT+ on IHC/ICC in 67% [65,67,68,70,71,73] | No correlation [65] | |||
Intestinal | KIT+ on IHC in 59% [66,72] | No correlation [66] | |||
Mammary carcinoma | HER2+ on IHC in 5.5–90% [44,81,86,87,88,89,90,91,92,93,95,96,97,98,99,100,101] | Conflicting evidence: overexpression associated with shorter OS (univar. analysis) [87,98]; not associated with OS [92] | AG825, GW583340, lapatinib, geftinib inhibit proliferation (GW583340 most effectively among first three) [82,83] Lapatinib and neratinib induced 100% and 31–79% cytotoxicity, respectively. Addition of rapamycin had synergistic effect [112] Trastuzumab (60–93%), pertuzumab (51–62%), trastuzumab-emtansine (T-DM1; 54–94%) inhibit proliferation. Combination of both mAbs or mAbs/lapatinib had synergistic effect [113] | / | |
HER2 serum levels higher than in healthy controls [94] | Higher levels associated with less aggressive features [94] | ||||
EGFR+ on multiple cell lines and on IHC [81,82,83,84,85] | / | ||||
HER3+ on two cell lines [83] | / | ||||
RON+ on IHC in 52% (29–68%) [102,103] | sf-RON transcript detected by RT-PCR associated with poorly differentiated tumors, shorter DFI and ST (univar. analysis) [102] | ||||
VEGFR-1 and VEGFR-2+ on IHC [104,105] | Serum VEGFR-1, VEGFR-2, VEGF-A levels elevated with certain FMC molecular subtypes [104] | Bevacizumab suppressed tumor growth in a xenograft model of FMC [116] | |||
Squamous cell carcinoma | Oral | EGFR+ on IHC in 69–100% [43,117,118] | No statistically significant association [117,118] | Masitinib inhibits proliferation and increases COX-2 expression [123] GW583340 inhibits proliferation [82] Geftinib inhibits proliferation (at high dose) [82,121] Cetuximab inhibits proliferation [122] | Toceranib (n = 23): CR 4%, PR 9%, SD 43%, PD 43%; increased mST compared to control (123 vs. 45 days) [125] Imatinib (n = 3): no effect [78] |
HER2+ in two cell lines [82] | / | ||||
Cutaneous (head) | EGFR+ on IHC in 74% [119] | Expression assoc. with worse prognosis (univar. analysis) [119] | / | / | |
Oral and cutaneous | PDGFR-α+ on IHC in 89% [120] | / | |||
Injection-site sarcoma | KIT+ on IHC in 0–26% [129,130,131] | No correlation [131] | Imatinib inhibits PDGFR-β to reduce viability of FISS cells and to significantly inhibit the growth of FISS in a xenograft murine model. Increased chemosensitivity to DOX and CARBO [18] | Toceranib (n = 14): SD 7, PD 93% [129] Imatinib (n = 2): SD for average RD of 2 months [78] | |
PDGFR+ on IHC in 100%; only 35% both PDGF/PDGFR+ [129]; PDGFR-α/PDGFA+ on IHC in 100% [55] PDGFR-β+ by Western blot in vitro [18,132] | / | ||||
VEGFR+ on IHC in 93% [129] | / | Masitinib inhibits proliferation (at high dose) [132,137,138] | |||
EGFR: “consistent strong staining” [133] | / |
3.2.5. Gastrointestinal Stromal Tumors
3.2.6. Other Malignancies
3.3. Non-Neoplastic Diseases
3.4. Pharmacokinetics, Safety and Toxicity of Commonly Used Tyrosine Kinase Inhibitors in Cats
3.4.1. Toceranib
3.4.2. Masitinib
3.4.3. Imatinib
3.4.4. Oclacitinib
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brugge, J.S.; Erikson, R.L. Identification of a Transformation-Specific Antigen Induced by an Avian Sarcoma Virus. Nature 1977, 269, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Collett, M.S.; Erikson, R.L. Protein Kinase Activity Associated with the Avian Sarcoma Virus Src Gene Product. Proc. Natl. Acad. Sci. USA 1978, 75, 2021–2024. [Google Scholar] [CrossRef] [PubMed]
- Levinson, A.D.; Oppermann, H.; Levintow, L.; Varmus, H.E.; Bishop, J.M. Evidence That the Transforming Gene of Avian Sarcoma Virus Encodes a Protein Kinase Associated with a Phosphoprotein. Cell 1978, 15, 561–572. [Google Scholar] [CrossRef] [PubMed]
- London, C. Kinase Inhibitors in Cancer Therapy. Vet. Comp. Oncol. 2004, 2, 177–193. [Google Scholar] [CrossRef]
- Weinberg, R.A. Growth Factors, Receptors, and Cancer. In The Biology of Cancer; Garland Science, Taylor & Francis Group: New York, NY, USA, 2014; pp. 131–174. [Google Scholar]
- Shchemelinin, I.; Sefc, L.; Necas, E. Protein Kinases, Their Function and Implication in Cancer and Other Diseases. Folia Biol. 2006, 52, 81–100. [Google Scholar]
- Krause, D.S.; Van Etten, R.A. Tyrosine Kinases as Targets for Cancer Therapy. N. Engl. J. Med. 2005, 353, 172–187. [Google Scholar] [CrossRef]
- Madhusudan, S.; Ganesan, T.S. Tyrosine Kinase Inhibitors in Cancer Therapy. Clin. Biochem. 2004, 37, 618–635. [Google Scholar] [CrossRef]
- Brown, R.J.; Newman, S.J.; Durtschi, D.C.; Leblanc, A.K. Expression of PDGFR-β and Kit in Canine Anal Sac Apocrine Gland Adenocarcinoma Using Tissue Immunohistochemistry. Vet. Comp. Oncol. 2012, 10, 74–79. [Google Scholar] [CrossRef]
- Koltai, Z.; Szabó, B.; Jakus, J.; Vajdovich, P. Tyrosine Kinase Expression Analyses in Canine Mammary Gland Tumours—A Pilot Study. Acta Vet. Hung. 2018, 66, 294–308. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Liao, J.-W.; Hsu, W.-L.; Chang, S.-C. Identification of the Two KIT Isoforms and Their Expression Status in Canine Hemangiosarcomas. BMC Vet. Res. 2016, 12, 142. [Google Scholar] [CrossRef]
- Gil da Costa, R.M.; Oliveira, J.P.; Saraiva, A.L.; Seixas, F.; Faria, F.; Gärtner, F.; Pires, M.A.; Lopes, C. Immunohistochemical Characterization of 13 Canine Renal Cell Carcinomas. Vet. Pathol. 2011, 48, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Gramer, I.; Killick, D.; Scase, T.; Chandry, D.; Marrington, M.; Blackwood, L. Expression of VEGFR and PDGFR-α/-β in 187 Canine Nasal Carcinomas. Vet. Comp. Oncol. 2017, 15, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Gregory-Bryson, E.; Bartlett, E.; Kiupel, M.; Hayes, S.; Yuzbasiyan-Gurkan, V. Canine and Human Gastrointestinal Stromal Tumors Display Similar Mutations in c-KIT Exon 11. BMC Cancer 2010, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, P.J.; Roberts, B.N.; Higgins, R.J.; Leutenegger, C.M.; Bollen, A.W.; Kass, P.H.; LeCouteur, R.A. Expression of Receptor Tyrosine Kinases VEGFR-1 (FLT-1), VEGFR-2 (KDR), EGFR-1, PDGFRalpha and c-Met in Canine Primary Brain Tumours. Vet. Comp. Oncol. 2006, 4, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Urie, B.K.; Russell, D.S.; Kisseberth, W.C.; London, C.A. Evaluation of Expression and Function of Vascular Endothelial Growth Factor Receptor 2, Platelet Derived Growth Factor Receptors-Alpha and -Beta, KIT, and RET in Canine Apocrine Gland Anal Sac Adenocarcinoma and Thyroid Carcinoma. BMC Vet. Res. 2012, 8, 67. [Google Scholar] [CrossRef]
- Isotani, M.; Tamura, K.; Yagihara, H.; Hikosaka, M.; Ono, K.; Washizu, T.; Bonkobara, M. Identification of a c-KIT Exon 8 Internal Tandem Duplication in a Feline Mast Cell Tumor Case and Its Favorable Response to the Tyrosine Kinase Inhibitor Imatinib Mesylate. Vet. Immunol. Immunopathol. 2006, 114, 168–172. [Google Scholar] [CrossRef]
- Katayama, R.; Huelsmeyer, M.K.; Marr, A.K.; Kurzman, I.D.; Thamm, D.H.; Vail, D.M. Imatinib Mesylate Inhibits Platelet-Derived Growth Factor Activity and Increases Chemosensitivity in Feline Vaccine-Associated Sarcoma. Cancer Chemother. Pharmacol. 2004, 54, 25–33. [Google Scholar] [CrossRef]
- Isotani, M.; Yamada, O.; Lachowicz, J.L.; Tamura, K.; Yagihara, H.; Fujino, Y.; Ono, K.; Washizu, T.; Bonkobara, M. Mutations in the Fifth Immunoglobulin-like Domain of Kit Are Common and Potentially Sensitive to Imatinib Mesylate in Feline Mast Cell Tumours. Br. J. Haematol. 2010, 148, 144–153. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Shosu, K.; Tsuji, K.; Shimoyama, Y.; Miyama, T.S.; Baba, K.; Okuda, M.; Itamoto, K.; Igase, M.; Mizuno, T. Intratumoral Heterogeneity of c-KIT Mutations in a Feline Splenic Mast Cell Tumor and Their Functional Effects on Cell Proliferation. Sci. Rep. 2022, 12, 15791. [Google Scholar] [CrossRef]
- London, C.A. Tyrosine Kinase Inhibitors in Veterinary Medicine. Top. Companion Anim. Med. 2009, 24, 106–112. [Google Scholar] [CrossRef]
- Klingemann, H. Immunotherapy for Dogs: Still Running Behind Humans. Front. Immunol. 2021, 12, 665784. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine Kinase Inhibitors for Solid Tumors in the Past 20 Years (2001–2020). J. Hematol. Oncol. 2020, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Hahn, K.A.; Oglivie, G.; Rusk, T.; Devauchelle, P.; Leblanc, A.; Legendre, A.; Powers, B.; Leventhal, P.S.; Kinet, J.-P.; Palmerini, F.; et al. Masitinib Is Safe and Effective for the Treatment of Canine Mast Cell Tumors. J. Vet. Intern. Med. 2008, 22, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- London, C.A.; Malpas, P.B.; Wood-Follis, S.L.; Boucher, J.F.; Rusk, A.W.; Rosenberg, M.P.; Henry, C.J.; Mitchener, K.L.; Klein, M.K.; Hintermeister, J.G.; et al. Multi-Center, Placebo-Controlled, Double-Blind, Randomized Study of Oral Toceranib Phosphate (SU11654), a Receptor Tyrosine Kinase Inhibitor, for the Treatment of Dogs with Recurrent (Either Local or Distant) Mast Cell Tumor Following Surgical Excision. Clin. Cancer Res. 2009, 15, 3856–3865. [Google Scholar] [CrossRef] [PubMed]
- Graf, R.; Grüntzig, K.; Hässig, M.; Axhausen, K.W.; Fabrikant, S.; Welle, M.; Meier, D.; Guscetti, F.; Folkers, G.; Otto, V.; et al. Swiss Feline Cancer Registry: A Retrospective Study of the Occurrence of Tumours in Cats in Switzerland from 1965 to 2008. J. Comp. Pathol. 2015, 153, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Enriquez, J.M.; Romero-Romero, L.; Alonso-Morales, R.A.; Fuentes-Pananá, E.M. Tumor Prevalence in Cats: Experience from a Reference Diagnostic Center in Mexico City (2006–2018). Vet. México 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Pinello, K.; Pires, I.; Castro, A.F.; Carvalho, P.T.; Santos, A.; de Matos, A.; Queiroga, F.; Canadas-Sousa, A.; Dias-Pereira, P.; Catarino, J.; et al. Cross Species Analysis and Comparison of Tumors in Dogs and Cats, by Age, Sex, Topography and Main Morphologies. Data from Vet-OncoNet. Vet. Sci. 2022, 9, 167. [Google Scholar] [CrossRef]
- Bavcar, S.; Argyle, D.J. Receptor Tyrosine Kinase Inhibitors: Molecularly Targeted Drugs for Veterinary Cancer Therapy. Vet. Comp. Oncol. 2012, 10, 163–173. [Google Scholar] [CrossRef]
- Frezoulis, P.; Harper, A. The Role of Toceranib Phosphate in Dogs with Non-Mast Cell Neoplasia: A Systematic Review. Vet. Comp. Oncol. 2022, 20, 362–371. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- LeBlanc, A.K.; Atherton, M.; Bentley, R.T.; Boudreau, C.E.; Burton, J.H.; Curran, K.M.; Dow, S.; Giuffrida, M.A.; Kellihan, H.B.; Mason, N.J.; et al. Veterinary Cooperative Oncology Group—Common Terminology Criteria for Adverse Events (VCOG-CTCAE v2) Following Investigational Therapy in Dogs and Cats. Vet. Comp. Oncol. 2021, 19, 311–352. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.M.; Thamm, D.H.; Vail, D.M.; London, C.A. Response Evaluation Criteria for Solid Tumours in Dogs (v1.0): A Veterinary Cooperative Oncology Group (VCOG) Consensus Document. Vet. Comp. Oncol. 2015, 13, 176–183. [Google Scholar] [CrossRef]
- World Health Organization. WHO Handbook for Reporting Results of Cancer Treatment; WHO: Geneva, Switzerland, 1979. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Yamuy, J.; Ramos, O.; Torterolo, P.; Sampogna, S.; Chase, M.H. The Role of Tropomyosin-Related Kinase Receptors in Neurotrophin-Induced Rapid Eye Movement Sleep in the Cat. Neuroscience 2005, 135, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Temiño, B.; Morcuende, S.; Mentis, G.Z.; de la Cruz, R.R.; Pastor, A.M. Expression of Trk Receptors in the Oculomotor System of the Adult Cat. J. Comp. Neurol. 2004, 473, 538–552. [Google Scholar] [CrossRef]
- Deckner, M.L.; Frisén, J.; Verge, V.M.; Hökfelt, T.; Risling, M. Localization of Neurotrophin Receptors in Olfactory Epithelium and Bulb. Neuroreport 1993, 5, 301–304. [Google Scholar] [CrossRef]
- Tong, C.; Cao, S. Study on the Mechanism of Visual Aging in Cats’ Primary Visual Cortex Based on BDNF-TrkB Signal Pathway. Sci. Rep. 2022, 12, 10576. [Google Scholar] [CrossRef]
- Tong, C.-W.; Wang, Z.-L.; Li, P.; Zhu, H.; Chen, C.-Y.; Hua, T.-M. Effects of Senescence on the Expression of BDNF and TrkB Receptor in the Lateral Geniculate Nucleus of Cats. Dongwuxue Yanjiu 2015, 36, 48–53. [Google Scholar] [CrossRef]
- Göritz, F.; Jewgenow, K.; Meyer, H.H. Epidermal Growth Factor and Epidermal Growth Factor Receptor in the Ovary of the Domestic Cat (Felis Catus). J. Reprod. Fertil. 1996, 106, 117–124. [Google Scholar] [CrossRef]
- Boomsma, R.A.; Mavrogianis, P.A.; Verhage, H.G. Immunocytochemical Localization of Transforming Growth Factor Alpha, Epidermal Growth Factor and Epidermal Growth Factor Receptor in the Cat Endometrium and Placenta. Histochem. J. 1997, 29, 495–504. [Google Scholar] [CrossRef]
- Looper, J.S.; Malarkey, D.E.; Ruslander, D.; Proulx, D.; Thrall, D.E. Epidermal Growth Factor Receptor Expression in Feline Oral Squamous Cell Carcinomas. Vet. Comp. Oncol. 2006, 4, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Baptista, C.S.; Abreu, R.M.V.; Bastos, E.; Amorim, I.; Gut, I.G.; Gärtner, F.; Chaves, R. ERBB2 in Cat Mammary Neoplasias Disclosed a Positive Correlation between RNA and Protein Low Expression Levels: A Model for erbB-2 Negative Human Breast Cancer. PLoS ONE 2013, 8, e83673. [Google Scholar] [CrossRef] [PubMed]
- Burrai, G.P.; Mohammed, S.I.; Miller, M.A.; Marras, V.; Pirino, S.; Addis, M.F.; Uzzau, S.; Antuofermo, E. Spontaneous Feline Mammary Intraepithelial Lesions as a Model for Human Estrogen Receptor- and Progesterone Receptor-Negative Breast Lesions. BMC Cancer 2010, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, A.L.; Payan-Carreira, R.; Gärtner, F.; Faria, F.; Lourenço, L.M.; Pires, M.A. Changes in C-erbB-2 Immunoexpression in Feline Endometrial Adenocarcinomas. Reprod. Domest. Anim. 2016, 51, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Misirlioglu, D.; Nak, D.; Sevimli, A.; Nak, Y.; Ozyigit, M.O.; Akkoc, A.; Cangul, I.T. Steroid Receptor Expression and HER-2/Neu (c-erbB-2) Oncoprotein in the Uterus of Cats with Cystic Endometrial Hyperplasia-Pyometra Complex. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2006, 53, 225–229. [Google Scholar] [CrossRef]
- de Sousa, D.A.; da Silva, K.V.; Cascon, C.M.; Silva, F.B.; de Mello, M.F.; da Silva Leite, J.; Fonseca, A.B.; El-Jaick, K.B.; Ferreira, A.M. Epidermal Growth Factor Receptor 2 Immunoexpression in Gastric Cells of Domestic Cats with H. Heilmannii Infection. Acta Histochem. 2019, 121, 413–418. [Google Scholar] [CrossRef]
- Lucini, C.; D’angelo, L.; de Girolamo, P.; Castaldo, L. RET Receptor in the Gut of Developing Cat. Res. Vet. Sci. 2013, 94, 1–4. [Google Scholar] [CrossRef]
- Lucini, C.; Maruccio, L.; Facello, B.; Cocchia, N.; Tortora, G.; Castaldo, L. Cellular Localization of GDNF and Its GFRalpha1/RET Receptor Complex in the Developing Pancreas of Cat. J. Anat. 2008, 213, 565–572. [Google Scholar] [CrossRef]
- Santos, L.C.; Dos Anjos Cordeiro, J.M.; da Silva Santana, L.; Santos, B.R.; Barbosa, E.M.; da Silva, T.Q.M.; Corrêa, J.M.X.; Niella, R.V.; Lavor, M.S.L.; da Silva, E.B.; et al. Kisspeptin/Kiss1r System and Angiogenic and Immunological Mediators at the Maternal-Fetal Interface of Domestic Cats. Biol. Reprod. 2021, 105, 217–231. [Google Scholar] [CrossRef]
- Sarli, G.; Sassi, F.; Brunetti, B.; Rizzo, A.; Diracca, L.; Benazzi, C. Lymphatic Vessels Assessment in Feline Mammary Tumours. BMC Cancer 2007, 7, 7. [Google Scholar] [CrossRef]
- Rungsipipat, A.; Tateyama, S.; Yamaguchi, R.; Uchida, K.; Miyoshi, N. Expression of C-Yes Oncogene Product in Various Animal Tissues and Spontaneous Canine Tumours. Res. Vet. Sci. 1999, 66, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Treggiari, E.; Ressel, L.; Polton, G.A.; Benoit, J.; Desmas, I.; Blackwood, L. Clinical Outcome, PDGFRβ and KIT Expression in Feline Histiocytic Disorders: A Multicentre Study. Vet. Comp. Oncol. 2017, 15, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaq, A.; Sozmen, M. Expression of Platelet Derived Growth Factor A, Its Receptor, and Integrin Subunit Alpha v in Feline Injection-Site Sarcomas. ID—20210105841. Acta Vet. 2021, 71, 13–31. [Google Scholar] [CrossRef]
- Morini, M.; Bettini, G.; Preziosi, R.; Mandrioli, L. c-KIT Gene Product (CD117) Immunoreactivity in Canine and Feline Paraffin Sections. J. Histochem. Cytochem. 2004, 52, 705–708. [Google Scholar] [CrossRef]
- Wolfesberger, B.; Fuchs-Baumgartinger, A.; Hlavaty, J.; Meyer, F.R.; Hofer, M.; Steinborn, R.; Gebhard, C.; Walter, I. Stem Cell Growth Factor Receptor in Canine vs. Feline Osteosarcomas. Oncol. Lett. 2016, 12, 2485–2492. [Google Scholar] [CrossRef]
- Ramos-Vara, J.A.; Edmondson, E.F.; Miller, M.A.; Dusold, D.M. Immunohistochemical Profile of 20 Feline Renal Cell Carcinomas. J. Comp. Pathol. 2017, 157, 115–125. [Google Scholar] [CrossRef]
- Matsumoto, I.; Chambers, J.K.; Nibe, K.; Kinoshita, R.; Nishimura, R.; Nakayama, H.; Uchida, K. Histopathologic and Immunohistochemistry Findings in Feline Renal Cell Carcinoma. Vet. Pathol. 2018, 55, 663–672. [Google Scholar] [CrossRef]
- Metzger, R.; Schuster, T.; Till, H.; Franke, F.-E.; Dietz, H.-G. Cajal-like Cells in the Upper Urinary Tract: Comparative Study in Various Species. Pediatr. Surg. Int. 2005, 21, 169–174. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Diamant, N.E.; Huizinga, J.D. Interstitial Cells of Cajal: Pacemaker Cells of the Pancreatic Duct? Pancreas 2011, 40, 137–143. [Google Scholar] [CrossRef]
- Dobromylskyj, M.J.; Rasotto, R.; Melville, K.; Smith, K.C.; Berlato, D. Evaluation of Minichromosome Maintenance Protein 7 and c-KIT as Prognostic Markers in Feline Cutaneous Mast Cell Tumours. J. Comp. Pathol. 2015, 153, 244–250. [Google Scholar] [CrossRef]
- Sabattini, S.; Guadagni Frizzon, M.; Gentilini, F.; Turba, M.E.; Capitani, O.; Bettini, G. Prognostic Significance of Kit Receptor Tyrosine Kinase Dysregulations in Feline Cutaneous Mast Cell Tumors. Vet. Pathol. 2013, 50, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Sabattini, S.; Bettini, G. Prognostic Value of Histologic and Immunohistochemical Features in Feline Cutaneous Mast Cell Tumors. Vet. Pathol. 2010, 47, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Sabattini, S.; Barzon, G.; Giantin, M.; Lopparelli, R.M.; Dacasto, M.; Prata, D.; Bettini, G. Kit Receptor Tyrosine Kinase Dysregulations in Feline Splenic Mast Cell Tumours. Vet. Comp. Oncol. 2017, 15, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Sabattini, S.; Giantin, M.; Barbanera, A.; Zorro Shahidian, L.; Dacasto, M.; Zancanella, V.; Prata, D.; Trivigno, E.; Bettini, G. Feline Intestinal Mast Cell Tumours: Clinicopathological Characterisation and KIT Mutation Analysis. J. Feline Med. Surg. 2016, 18, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Hadzijusufovic, E.; Peter, B.; Rebuzzi, L.; Baumgartner, C.; Gleixner, K.V.; Gruze, A.; Thaiwong, T.; Pickl, W.F.; Yuzbasiyan-Gurkan, V.; Willmann, M.; et al. Growth-Inhibitory Effects of Four Tyrosine Kinase Inhibitors on Neoplastic Feline Mast Cells Exhibiting a Kit Exon 8 ITD Mutation. Vet. Immunol. Immunopathol. 2009, 132, 243–250. [Google Scholar] [CrossRef]
- Bagwell, J.M.; Herd, H.R.; Breshears, M.A.; Hodges, S.; Rizzi, T.E. Concurrent Multiple Myeloma and Mast Cell Neoplasia in a 13-Year-Old Castrated Male Maine Coon Cat. Vet. Clin. Pathol. 2017, 46, 151–157. [Google Scholar] [CrossRef]
- Rodríguez-Cariño, C.; Fondevila, D.; Segalés, J.; Rabanal, R.M. Expression of KIT Receptor in Feline Cutaneous Mast Cell Tumors. Vet. Pathol. 2009, 46, 878–883. [Google Scholar] [CrossRef]
- Mallett, C.L.; Northrup, N.C.; Saba, C.F.; Rodriguez, C.O.; Rassnick, K.M.; Gieger, T.L.; Childress, M.O.; Howerth, E.W. Immunohistochemical Characterization of Feline Mast Cell Tumors. Vet. Pathol. 2013, 50, 106–109. [Google Scholar] [CrossRef]
- Sakurai, M.; Iwasa, R.; Sakai, Y.; Chambers, J.K.; Uchida, K.; Morimoto, M. Expression of Stem Cell Factor in Feline Mast Cell Tumour. J. Comp. Pathol. 2018, 163, 6–9. [Google Scholar] [CrossRef]
- Halsey, C.H.C.; Powers, B.E.; Kamstock, D.A. Feline Intestinal Sclerosing Mast Cell Tumour: 50 Cases (1997–2008). Vet. Comp. Oncol. 2010, 8, 72–79. [Google Scholar] [CrossRef]
- Lee, S.; Kang, M.S.; Jeong, Y.; Kim, Y.; Kwak, H.H.; Choi, E.W.; Choi, S.; Park, I.; Chung, J.Y.; Choi, J.H.; et al. Clinical and Immunohistochemical Findings of Splenic Mast Cell Tumour in a Cat: A Case Report. Veterinární Medicína 2021, 66, 498–502. [Google Scholar] [CrossRef]
- Tamlin, V.S.; Bottema, C.D.K.; Campbell-Ward, M.L.; Hanshaw, D.; Peaston, A.E. KIT Mutations in Mast Cell Tumours from Cheetahs (Acinonyx Jubatus) and Domestic Cats (Felis Catus). Vet. Comp. Oncol. 2021, 19, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Takanosu, M.; Sato, M.; Kagawa, Y. Sensitive Detection of the c-KIT c.1430G>T Mutation by Mutant-Specific Polymerase Chain Reaction in Feline Mast Cell Tumours. Vet. Comp. Oncol. 2014, 12, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Dank, G.; Chien, M.B.; London, C.A. Activating Mutations in the Catalytic or Juxtamembrane Domain of c-KIT in Splenic Mast Cell Tumors of Cats. Am. J. Vet. Res. 2002, 63, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.P.; Johannes, C.M.; Post, G.S.; Rothchild, G.; Shiu, K.-B.; Wetzel, S.; Fox, L.E. Retrospective Evaluation of Toceranib Phosphate (Palladia) Use in Cats with Mast Cell Neoplasia. J. Feline Med. Surg. 2018, 20, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, J.L.; Post, G.S.; Brodsky, E. A Phase I Clinical Trial Evaluating Imatinib Mesylate (Gleevec) in Tumor-Bearing Cats. J. Vet. Intern. Med. 2005, 19, 860–864. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.J. Treatment of a Feline Cutaneous Mast Cell Tumour Using Imatinib Mesylate as a Neoadjuvant Tyrosine Kinase Inhibitor Therapeutic Agent. ID—20203291474. Veterinární Medicína 2020, 65, 84–88. [Google Scholar] [CrossRef]
- Evans, B.J.; O’Brien, D.; Allstadt, S.D.; Gregor, T.P.; Sorenmo, K.U. Treatment Outcomes and Prognostic Factors of Feline Splenic Mast Cell Tumors: A Multi-Institutional Retrospective Study of 64 Cases. Vet. Comp. Oncol. 2018, 16, 20–27. [Google Scholar] [CrossRef]
- Wiese, D.A.; Thaiwong, T.; Yuzbasiyan-Gurkan, V.; Kiupel, M. Feline Mammary Basal-like Adenocarcinomas: A Potential Model for Human Triple-Negative Breast Cancer (TNBC) with Basal-like Subtype. BMC Cancer 2013, 13, 403. [Google Scholar] [CrossRef]
- Gray, M.E.; Lee, S.; McDowell, A.L.; Erskine, M.; Loh, Q.T.M.; Grice, O.; Argyle, D.J.; Bergkvist, G.T. Dual Targeting of EGFR and ERBB2 Pathways Produces a Synergistic Effect on Cancer Cell Proliferation and Migration in Vitro. Vet. Comp. Oncol. 2017, 15, 890–909. [Google Scholar] [CrossRef]
- Gibson, H.M.; Veenstra, J.J.; Jones, R.; Vaishampayan, U.; Sauerbrey, M.; Bepler, G.; Lum, L.; Reyes, J.; Weise, A.; Wei, W.-Z. Induction of HER2 Immunity in Outbred Domestic Cats by DNA Electrovaccination. Cancer Immunol. Res. 2015, 3, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.; Wurth, R.; Ratto, A.; Campanella, C.; Vito, G.; Thellung, S.; Daga, A.; Cilli, M.; Ferrari, A.; Florio, T. Isolation of Stem-like Cells from Spontaneous Feline Mammary Carcinomas: Phenotypic Characterization and Tumorigenic Potential. Exp. Cell Res. 2012, 318, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Minke, J.M.; Schuuring, E.; van den Berghe, R.; Stolwijk, J.A.; Boonstra, J.; Cornelisse, C.; Hilkens, J.; Misdorp, W. Isolation of Two Distinct Epithelial Cell Lines from a Single Feline Mammary Carcinoma with Different Tumorigenic Potential in Nude Mice and Expressing Different Levels of Epidermal Growth Factor Receptors. Cancer Res. 1991, 51, 4028–4037. [Google Scholar] [PubMed]
- De Maria, R.; Olivero, M.; Iussich, S.; Nakaichi, M.; Murata, T.; Biolatti, B.; Di Renzo, M.F. Spontaneous Feline Mammary Carcinoma Is a Model of HER2 Overexpressing Poor Prognosis Human Breast Cancer. Cancer Res. 2005, 65, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Millanta, F.; Calandrella, M.; Citi, S.; Della Santa, D.; Poli, A. Overexpression of HER-2 in Feline Invasive Mammary Carcinomas: An Immunohistochemical Survey and Evaluation of Its Prognostic Potential. Vet. Pathol. 2005, 42, 30–34. [Google Scholar] [CrossRef]
- Brunetti, B.; Asproni, P.; Beha, G.; Muscatello, L.V.; Millanta, F.; Poli, A.; Benazzi, C.; Sarli, G. Molecular Phenotype in Mammary Tumours of Queens: Correlation between Primary Tumour and Lymph Node Metastasis. J. Comp. Pathol. 2013, 148, 206–213. [Google Scholar] [CrossRef]
- Winston, J.; Craft, D.M.; Scase, T.J.; Bergman, P.J. Immunohistochemical Detection of HER-2/Neu Expression in Spontaneous Feline Mammary Tumours. Vet. Comp. Oncol. 2005, 3, 8–15. [Google Scholar] [CrossRef]
- Muscatello, L.V.; Di Oto, E.; Sarli, G.; Monti, V.; Foschini, M.P.; Benazzi, C.; Brunetti, B. HER2 Amplification Status in Feline Mammary Carcinoma: A Tissue Microarray–Fluorescence In Situ Hydridization–Based Study. Vet. Pathol. 2019, 56, 230–238. [Google Scholar] [CrossRef]
- Soares, M.; Correia, J.; Rodrigues, P.; Simões, M.; de Matos, A.; Ferreira, F. Feline HER2 Protein Expression Levels and Gene Status in Feline Mammary Carcinoma: Optimization of Immunohistochemistry (IHC) and in Situ Hybridization (ISH) Techniques. Microsc. Microanal. 2013, 19, 876–882. [Google Scholar] [CrossRef]
- Rasotto, R.; Caliari, D.; Castagnaro, M.; Zanetti, R.; Zappulli, V. An Immunohistochemical Study of HER-2 Expression in Feline Mammary Tumours. J. Comp. Pathol. 2011, 144, 170–179. [Google Scholar] [CrossRef]
- Ordás, J.; Millán, Y.; Dios, R.; Reymundo, C.; de Las Mulas, J.M. Proto-Oncogene HER-2 in Normal, Dysplastic and Tumorous Feline Mammary Glands: An Immunohistochemical and Chromogenic in Situ Hybridization Study. BMC Cancer 2007, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Ribeiro, R.; Najmudin, S.; Gameiro, A.; Rodrigues, R.; Cardoso, F.; Ferreira, F. Serum HER2 Levels Are Increased in Cats with Mammary Carcinomas and Predict Tissue HER2 Status. Oncotarget 2016, 7, 17314–17326. [Google Scholar] [CrossRef] [PubMed]
- Beha, G.; Muscatello, L.V.; Brunetti, B.; Asproni, P.; Millanta, F.; Poli, A.; Benazzi, C.; Sarli, G. Molecular Phenotype of Primary Mammary Tumours and Distant Metastases in Female Dogs and Cats. J. Comp. Pathol. 2014, 150, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Madeira, S.; Correia, J.; Peleteiro, M.; Cardoso, F.; Ferreira, F. Molecular Based Subtyping of Feline Mammary Carcinomas and Clinicopathological Characterization. Breast 2016, 27, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Dagher, E.; Abadie, J.; Loussouarn, D.; Fanuel, D.; Campone, M.; Nguyen, F. Bcl-2 Expression and Prognostic Significance in Feline Invasive Mammary Carcinomas: A Retrospective Observational Study. BMC Vet. Res. 2019, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- De Campos, C.B.; Damasceno, K.A.; Gamba, C.O.; Ribeiro, A.M.; Machado, C.J.; Lavalle, G.E.; Cassali, G.D. Evaluation of Prognostic Factors and Survival Rates in Malignant Feline Mammary Gland Neoplasms. J. Feline Med. Surg. 2016, 18, 1003–1012. [Google Scholar] [CrossRef]
- Maniscalco, L.; Iussich, S.; de Las Mulas, J.M.; Millán, Y.; Biolatti, B.; Sasaki, N.; Nakagawa, T.; De Maria, R. Activation of AKT in Feline Mammary Carcinoma: A New Prognostic Factor for Feline Mammary Tumours. Vet. J. 2012, 191, 65–71. [Google Scholar] [CrossRef]
- Marques, C.S.; Soares, M.; Santos, A.; Correia, J.; Ferreira, F. Serum SDF-1 Levels Are a Reliable Diagnostic Marker of Feline Mammary Carcinoma, Discriminating HER2-Overexpressing Tumors from Other Subtypes. Oncotarget 2017, 8, 105775–105789. [Google Scholar] [CrossRef]
- Millanta, F.; Citi, S.; Della Santa, D.; Porciani, M.; Poli, A. COX-2 Expression in Canine and Feline Invasive Mammary Carcinomas: Correlation with Clinicopathological Features and Prognostic Molecular Markers. Breast Cancer Res. Treat. 2006, 98, 115–120. [Google Scholar] [CrossRef]
- Maniscalco, L.; Guil-Luna, S.; Iussich, S.; Gattino, F.; Trupia, C.; Millan, Y.; de Las Mulas, J.M.; Cespedez, R.S.; Saeki, K.; Accornero, P.; et al. Expression of the Short Form of RON/STK in Feline Mammary Carcinoma. Vet. Pathol. 2019, 56, 220–229. [Google Scholar] [CrossRef]
- De Maria, R.; Maggiora, P.; Biolatti, B.; Prat, M.; Comoglio, P.M.; Castagnaro, M.; Di Renzo, M.F. Feline STK Gene Expression in Mammary Carcinomas. Oncogene 2002, 21, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.; Gameiro, A.; Ferreira, J.; Correia, J.; Ferreira, F. Diagnostic Value of VEGF-A, VEGFR-1 and VEGFR-2 in Feline Mammary Carcinoma. Cancers 2021, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Millanta, F.; Silvestri, G.; Vaselli, C.; Citi, S.; Pisani, G.; Lorenzi, D.; Poli, A. The Role of Vascular Endothelial Growth Factor and Its Receptor Flk-1/KDR in Promoting Tumour Angiogenesis in Feline and Canine Mammary Carcinomas: A Preliminary Study of Autocrine and Paracrine Loops. Res. Vet. Sci. 2006, 81, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Soares, M.; Correia, J.; Adega, F.; Ferreira, F.; Chaves, R. Assessment of ERBB2 and TOP2α Gene Status and Expression Profile in Feline Mammary Tumors: Findings and Guidelines. Aging 2019, 11, 4688–4705. [Google Scholar] [CrossRef] [PubMed]
- Millanta, F.; Verin, R.; Asproni, P.; Giannetti, G.; Poli, A. A Case of Feline Primary Inflammatory Mammary Carcinoma: Clinicopathological and Immunohistochemical Findings. J. Feline Med. Surg. 2012, 14, 420–423. [Google Scholar] [CrossRef]
- Soares, M.; Correia, J.; Nascimento, C.; Ferreira, F. Anaplastic Mammary Carcinoma in Cat. Vet. Sci. 2021, 8, 77. [Google Scholar] [CrossRef]
- Soares, M.; Correia, A.N.; Batista, M.R.; Correia, J.; Ferreira, F. fHER2, PR, ER, Ki-67 and Cytokeratin 5/6 Expression in Benign Feline Mammary Lesions. Animals 2022, 12, 1599. [Google Scholar] [CrossRef]
- Perrier, A.; Boelle, P.-Y.; Chrétien, Y.; Gligorov, J.; Lotz, J.-P.; Brault, D.; Comperat, E.; Lefèvre, G.; Boissan, M. An Updated Evaluation of Serum sHER2, CA15.3, and CEA Levels as Biomarkers for the Response of Patients with Metastatic Breast Cancer to Trastuzumab-Based Therapies. PLoS ONE 2020, 15, e0227356. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Zhang, D.; Ma, F. Prognostic Value of the Serum HER2 Extracellular Domain Level in Breast Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 4551. [Google Scholar] [CrossRef]
- Gameiro, A.; Almeida, F.; Nascimento, C.; Correia, J.; Ferreira, F. Tyrosine Kinase Inhibitors Are Promising Therapeutic Tools for Cats with HER2-Positive Mammary Carcinoma. Pharmaceutics 2021, 13, 346. [Google Scholar] [CrossRef]
- Gameiro, A.; Nascimento, C.; Correia, J.; Ferreira, F. HER2-Targeted Immunotherapy and Combined Protocols Showed Promising Antiproliferative Effects in Feline Mammary Carcinoma Cell-Based Models. Cancers 2021, 13, 2007. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Bastos, E.; Baptista, C.S.; Sá, D.; Caloustian, C.; Guedes-Pinto, H.; Gärtner, F.; Gut, I.G.; Chaves, R. Sequence Variants and Haplotype Analysis of Cat ERBB2 Gene: A Survey on Spontaneous Cat Mammary Neoplastic and Non-Neoplastic Lesions. Int. J. Mol. Sci. 2012, 13, 2783–2800. [Google Scholar] [CrossRef] [PubMed]
- Malaguti, P.; Vari, S.; Cognetti, F.; Fabi, A. The Mammalian Target of Rapamycin Inhibitors in Breast Cancer: Current Evidence and Future Directions. Anticancer. Res. 2013, 33, 21–28. [Google Scholar]
- Michishita, M.; Ohtsuka, A.; Nakahira, R.; Tajima, T.; Nakagawa, T.; Sasaki, N.; Arai, T.; Takahashi, K. Anti-Tumor Effect of Bevacizumab on a Xenograft Model of Feline Mammary Carcinoma. J. Vet. Med. Sci. 2016, 78, 685–689. [Google Scholar] [CrossRef]
- Bergkvist, G.T.; Argyle, D.J.; Morrison, L.; MacIntyre, N.; Hayes, A.; Yool, D.A. Expression of Epidermal Growth Factor Receptor (EGFR) and Ki67 in Feline Oral Squamous Cell Carcinomas (FOSCC). Vet. Comp. Oncol. 2011, 9, 106–117. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Ehrhart, E.J.; Charles, J.B.; Thamm, D.H.; Larue, S.M. Immunohistochemical Characterization of Feline Oral Squamous Cell Carcinoma. Am. J. Vet. Res. 2012, 73, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Sabattini, S. Epidermal Growth Factor Receptor Expression Is Predictive of Poor Prognosis in Feline Cutaneous Squamous Cell Carcinoma. J. Feline Med. Surg. 2010, 12, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Kabak, Y.B.; Sozmen, M.; Devrim, A.K.; Sudagidan, M.; Yildirim, F.; Guvenc, T.; Yarim, M.; Gulbahar, Y.M.; Ahmed, I.; Karaca, E.; et al. Expression Levels of Angiogenic Growth Factors in Feline Squamous Cell Carcinoma. Acta Vet. Hung. 2020, 68, 37–48. [Google Scholar] [CrossRef]
- Bergkvist, G.T.; Argyle, D.J.; Pang, L.Y.; Muirhead, R.; Yool, D.A. Studies on the Inhibition of Feline EGFR in Squamous Cell Carcinoma: Enhancement of Radiosensitivity and Rescue of Resistance to Small Molecule Inhibitors. Cancer Biol. Ther. 2011, 11, 927–937. [Google Scholar] [CrossRef]
- Altamura, G.; Borzacchiello, G. Anti-EGFR Monoclonal Antibody Cetuximab Displays Potential Anti-Cancer Activities in Feline Oral Squamous Cell Carcinoma Cell Lines. Front. Vet. Sci. 2022, 9, 1040552. [Google Scholar] [CrossRef]
- Rathore, K.; Alexander, M.; Cekanova, M. Piroxicam Inhibits Masitinib-Induced Cyclooxygenase 2 Expression in Oral Squamous Cell Carcinoma Cells in Vitro. Transl. Res. 2014, 164, 158–168. [Google Scholar] [CrossRef]
- Pang, L.Y.; Bergkvist, G.T.; Cervantes-Arias, A.; Yool, D.A.; Muirhead, R.; Argyle, D.J. Identification of Tumour Initiating Cells in Feline Head and Neck Squamous Cell Carcinoma and Evidence for Gefitinib Induced Epithelial to Mesenchymal Transition. Vet. J. 2012, 193, 46–52. [Google Scholar] [CrossRef]
- Wiles, V.; Hohenhaus, A.; Lamb, K.; Zaidi, B.; Camps-Palau, M.; Leibman, N. Retrospective Evaluation of Toceranib Phosphate (Palladia) in Cats with Oral Squamous Cell Carcinoma. J. Feline Med. Surg. 2017, 19, 185–193. [Google Scholar] [CrossRef]
- Kopke, M.A.; Gal, A.; Piripi, S.A.; Poirier, V.J. Squamous Cell Carcinoma of the Anal Sac in Two Cats. J. Small Anim. Pract. 2021, 62, 704–708. [Google Scholar] [CrossRef]
- Hendrick, M.J.; Brooks, J.J. Postvaccinal Sarcomas in the Cat: Histology and Immunohistochemistry. Vet. Pathol. 1994, 31, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.; Day, M.J.; Thiry, E.; Lloret, A.; Frymus, T.; Addie, D.; Boucraut-Baralon, C.; Egberink, H.; Gruffydd-Jones, T.; Horzinek, M.C.; et al. Feline Injection-Site Sarcoma: ABCD Guidelines on Prevention and Management. J. Feline Med. Surg. 2015, 17, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, N.; Kiupel, M.; Hirschberger, J. The Tyrosine Kinase Inhibitor Toceranib in Feline Injection Site Sarcoma: Efficacy and Side Effects. Vet. Comp. Oncol. 2017, 15, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, C.S.; de Queiroz, G.F.; Pinto, A.C.; Dagli, M.L.; Matera, J.M. Feline Injection Site Sarcoma: Immunohistochemical Characteristics. J. Feline Med. Surg. 2019, 21, 314–321. [Google Scholar] [CrossRef]
- Smith, A.J. Immunohistochemical Expression of c-KIT Protein in Feline Soft Tissue Fibrosarcomas. Vet. Pathol. 2009, 46, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.; Saba, C.; Gogal, R.; Lamberth, O.; Vandenplas, M.L.; Hurley, D.J.; Dubreuil, P.; Hermine, O.; Dobbin, K.; Turek, M. Masitinib Demonstrates Anti-Proliferative and pro-Apoptotic Activity in Primary and Metastatic Feline Injection-Site Sarcoma Cells. Vet. Comp. Oncol. 2012, 10, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, M.J. Feline Vaccine-Associated Sarcomas. Cancer Investig. 1999, 17, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, L.; Dobromylskyj, M.; Wood, G.A.; van der Weyden, L. Feline Oncogenomics: What Do We Know about the Genetics of Cancer in Domestic Cats? Vet. Sci. 2022, 9, 547. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Pontius, J.U.; Borst, L.B.; Breen, M. Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers. Vet. Sci. 2020, 7, 88. [Google Scholar] [CrossRef]
- Dubreuil, P.; Letard, S.; Ciufolini, M.; Gros, L.; Humbert, M.; Castéran, N.; Borge, L.; Hajem, B.; Lermet, A.; Sippl, W.; et al. Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT. PLoS ONE 2009, 4, e7258. [Google Scholar] [CrossRef] [PubMed]
- Feldhaeusser, B.R.; Turek, M.; Lawrence, J.; Cornell, K.; Gogal, R.M. Influence of Different Cell Storage/Culture Conditions on Spontaneous Proliferation and Level of Tyrosine Kinase Receptor Inhibition in Two Feline Injection-Site Sarcoma Cell Lines. J. Immunoass. Immunochem. 2013, 34, 266–282. [Google Scholar] [CrossRef]
- Turek, M.; Gogal, R.; Saba, C.; Vandenplas, M.L.; Hill, J.; Feldhausser, B.; Lawrence, J. Masitinib Mesylate Does Not Enhance Sensitivity to Radiation in Three Feline Injection-Site Sarcoma Cell Lines under Normal Growth Conditions. Res. Vet. Sci. 2014, 96, 304–307. [Google Scholar] [CrossRef]
- Ledoux, J.-M.; Brun, P.; Chapuis, T.; Dumas, P.; Guillotin, J. Medical Approach to the Treatment of Feline Injection Site Sarcoma with Masitinib: A Case Report. Vet. Med. 2014, 5, 109–113. [Google Scholar] [CrossRef]
- Morini, M.; Gentilini, F.; Pietra, M.; Spadari, A.; Turba, M.E.; Mandrioli, L.; Bettini, G. Cytological, Immunohistochemical and Mutational Analysis of a Gastric Gastrointestinal Stromal Tumour in a Cat. J. Comp. Pathol. 2011, 145, 152–157. [Google Scholar] [CrossRef]
- McGregor, O.; Moore, A.; Yeomans, S. Management of a Feline Gastric Stromal Cell Tumour with Toceranib Phosphate: A Case Study. Aust. Vet. J. 2020, 98, 181–184. [Google Scholar] [CrossRef]
- Fujii, Y.; Iwasaki, R.; Ikeda, S.; Chimura, S.; Goto, M.; Yoshizaki, K.; Sakai, H.; Ito, N.; Mori, T. Gastrointestinal Stromal Tumour Lacking Mutations in the KIT and PDGFRA Genes in a Cat. J. Small Anim. Pract. 2022, 63, 239–243. [Google Scholar] [CrossRef]
- Suwa, A.; Shimoda, T. Intestinal Gastrointestinal Stromal Tumor in a Cat. J. Vet. Med. Sci. 2017, 79, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, I.-M.; Mariño-Enríquez, A.; Fletcher, J.A. What Is New in Gastrointestinal Stromal Tumor? Adv. Anat. Pathol. 2017, 24, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Del Alcazar, C.M.; Mahoney, J.A.; Dittrich, K.; Stefanovski, D.; Church, M.E. Outcome, Prognostic Factors and Histological Characterization of Canine Gastrointestinal Sarcomas. Vet. Comp. Oncol. 2021, 19, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Muscatello, L.V.; Oto, E.D.; Dignazzi, M.; Murphy, W.J.; Porcellato, I.; De Maria, R.; Raudsepp, T.; Foschini, M.P.; Sforna, M.; Benazzi, C.; et al. HER2 Overexpression and Amplification in Feline Pulmonary Carcinoma. Vet. Pathol. 2021, 58, 527–530. [Google Scholar] [CrossRef]
- D’Costa, S.; Yoon, B.-I.; Kim, D.-Y.; Motsinger-Reif, A.A.; Williams, M.; Kim, Y. Morphologic and Molecular Analysis of 39 Spontaneous Feline Pulmonary Carcinomas. Vet. Pathol. 2012, 49, 971–978. [Google Scholar] [CrossRef]
- Bonsembiante, F.; Benali, S.L.; Trez, D.; Aresu, L.; Gelain, M.E. Histological and Immunohistochemical Characterization of Feline Renal Cell Carcinoma: A Case Series. J. Vet. Med. Sci. 2016, 78, 1039–1043. [Google Scholar] [CrossRef]
- Wu, B.; Kastl, B.; Cino-Ozuna, A.G.; Springer, N.L.; Thakkar, R.; Biller, D.; Whitehouse, W.; Easterwood, L.; Nguyen, T.A. Feline Sarcomatoid Renal Cell Carcinoma with Peritoneal Carcinomatosis and Effusion. J. Vet. Diagn. Investig. 2022, 34, 153–159. [Google Scholar] [CrossRef]
- Rushton, J.G.; Korb, M.; Kummer, S.; Reichart, U.; Fuchs-Baumgartinger, A.; Tichy, A.; Nell, B. Protein Expression of KIT, BRAF, GNA11, GNAQ and RASSF1 in Feline Diffuse Iris Melanomas. Vet. J. 2019, 249, 33–40. [Google Scholar] [CrossRef]
- Henker, L.C.; Dal Pont, T.P.; Dos Santos, I.R.; Bandinelli, M.B.; Zardo, I.L.; Rodrigues, R.; Pavarini, S.P. Duodenal Leiomyosarcoma in a Cat: Cytologic, Pathologic, and Immunohistochemical Findings. Vet. Clin. Pathol. 2022, 51, 507–510. [Google Scholar] [CrossRef]
- Teo, L.H.W.; Cahalan, S.D.; Benigni, L.; Halfacree, Z. Oesophageal Angioleiomyosarcoma in a Cat. J. Feline Med. Surg. 2014, 16, 846–852. [Google Scholar] [CrossRef]
- Yoshida, K.; Chambers, J.K.; Nibe, K.; Kagawa, Y.; Uchida, K. Immunohistochemical Analyses of Neural Stem Cell Lineage Markers in Normal Feline Brains and Glial Tumors. Vet. Pathol. 2023, 3009858231182337. [Google Scholar] [CrossRef] [PubMed]
- Boland, L.; Setyo, L.; Sangster, C.; Brunel, L.; Foo, T.; Bennett, P. Colonic Malignant Peripheral Nerve Sheath Tumour in a Cat. J. Feline Med. Surg. Open Rep. 2019, 5, 2055116919849979. [Google Scholar] [CrossRef] [PubMed]
- Aloisio, F.; Levine, J.M.; Edwards, J.F. Immunohistochemical Features of a Feline Spinal Cord Gemistocytic Astrocytoma. J. Vet. Diagn. Investig. 2008, 20, 836–838. [Google Scholar] [CrossRef] [PubMed]
- van der Steen, F.E.M.M.; Grinwis, G.C.M.; Weerts, E.A.W.S.; Teske, E. Feline and Canine Merkel Cell Carcinoma: A Case Series and Discussion on Cellular Origin. Vet. Comp. Oncol. 2021, 19, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.E.; Nguyen, S.M. Long-Term Survival in a Cat with Pancreatic Adenocarcinoma Treated with Surgical Resection and Toceranib Phosphate. J. Feline Med. Surg. Open Rep. 2020, 6, 2055116920924911. [Google Scholar] [CrossRef] [PubMed]
- Dedeaux, A.M.; Langohr, I.M.; Boudreaux, B.B. Long-Term Clinical Control of Feline Pancreatic Carcinoma with Toceranib Phosphate. Can. Vet. J. 2018, 59, 751–754. [Google Scholar]
- Martinez, I.; Brockman, D.; Purzycka, K. Caval Chemodectoma in a Cat. J. Feline Med. Surg. Open Rep. 2022, 8, 20551169221106990. [Google Scholar] [CrossRef]
- Azevedo, C.; Brawner, W.; Schleis Lindley, S.; Smith, A. Multimodal Non-Surgical Treatment of a Feline Tracheal Adenocarcinoma. J. Feline Med. Surg. Open Rep. 2017, 3, 2055116916689630. [Google Scholar] [CrossRef]
- Backlund, B.; Cianciolo, R.E.; Cook, A.K.; Clubb, F.J.; Lees, G.E. Minimal Change Glomerulopathy in a Cat. J. Feline Med. Surg. 2011, 13, 291–295. [Google Scholar] [CrossRef]
- Mazières, J.; Peters, S.; Lepage, B.; Cortot, A.B.; Barlesi, F.; Beau-Faller, M.; Besse, B.; Blons, H.; Mansuet-Lupo, A.; Urban, T.; et al. Lung Cancer That Harbors an HER2 Mutation: Epidemiologic Characteristics and Therapeutic Perspectives. J. Clin. Oncol. 2013, 31, 1997–2003. [Google Scholar] [CrossRef]
- Uy, N.F.; Merkhofer, C.M.; Baik, C.S. HER2 in Non-Small Cell Lung Cancer: A Review of Emerging Therapies. Cancers 2022, 14, 4155. [Google Scholar] [CrossRef] [PubMed]
- Misirlioglu, D.; Nak, D.; Ozyigit, M.O.; Nak, Y.; Akkoc, A. HER-2/Neu (c-erbB-2) Oncoprotein in Hyperplastic Endometrial Polyps Detected in Two Cats. J. Feline Med. Surg. 2009, 11, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Scurrell, E.; Trott, A.; Rozmanec, M.; Belford, C.J. Ocular Histiocytic Sarcoma in a Cat. Vet. Ophthalmol. 2013, 16, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.G.; Ertl, R.; Klein, D.; Nell, B. Mutation Analysis and Gene Expression Profiling of Ocular Melanomas in Cats. Vet. Comp. Oncol. 2017, 15, 1403–1416. [Google Scholar] [CrossRef]
- Lee-Fowler, T.M.; Guntur, V.; Dodam, J.; Cohn, L.A.; DeClue, A.E.; Reinero, C.R. The Tyrosine Kinase Inhibitor Masitinib Blunts Airway Inflammation and Improves Associated Lung Mechanics in a Feline Model of Chronic Allergic Asthma. Int. Arch. Allergy Immunol. 2012, 158, 369–374. [Google Scholar] [CrossRef]
- Davidescu, L.; Ursol, G.; Korzh, O.; Deshmukh, V.; Kuryk, L.; Nortje, M.-M.; Godlevska, O.; Devouassoux, G.; Khodosh, E.; Israel, E.; et al. Efficacy and Safety of Masitinib in Corticosteroid-Dependent Severe Asthma: A Randomized Placebo-Controlled Trial. J. Asthma Allergy 2022, 15, 737–747. [Google Scholar] [CrossRef]
- Noli, C.; Matricoti, I.; Schievano, C. A Double-Blinded, Randomized, Methylprednisolone-Controlled Study on the Efficacy of Oclacitinib in the Management of Pruritus in Cats with Nonflea Nonfood-Induced Hypersensitivity Dermatitis. Vet. Dermatol. 2019, 30, 110-e30. [Google Scholar] [CrossRef]
- Carrasco, I.; Ferrer, L.; Puigdemont, A. Efficacy of Oclacitinib for the Control of Feline Atopic Skin Syndrome: Correlating Plasma Concentrations with Clinical Response. J. Feline Med. Surg. 2022, 24, 787–793. [Google Scholar] [CrossRef]
- Ortalda, C.; Noli, C.; Colombo, S.; Borio, S. Oclacitinib in Feline Nonflea-, Nonfood-Induced Hypersensitivity Dermatitis: Results of a Small Prospective Pilot Study of Client-Owned Cats. Vet. Dermatol. 2015, 26, 235-e52. [Google Scholar] [CrossRef]
- Steffan, J.; Olivry, T.; Forster, S.L.; Seewald, W. Responsiveness and Validity of the SCORFAD, an Extent and Severity Scale for Feline Hypersensitivity Dermatitis. Vet. Dermatol. 2012, 23, 410-e77. [Google Scholar] [CrossRef]
- Rybnícek, J.; Lau-Gillard, P.J.; Harvey, R.; Hill, P.B. Further Validation of a Pruritus Severity Scale for Use in Dogs. Vet. Dermatol. 2009, 20, 115–122. [Google Scholar] [CrossRef] [PubMed]
- London, C.A.; Hannah, A.L.; Zadovoskaya, R.; Chien, M.B.; Kollias-Baker, C.; Rosenberg, M.; Downing, S.; Post, G.; Boucher, J.; Shenoy, N.; et al. Phase I Dose-Escalating Study of SU11654, a Small Molecule Receptor Tyrosine Kinase Inhibitor, in Dogs with Spontaneous Malignancies. Clin. Cancer Res. 2003, 9, 2755–2768. [Google Scholar]
- Merrick, C.H.; Pierro, J.; Schleis, S.E.; Sones, E.A.; Wright, Z.M.; Regan, R.C.; Siedlecki, C.T.; Bergman, P.J. Retrospective Evaluation of Toceranib Phosphate (Palladia®) Toxicity in Cats. Vet. Comp. Oncol. 2017, 15, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.; Blackwood, L. Toxicity and Response in Cats with Neoplasia Treated with Toceranib Phosphate. J. Feline Med. Surg. 2017, 19, 619–623. [Google Scholar] [CrossRef]
- Olmsted, G.A.; Farrelly, J.; Post, G.S.; Smith, J. Tolerability of Toceranib Phosphate (Palladia) When Used in Conjunction with Other Therapies in 35 Cats with Feline Oral Squamous Cell Carcinoma: 2009–2013. J. Feline Med. Surg. 2017, 19, 568–575. [Google Scholar] [CrossRef]
- Yancey, M.F.; Merritt, D.A.; White, J.A.; Marsh, S.A.; Locuson, C.W. Distribution, Metabolism, and Excretion of Toceranib Phosphate (PalladiaTM, SU11654), a Novel Tyrosine Kinase Inhibitor, in Dogs. J. Vet. Pharmacol. Ther. 2010, 33, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, J.V.J.; Hasbach, A.; Barnes, K.; Dange, R.B.; Patterson, J.; Saavedra, P.V. Skin Depigmentation Associated with Toceranib Phosphate in a Dog. Vet. Dermatol. 2017, 28, 400-e95. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, F.; Bader, T.; Moussy, A.; Hermine, O. Pharmacokinetics of Masitinib in Cats. Vet. Res. Commun. 2009, 33, 831–837. [Google Scholar] [CrossRef]
- Daly, M.; Sheppard, S.; Cohen, N.; Nabity, M.; Moussy, A.; Hermine, O.; Wilson, H. Safety of Masitinib Mesylate in Healthy Cats. J. Vet. Intern. Med. 2011, 25, 297–302. [Google Scholar] [CrossRef]
- Deininger, M.; Buchdunger, E.; Druker, B.J. The Development of Imatinib as a Therapeutic Agent for Chronic Myeloid Leukemia. Blood 2005, 105, 2640–2653. [Google Scholar] [CrossRef]
- Bonkobara, M. Dysregulation of Tyrosine Kinases and Use of Imatinib in Small Animal Practice. Vet. J. 2015, 205, 180–188. [Google Scholar] [CrossRef]
- Cochet Faivre, N.; Prelaud, P.; Bensignor, E.; Declercq, J.; Defalque, V. Three Cases of Feline Hypereosinophilic Syndrome Treated with Imatinib Mesilate. Rev. Vétérinaire Clin. 2014, 49, 139–144. [Google Scholar] [CrossRef]
- Sum, S.O.; Hensel, P.; Rios, L.; Brown, S.; Howerth, E.W.; Driskell, E.A.; Moussy, A.; Hermine, O.; Brown, C.A. Drug-Induced Minimal Change Nephropathy in a Dog. J. Vet. Intern. Med. 2010, 24, 431–435. [Google Scholar] [CrossRef]
- Devine, L.; Polzin, D.J. Presumed Masitinib-Induced Nephrotic Syndrome and Azotemia in a Dog. Can. Vet. J. 2016, 57, 752–756. [Google Scholar]
- Kerkelä, R.; Grazette, L.; Yacobi, R.; Iliescu, C.; Patten, R.; Beahm, C.; Walters, B.; Shevtsov, S.; Pesant, S.; Clubb, F.J.; et al. Cardiotoxicity of the Cancer Therapeutic Agent Imatinib Mesylate. Nat. Med. 2006, 12, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Orphanos, G.S.; Ioannidis, G.N.; Ardavanis, A.G. Cardiotoxicity Induced by Tyrosine Kinase Inhibitors. Acta Oncol. 2009, 48, 964–970. [Google Scholar] [CrossRef]
- Cosgrove, S.B.; Cleaver, D.M.; King, V.L.; Gilmer, A.R.; Daniels, A.E.; Wren, J.A.; Stegemann, M.R. Long-Term Compassionate Use of Oclacitinib in Dogs with Atopic and Allergic Skin Disease: Safety, Efficacy and Quality of Life. Vet. Dermatol. 2015, 26, 171–179.e35. [Google Scholar] [CrossRef]
- Ferrer, L.; Carrasco, I.; Cristòfol, C.; Puigdemont, A. A Pharmacokinetic Study of Oclacitinib Maleate in Six Cats. Vet. Dermatol. 2020, 31, 134–137. [Google Scholar] [CrossRef]
- Lopes, N.L.; Campos, D.R.; Machado, M.A.; Alves, M.S.R.; de Souza, M.S.G.; da Veiga, C.C.P.; Merlo, A.; Scott, F.B.; Fernandes, J.I. A Blinded, Randomized, Placebo-Controlled Trial of the Safety of Oclacitinib in Cats. BMC Vet. Res. 2019, 15, 137. [Google Scholar] [CrossRef] [PubMed]
- Collard, W.T.; Hummel, B.D.; Fielder, A.F.; King, V.L.; Boucher, J.F.; Mullins, M.A.; Malpas, P.B.; Stegemann, M.R. The Pharmacokinetics of Oclacitinib Maleate, a Janus Kinase Inhibitor, in the Dog. J. Vet. Pharmacol. Ther. 2014, 37, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Burrows, A.K.; Malik, R.; Ghubash, R.M.; Last, R.D.; Remaj, B. Fatal Disseminated Toxoplasmosis in a Feline Immunodeficiency Virus-Positive Cat Receiving Oclacitinib for Feline Atopic Skin Syndrome. Vet. Dermatol. 2022, 33, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Marconato, L.; Sabattini, S.; Kiupel, M. Mutations in Exons 8 and 11 of c-KIT Gene in Canine Subcutaneous Mast Cell Tumors and Their Association with Cell Proliferation. Vet. Sci. 2022, 9, 493. [Google Scholar] [CrossRef] [PubMed]
- Brocks, B.A.W.; Bertram, C.A.; Bartel, A.; Kirpensteijn, J.; Collins-Webb, A.; Catlin, C.; Thaiwong, T.; Kiupel, M. Internal Tandem Duplication of Exon 8 of c-KIT Is Associated with Longer Total Survival in Canine Cutaneous Mast Cell Tumors. Vet. Pathol. 2021, 58, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Smrkovski, O.A.; Essick, L.; Rohrbach, B.W.; Legendre, A.M. Masitinib Mesylate for Metastatic and Non-Resectable Canine Cutaneous Mast Cell Tumours. Vet. Comp. Oncol. 2015, 13, 314–321. [Google Scholar] [CrossRef]
- Grant, J.; North, S.; Lanore, D. Clinical Response of Masitinib Mesylate in the Treatment of Canine Macroscopic Mast Cell Tumours. J. Small Anim. Pract. 2016, 57, 283–290. [Google Scholar] [CrossRef]
- Macedo, T.R.; de Queiroz, G.F.; Casagrande, T.A.C.; Alexandre, P.A.; Brandão, P.E.; Fukumasu, H.; Melo, S.R.; Dagli, M.L.Z.; Pinto, A.C.B.C.F.; Matera, J.M. Imatinib Mesylate for the Treatment of Canine Mast Cell Tumors: Assessment of the Response and Adverse Events in Comparison with the Conventional Therapy with Vinblastine and Prednisone. Cells 2022, 11, 571. [Google Scholar] [CrossRef]
- Robat, C.; London, C.; Bunting, L.; McCartan, L.; Stingle, N.; Selting, K.; Kurzman, I.; Vail, D.M. Safety Evaluation of Combination Vinblastine and Toceranib Phosphate (Palladia®) in Dogs: A Phase I Dose-Finding Study. Vet. Comp. Oncol. 2012, 10, 174–183. [Google Scholar] [CrossRef]
- Olsen, J.A.; Thomson, M.; O’Connell, K.; Wyatt, K. Combination Vinblastine, Prednisolone and Toceranib Phosphate for Treatment of Grade II and III Mast Cell Tumours in Dogs. Vet. Med. Sci. 2018, 4, 237–251. [Google Scholar] [CrossRef]
- Todd, J.E.; Nguyen, S.M.; White, J.; Langova, V.; Thomas, P.M.; Tzannes, S. Combination Vinblastine and Palladia for High-Grade and Metastatic Mast Cell Tumors in Dogs. Can. Vet. J. 2021, 62, 1335–1340. [Google Scholar]
- Bavcar, S.; de Vos, J.; Kessler, M.; de Fornel, P.; Buracco, P.; Murphy, S.; Hirschberger, J.; Argyle, D.J. Combination Toceranib and Lomustine Shows Frequent High Grade Toxicities When Used for Treatment of Non-Resectable or Recurrent Mast Cell Tumours in Dogs: A European Multicentre Study. Vet. J. 2017, 224, 1–6. [Google Scholar] [CrossRef]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/Neu Oncogene. Science 1987, 235, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, G.N.; Henriques, J.; Lobo, L.; Vilhena, H.; Figueira, A.C.; Canadas-Sousa, A.; Dias-Pereira, P.; Prada, J.; Pires, I.; Queiroga, F.L. Adjuvant Doxorubicin vs Metronomic Cyclophosphamide and Meloxicam vs Surgery Alone for Cats with Mammary Carcinomas: A Retrospective Study of 137 Cases. Vet. Comp. Oncol. 2021, 19, 714–723. [Google Scholar] [CrossRef] [PubMed]
- McNeill, C.J.; Sorenmo, K.U.; Shofer, F.S.; Gibeon, L.; Durham, A.C.; Barber, L.G.; Baez, J.L.; Overley, B. Evaluation of Adjuvant Doxorubicin-Based Chemotherapy for the Treatment of Feline Mammary Carcinoma. J. Vet. Intern. Med. 2009, 23, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Muellerleile, L.-M.; Buxbaum, B.; Nell, B.; Fux, D.A. In-Vitro Binding Analysis of Anti-Human Vascular Endothelial Growth Factor Antibodies Bevacizumab and Aflibercept with Canine, Feline, and Equine Vascular Endothelial Growth Factor. Res. Vet. Sci. 2019, 124, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Beirão, B.C.B.; Raposo, T.; Jain, S.; Hupp, T.; Argyle, D.J. Challenges and Opportunities for Monoclonal Antibody Therapy in Veterinary Oncology. Vet. J. 2016, 218, 40–50. [Google Scholar] [CrossRef]
- Hambly, J.N.; Ruby, C.E.; Mourich, D.V.; Bracha, S.; Dolan, B.P. Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Veterinary Oncology. Vet. Sci. 2023, 10, 336. [Google Scholar] [CrossRef]
- Singer, J.; Fazekas, J.; Wang, W.; Weichselbaumer, M.; Matz, M.; Mader, A.; Steinfellner, W.; Meitz, S.; Mechtcheriakova, D.; Sobanov, Y.; et al. Generation of a Canine Anti-EGFR (ErbB-1) Antibody for Passive Immunotherapy in Dog Cancer Patients. Mol. Cancer Ther. 2014, 13, 1777–1790. [Google Scholar] [CrossRef]
- Gruen, M.E.; Myers, J.A.E.; Tena, J.-K.S.; Becskei, C.; Cleaver, D.M.; Lascelles, B.D.X. Frunevetmab, a Felinized Anti-Nerve Growth Factor Monoclonal Antibody, for the Treatment of Pain from Osteoarthritis in Cats. J. Vet. Intern. Med. 2021, 35, 2752–2762. [Google Scholar] [CrossRef]
- Wypij, J.M. A Naturally Occurring Feline Model of Head and Neck Squamous Cell Carcinoma. Pathol. Res. Int. 2013, 2013, 502197. [Google Scholar] [CrossRef]
- Bilgic, O.; Duda, L.; Sánchez, M.D.; Lewis, J.R. Feline Oral Squamous Cell Carcinoma: Clinical Manifestations and Literature Review. J. Vet. Dent. 2015, 32, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Sodani, K.; Tiwari, A.K.; Singh, S.; Patel, A.; Xiao, Z.-J.; Chen, J.-J.; Sun, Y.-L.; Talele, T.T.; Chen, Z.-S. GW583340 and GW2974, Human EGFR and HER-2 Inhibitors, Reverse ABCG2- and ABCB1-Mediated Drug Resistance. Biochem. Pharmacol. 2012, 83, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Smilek, P.; Neuwirthova, J.; Jarkovsky, J.; Dusek, L.; Rottenberg, J.; Kostrica, R.; Srovnal, J.; Hajduch, M.; Drabek, J.; Klozar, J. Epidermal Growth Factor Receptor (EGFR) Expression and Mutations in the EGFR Signaling Pathway in Correlation with Anti-EGFR Therapy in Head and Neck Squamous Cell Carcinomas. Neoplasma 2012, 59, 508–515. [Google Scholar] [CrossRef]
- Kyriazoglou, A.; Gkaralea, L.E.; Kotsantis, I.; Anastasiou, M.; Pantazopoulos, A.; Prevezanou, M.; Chatzidakis, I.; Kavourakis, G.; Economopoulou, P.; Nixon, I.F.; et al. Tyrosine Kinase Inhibitors in Sarcoma Treatment. Oncol. Lett. 2022, 23, 183. [Google Scholar] [CrossRef] [PubMed]
- Müller, N.; Kessler, M. Curative-Intent Radical En Bloc Resection Using a Minimum of a 3 Cm Margin in Feline Injection-Site Sarcomas: A Retrospective Analysis of 131 Cases. J. Feline Med. Surg. 2018, 20, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Hauck, M.L.; Dodge, R.; Page, R.L.; Price, G.S.; Williams, L.E.; Hardie, E.M.; Mathews, K.G.; Thrall, D.E. Preoperative Radiotherapy for Vaccine Associated Sarcoma in 92 Cats. Vet. Radiol. Ultrasound 2002, 43, 473–479. [Google Scholar] [CrossRef]
- Waarts, M.R.; Stonestrom, A.J.; Park, Y.C.; Levine, R.L. Targeting Mutations in Cancer. J. Clin. Investig. 2022, 132, e154943. [Google Scholar] [CrossRef]
- Aleksakhina, S.N.; Imyanitov, E.N. Cancer Therapy Guided by Mutation Tests: Current Status and Perspectives. Int. J. Mol. Sci. 2021, 22, 10931. [Google Scholar] [CrossRef]
- Choi, H.Y.; Chang, J.-E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int. J. Mol. Sci. 2023, 24, 13618. [Google Scholar] [CrossRef]
- Buckley, R.M.; Davis, B.W.; Brashear, W.A.; Farias, F.H.G.; Kuroki, K.; Graves, T.; Hillier, L.W.; Kremitzki, M.; Li, G.; Middleton, R.P.; et al. A New Domestic Cat Genome Assembly Based on Long Sequence Reads Empowers Feline Genomic Medicine and Identifies a Novel Gene for Dwarfism. PLOS Genet. 2020, 16, e1008926. [Google Scholar] [CrossRef]
- Kuijlaars, M.; Helm, J.; McBrearty, A. Development and Progression of Proteinuria in Dogs Treated with Masitinib for Neoplasia: 28 Cases (2010–2019). J. Small Anim. Pract. 2021, 62, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Caldemeyer, L.; Dugan, M.; Edwards, J.; Akard, L. Long-Term Side Effects of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia. Curr. Hematol. Malig. Rep. 2016, 11, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Dong, E.E.; Bruno, M.A.; Kim, J.J.; Bernhardt, M.B.; Brown, A.L.; Gramatges, M.M. Distribution and Frequency of Tyrosine Kinase Inhibitor-Associated Long-Term Complications in Children with Chronic Myeloid Leukemia. Pediatr. Blood Cancer 2022, 69, e29786. [Google Scholar] [CrossRef] [PubMed]
- Grindlay, D.J.C.; Brennan, M.L.; Dean, R.S. Searching the Veterinary Literature: A Comparison of the Coverage of Veterinary Journals by Nine Bibliographic Databases. J. Vet. Med. Educ. 2012, 39, 404–412. [Google Scholar] [CrossRef] [PubMed]
Tyrosine Kinase | Tissue | Method |
---|---|---|
trkA | Dorsal pontine tegmentum [36] | IHC |
Extraocular motor nuclei [37] | IHC, ICC | |
trkB | Extraocular motor nuclei [37] Olfactory bulb [38] Visual cortex [39] | IHC, ICC ISH IHC |
Lateral geniculate nucleus [40] | IHC | |
trkC | Extraocular motor nuclei [37] Olfactory bulb [38] | IHC, ICC ISH |
Dorsal pontine tegmentum [36] | IHC | |
EGFR (HER1) | Ovary [41] | Histological ligand binding assay |
Endometrium [42] Placenta [42] | ICC | |
Tongue mucosa [43] Transitional epithelium (kidney) [43] Urinary bladder [43] Respiratory epithelium (trachea) [43] Larynx/oral epithelium [43] Peripheral nerve [43] | IHC | |
HER2 (erbB2) | Mammary gland [44,45] Endometrium [46,47] | IHC |
Uterine wall glandular epithelium [47] | ||
Gastric mucosal surface cells and parietal cells (in Helicobacter heilmanii colonization) [48] | ||
RET | Developing gut [49] Developing pancreas [50] | IHC |
VEGFR-2 (Flk-1) | Endometrium [51] Placenta [51] | IHC |
VEGFR-3 | Endothelial cells [52] Mammary gland epithelium [52] | IHC |
YES1 | Myocardium [53] Adrenal cortex [53] Pancreas [53] Renal tubular epithelium [53] Liver (hepatocytes) [53] Cerebellum [53] | IHC |
PDGFR-β | Endocrine pancreas [54] Blood vessel endothelium of normal lymph nodes [54] | IHC |
PDGFR-α | Muscle cells [55] Blood vessel walls [55] Hair follicle epithelium [55] | IHC |
KIT | Cerebellum [56,57] Endothelial cells [57] Mast cells [56] Mammary gland (weak expression) [56] GI tract, interstitial cells of Cajal [56] Ovary (weak expression) [56] Uterus, endometrium (weak expression) [56] | IHC |
Kidney: cortical arrays, loops of Henle, collecting ducts [58], distal tubules [59] | ||
Ureteral wall (interstitial cell of Cajal-like cells) [60] Pancreatic interstitial cells of Cajal [61] |
Toceranib [77,125,129,175,176,177] | Masitinib [139,167,181] | Imatinib [17,19,78,79,161,184] | Oclacitinib [169,170,171,191] | |
---|---|---|---|---|
Most common AE category | GI (anorexia, vomiting, diarrhea) | GI (vomiting) | GI (vomiting) | GI (vomiting, diarrhea) |
Hepatic (ALT increase) | Renal (proteinuria) | Constitutional (lethargy) | ||
Frequency | 47% (GI) | 50% (GI) | Occasional | Occasional |
Common (hepatic) | 30% (renal) | |||
Percent VCOG grade 3 and 4 (out of all cats) | 2% (GI) | 0 (GI) | 0 | 0 |
6% (hepatic) | 30% (renal) | |||
Most common dosing schedule | 2.5–2.8 mg/kg q48h or three times per week | 50 mg/cat q24h or q48h | 10 mg/kg q24h | 0.5–2 mg/kg q12h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žagar, Ž.; Schmidt, J.M. A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions. Animals 2023, 13, 3059. https://doi.org/10.3390/ani13193059
Žagar Ž, Schmidt JM. A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions. Animals. 2023; 13(19):3059. https://doi.org/10.3390/ani13193059
Chicago/Turabian StyleŽagar, Žiga, and Jarno M. Schmidt. 2023. "A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions" Animals 13, no. 19: 3059. https://doi.org/10.3390/ani13193059
APA StyleŽagar, Ž., & Schmidt, J. M. (2023). A Scoping Review on Tyrosine Kinase Inhibitors in Cats: Current Evidence and Future Directions. Animals, 13(19), 3059. https://doi.org/10.3390/ani13193059