Dietary Supplementation of Mixed Organic Acids Improves Growth Performance, Immunity, and Antioxidant Capacity and Maintains the Intestinal Barrier of Ira Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diet
2.2. Growth Performance
2.3. Sample Collection
2.4. Determination of Serum Cytokines
2.5. Liver Antioxidant Indicators
2.6. Jejunal Mucosa Enzyme Activity Assay
2.7. Determination of Jejunal Mucosal Immune Indicators
2.8. qRT‒PCR
2.9. Data Analysis
3. Results
3.1. Growth Performance
3.2. Serum Immunity
3.3. Liver Antioxidant Function
3.4. Digestive Enzyme Activity of Jejunal Mucosa
3.5. The Content of Immune Factors in Jejunal Mucosa and the Expression of Related Genes
3.6. Expression of Tight Junction Protein in Jejunal Mucosa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Zuo, W.; Li, F. Dietary addition of artemisia argyi reduces diarrhea and modulates the gut immune function without affecting growth performances of rabbits after weaning. J. Anim. Sci. 2019, 97, 1693–1700. [Google Scholar] [CrossRef]
- Gharib, H.S.A.; Abdelfattah, A.; Mohammed, H.A.; Abdelfattah, D. Weaning induces changes in behavior and stress indicators in young new zealand rabbits. J. Adv. Veter Anim. Res. 2018, 5, 166. [Google Scholar] [CrossRef]
- Scapinello, C.; Gidenne, T.; Fortun-Lamothe, L. Digestive capacity of the rabbit during the post-weaning period, according to the milk/solid feed intake pattern before weaning. Reprod. Nutr. Dev. 1999, 39, 423–432. [Google Scholar] [CrossRef]
- Schwarz, J.; Schädler, J.; Albini, S.; Peter-Egli, J.; Probst, S.; Schüpbach-Regula, G.; Wiederkehr, D. Health, performance and use of medication in professional swiss meat rabbit production. Schweiz. Arch. Tierheilkd. 2021, 164, 623–634. [Google Scholar] [CrossRef]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef]
- Ferronato, G.; Prandini, A. Dietary supplementation of inorganic, organic, and fatty acids in pig: A review. Animals 2020, 10, 1740. [Google Scholar] [CrossRef]
- Quitmann, H.; Fan, R.; Czermak, P. Acidic organic compounds in beverage, food, and feed production. Adv. Biochem. Eng. Biotechnol. 2014, 143, 91–141. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Raziq, F.; Qudratullah, Q.; Khan, N.A.; Laudadio, V.; Tufarelli, V.; Ragni, M. Prospects of organic acids as safe alternative to antibiotics in broiler chickens diet. Environ. Sci. Pollut. Res. Int. 2022, 29, 32594–32604. [Google Scholar] [CrossRef]
- Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In vitro antimicrobial activities of organic acids and their derivatives on several species of gram-negative and gram-positive bacteria. Molecules 2019, 24, 3770. [Google Scholar] [CrossRef]
- Luise, D.; Motta, V.; Salvarani, C.; Chiappelli, M.; Fusco, L.; Bertocchi, M.; Mazzoni, M.; Maiorano, G.; Costa, L.N.; Van Milgen, J.; et al. Long-term administration of formic acid to weaners: Influence on intestinal microbiota, immunity parameters and growth performance. Anim. Feed. Sci. Technol. 2017, 232, 160–168. [Google Scholar] [CrossRef]
- Polycarpo, G.V.; Andretta, I.; Kipper, M.; Cruz-Polycarpo, V.C.; Dadalt, J.C.; Rodrigues, P.H.M.; Albuquerque, R. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poult. Sci. 2017, 96, 3645–3653. [Google Scholar] [CrossRef]
- Venkatasubramani, R.; Vasanthakumar, P.; Chandrasekaran, D.; Rajendran, D.; Purushothaman, M.R. Performance of broilers fed formic and propionic acid supplemented diets. Nutr. Feed Technol. 2014, 14, 81–90. [Google Scholar]
- Chen, J.; Xia, Y.; Hu, Y.; Zhao, X.; You, J.; Zou, T. A blend of formic acid, benzoic acid, and tributyrin alleviates etec k88-induced intestinal barrier dysfunction by regulating intestinal inflammation and gut microbiota in a murine model. Int. Immunopharmacol. 2023, 114, 109538. [Google Scholar] [CrossRef]
- Hernández, F.; García, V.; Madrid, J.; Orengo, J.; Catalá, P.; Megías, M.D. Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. Br. Poult. Sci. 2006, 47, 50–56. [Google Scholar] [CrossRef]
- Storm, A.C.; Kristensen, N.B.; Hanigan, M.D. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating holstein cows. J. Dairy Sci. 2012, 95, 2919–2934. [Google Scholar] [CrossRef]
- Girolami, F.; Barbarossa, A.; Badino, P.; Ghadiri, S.; Cavallini, D.; Zaghini, A.; Nebbia, C. Effects of turmeric powder on aflatoxin m1 and aflatoxicol excretion in milk from dairy cows exposed to aflatoxin b1 at the eu maximum tolerable levels. Toxins 2022, 14, 430. [Google Scholar] [CrossRef]
- Gao, Y.-Y.; Xie, Q.-M.; Jin, L.; Sun, B.-L.; Ji, J.; Chen, F.; Ma, J.-Y.; Bi, Y.-Z. Supplementation of xanthophylls decreased proinflammatory and increased anti-inflammatory cytokines in hens and chicks. Br. J. Nutr. 2012, 108, 1746–1755. [Google Scholar] [CrossRef]
- Kesik, V.; Lenk, M.K.; Kurekci, A.E.; Acikel, C.H.; Akgul, E.O.; Aydin, A.; Erdem, O.; Gamsizkan, M. Do zinc and selenium prevent the antioxidant, hepatic and renal system impairment caused by aspirin in rats? Biol. Trace Elem. Res. 2008, 123, 168–178. [Google Scholar] [CrossRef]
- Marchioro, A.; Mallmann, A.O.; Diel, A.; Dilkin, P.; Rauber, R.H.; Blazquez, F.J.H.; Oliveira, M.G.A.; Mallmann, C.A. Effects of aflatoxins on performance and exocrine pancreas of broiler chickens. Avian Dis. 2013, 57, 280–284. [Google Scholar] [CrossRef]
- Gao, Y.-Y.; Xie, Q.-M.; Ma, J.-Y.; Zhang, X.-B.; Zhu, J.-M.; Shu, D.-M.; Sun, B.-L.; Jin, L.; Bi, Y.-Z. Supplementation of xanthophylls increased antioxidant capacity and decreased lipid peroxidation in hens and chicks. Br. J. Nutr. 2013, 109, 977–983. [Google Scholar] [CrossRef]
- Saleem, K.; Saima; Rahman, A.; Pasha, T.N.; Mahmud, A.; Hayat, Z. Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers. Trop. Anim. Health Prod. 2020, 52, 3589–3596. [Google Scholar] [CrossRef]
- Long, S.F.; Xu, Y.T.; Pan, L.; Wang, Q.Q.; Wang, C.L.; Wu, J.Y.; Wu, Y.Y.; Han, Y.M.; Yun, C.H.; Piao, X.S. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim. Feed. Sci. Technol. 2017, 235, 23–32. [Google Scholar]
- Asriqah, L.; Nugroho, R.A.; Aryani, R. Effect of various organic acid supplementation diets on clarias gariepinus burchell, 1822: Evaluation of growth, survival and feed utilization. F1000 Res. 2018, 7, 1465. [Google Scholar] [CrossRef]
- Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef]
- Wahlqvist, M.L. Antioxidant relevance to human health. Asia Pac. J. Clin. Nutr. 2013, 22, 171–176. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Gaweł, S.; Wardas, M.; Niedworok, E.; Wardas, P. Malondialdehyde (mda) as a lipid peroxidation marker. Wiad. Lek. 2004, 57, 453–455. [Google Scholar]
- Bułdak, R.J.; Bułdak, Ł.; Kukla, M.; Gabriel, A.; Zwirska-Korczala, K. Significance of selected antioxidant enzymes in cancer cell progression. Pol. J. Pathol. 2014, 65, 167–175. [Google Scholar] [CrossRef]
- Geret, F.; Serafim, A.; Bebianno, M.J. Antioxidant enzyme activities, metallothioneins and lipid peroxidation as biomarkers in ruditapes decussatus? Ecotoxicology 2003, 12, 417. [Google Scholar]
- Yuan, S.; Pan, Y.; Zhang, Z.; He, Y.; Teng, Y.; Liang, H.; Wu, X.; Yang, H.; Zhou, P. Amelioration of the lipogenesis, oxidative stress and apoptosis of hepatocytes by a novel proteoglycan from ganoderma lucidum. Biol. Pharm. Bull. 2020, 43, 1542–1550. [Google Scholar] [CrossRef]
- Çelik, H.T.; Aslan, F.A.; Altay, D.U.; Kahveci, M.E.; Konanç, K.; Noyan, T.; Ayhan, S. Effects of transport and altitude on hormones and oxidative stress parameters in sheep. PLoS ONE 2021, 16, e0244911. [Google Scholar] [CrossRef]
- Ma, J.; Mahfuz, S.; Wang, J.; Piao, X. Effect of dietary supplementation with mixed organic acids on immune function, antioxidative characteristics, digestive enzymes activity, and intestinal health in broiler chickens. Front. Nutr. 2021, 8, 673316. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Al-Mufarrej, S.I. Effects of organic acid supplementation on antioxidant capacity and immune responses of broilers challenged orally with salmonella enterica subsp. Enterica typhimurium. S. Afr. J. Anim. Sci. 2014, 2014, 342. [Google Scholar] [CrossRef]
- Hoyles, L.; Snelling, T.; Umlai, U.-K.; Nicholson, J.K.; Carding, S.R.; Glen, R.C.; McArthur, S. Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome 2018, 6, 55. [Google Scholar] [CrossRef]
- Sophien, A.N.A.; Jusop, A.S.; Tye, G.J.; Tan, Y.F.; Zaman, W.S.W.K.; Nordin, F. Intestinal stem cells and gut microbiota therapeutics: Hype or hope? Front. Med. 2023, 10, 1195374. [Google Scholar] [CrossRef]
- Snook, J.T. Adaptive and nonadaptive changes in digestive enzyme capacity influencing digestive function. Fed. Proc. 1974, 33, 88–93. [Google Scholar]
- Whitcomb, D.C.; Lowe, M.E. Human pancreatic digestive enzymes. Dig. Dis. Sci. 2007, 52, 1–17. [Google Scholar] [CrossRef]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase inhibitors for obesity: A review. Biomed Pharmacother 2020, 128, 110314. [Google Scholar] [CrossRef]
- Rana, N.; Walia, A.; Gaur, A. α-amylases from microbial sources and its potential applications in various industries. Natl. Acad. Sci. Lett. 2013, 36, 9–17. [Google Scholar]
- Asare, E.; Yang, H.; Yang, Z.; Zhang, H.; Wang, Z. The role of dietary trypsin enzyme in reducing the adverse effects of trypsin inhibitors in poultry nutrition—A review. Anim. Nutr. Feed. Technol. 2022, 22, 213–228. [Google Scholar]
- Izvekova, G.I.; Solovyev, M.M.; Kashinskaya, E.N.; Izvekov, E.I. Variations in the activity of digestive enzymes along the intestine of the burbot lota lota expressed by different methods. Fish Physiol. Biochem. 2013, 39, 1181–1193. [Google Scholar] [CrossRef]
- Yang, X.; Xin, H.; Yang, C.; Yang, X. Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Anim. Nutr. 2018, 4, 388–393. [Google Scholar] [CrossRef]
- Ma, J.; Long, S.; Wang, J.; Gao, J.; Piao, X. Microencapsulated essential oils combined with organic acids improves immune antioxidant capacity and intestinal barrier function as well as modulates the hindgut microbial community in piglets. J. Anim. Sci. Biotechnol. 2022, 13, 16. [Google Scholar] [CrossRef]
- Formal, S.B.; Gemski, P.; Giannella, R.A.; Takeuchi, A. Studies on the Pathogenesis of Enteric Infections Caused by Invasive Bacteria. In Ciba Foundation Symposium 42-Acute Diarrhoea in Childhood; John Wiley & Sons: Hoboken, NJ, USA, 1976; pp. 27–43. [Google Scholar] [CrossRef]
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 2017, 4, 14. [Google Scholar] [CrossRef]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef]
- Li, Y.; Jin, L.; Chen, T. The effects of secretory iga in the mucosal immune system. Biomed. Res. Int. 2020, 2020, 2032057. [Google Scholar] [CrossRef]
- El-Noor, M.M.A.; Elgazzar, F.M.; Alshenawy, H.A.; Medicine, L. Role of inducible nitric oxide synthase and interleukin-6 expression in estimation of skin burn age and vitality. J. Forensic Leg. Med. 2017, 52, 148–153. [Google Scholar]
- Tong, L.-C.; Wang, Y.; Wang, Z.-B.; Liu, W.-Y.; Sun, S.; Li, L.; Su, D.-F.; Zhang, L.-C. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Front. Pharmacol. 2016, 7, 253. [Google Scholar] [CrossRef]
- Wang, Y.; Kuang, Y.; Zhang, Y.; Song, Y.; Zhang, X.; Lin, Y.; Che, L.; Xu, S.; Wu, D.; Xue, B.; et al. Rearing conditions affected responses of weaned pigs to organic acids showing a positive effect on digestibility, microflora and immunity. Anim. Sci. J. 2016, 87, 1267–1280. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef]
- Koch, S.; Nusrat, A. Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Ann. N. Y. Acad. Sci. 2009, 1165, 220–227. [Google Scholar] [CrossRef]
- Diao, H.; Jiao, A.R.; Yu, B.; Mao, X.B.; Chen, D.W. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr. 2019, 14, 4. [Google Scholar] [CrossRef]
- Yousaf, M.S.; Boroojeni, F.G.; Vahjen, W.; Männer, K.; Hafeez, A.; Ur-Rehman, H.; Keller, S.; Peris, S.; Zentek, J. Encapsulated benzoic acid supplementation in broiler diets influences gut bacterial composition and activity. Br. Poult. Sci. 2017, 58, 122–131. [Google Scholar] [CrossRef]
Items | Content |
---|---|
Ingredients | |
Alfalfa meal | 38.00 |
Corn | 9.00 |
Wheat bran | 16.90 |
Wheat DDGS | 6.00 |
Rice husk powder | 9.00 |
Soybean meal | 5.00 |
Rice bran meal | 10.00 |
Wheat middling | 3.00 |
Limestone | 1.20 |
Methionine | 0.10 |
Lysine | 0.20 |
NaCl | 0.60 |
Premix 1 | 1.00 |
Total | 100.00 |
Nutrient levels 2 | |
Digestible energy (MJ/kg) | 9.96 |
Crude protein | 15.48 |
Crude Fiber | 17.35 |
Neutral detergent fiber | 33.56 |
Acid detergent fiber | 20.51 |
Acid detergent lignin | 5.90 |
Calcium | 0.90 |
Total Phosphorus | 0.51 |
Lysine | 0.74 |
Methionine + Cystine | 0.51 |
Gene | Primer Sequence (5′ → 3′) | GeneBank |
---|---|---|
GADPH | F: 5′–GGTAGTGAAGGCTGCTGCTGATG–3′ | NC_003074.8 |
R: 5′–GTCTCGCACTCCAATCTCTGTTCC–3′ | ||
IL-6 | F: 5′–ACGATCCACTTCATCCTGCG–3′ | NM_001082064.2 |
R: 5′–GGATGGTGTGTTCTGACCGT–3′ | ||
IL-10 | F: 5′–TCACCGATTTTCTCCCCTGTG–3′ | XM_051820557.1 |
R: 5′–ATGTCAAACTCATGGCTT–3′ | ||
IL-1β | F: 5′–TCTGCAACACCTGGGATGAC–3′ | XM_051828526.1 |
R: 5′–TCAGCTCATACGTGCCAGAC–3′ | ||
Occludin | F: 5′–CCGTATCCAGAGAGTCCTACAAGT–3′ | XM_008262318.3 |
R: 5′–GTCCGTCTCGTAGTGGTCTT–3′ | ||
ZO-1 | F: 5′–CCGCTCATACCTTCCTCTCA–3′ | XM_051822268.1 |
R: 5′–GTCATTCACCTCCTTCTTGTTCTC–3′ | ||
Claudin-3 | F: 5′-CCATCATCCAGGACTTCTACAAC–3′ | XM_002721962.4 |
R: 5′-AGTAGGCGATCTTGGTGGTC–3′ |
Items 2 | Groups 1 | p-Value | |||
---|---|---|---|---|---|
NC | PC | MOA1 | MOA2 | ||
IBW/g | 698.25 ± 4.95 | 696.50 ± 3.45 | 700.21 ± 4.75 | 699.31 ± 2.64 | 0.446 |
FBW/g | 2272.11 ± 107.51 | 2415.58 ± 137.76 | 2454.57 ± 109.50 | 2372.22 ± 94.01 | 0.061 |
ADFI/g | 114.74 ± 7.35 | 116.21 ± 8.27 | 119.39 ± 3.45 | 117.07 ± 5.53 | 0.671 |
ADG/g | 28.48 ± 2.41 | 31.23 ± 2.89 | 32.13 ± 2.34 | 29.73 ± 1.56 | 0.065 |
F/G | 3.76 ± 0.22 | 3.73 ± 0.22 | 3.73 ± 0.26 | 3.94 ± 0.14 | 0.772 |
Diarrhea rate/% | 4.19 ± 2.83 | 2.03 ± 1.16 | 2.00 ± 0.79 | 2.81 ± 1.29 | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Yang, G.; Zhang, M.; Yang, R.; Wang, Y.; Guo, P.; Zhang, J.; Wang, C.; Liu, Q.; Gao, Y. Dietary Supplementation of Mixed Organic Acids Improves Growth Performance, Immunity, and Antioxidant Capacity and Maintains the Intestinal Barrier of Ira Rabbits. Animals 2023, 13, 3140. https://doi.org/10.3390/ani13193140
Lin Z, Yang G, Zhang M, Yang R, Wang Y, Guo P, Zhang J, Wang C, Liu Q, Gao Y. Dietary Supplementation of Mixed Organic Acids Improves Growth Performance, Immunity, and Antioxidant Capacity and Maintains the Intestinal Barrier of Ira Rabbits. Animals. 2023; 13(19):3140. https://doi.org/10.3390/ani13193140
Chicago/Turabian StyleLin, Zhixin, Guofeng Yang, Min Zhang, Rui Yang, Yating Wang, Pingting Guo, Jing Zhang, Changkang Wang, Qinghua Liu, and Yuyun Gao. 2023. "Dietary Supplementation of Mixed Organic Acids Improves Growth Performance, Immunity, and Antioxidant Capacity and Maintains the Intestinal Barrier of Ira Rabbits" Animals 13, no. 19: 3140. https://doi.org/10.3390/ani13193140
APA StyleLin, Z., Yang, G., Zhang, M., Yang, R., Wang, Y., Guo, P., Zhang, J., Wang, C., Liu, Q., & Gao, Y. (2023). Dietary Supplementation of Mixed Organic Acids Improves Growth Performance, Immunity, and Antioxidant Capacity and Maintains the Intestinal Barrier of Ira Rabbits. Animals, 13(19), 3140. https://doi.org/10.3390/ani13193140