Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Experimental Treatments
2.2. Layer Growth Performance Responses
2.3. RNA Isolation and Quantitative Real-Time PCR
2.4. Ethical Approval and Animal Welfare
2.5. Statistical Analysis
3. Results
3.1. Growth Performance Responses
3.2. Assessment of Gene Expressions in the Duodenum
3.2.1. AHR Pathway
3.2.2. NRf2/ARE Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mountzouris, K.C.; Paraskeuas, V.V.; Fegeros, K. Priming of Intestinal Cytoprotective Genes and Antioxidant Capacity by Dietary Phytogenic Inclusion in Broilers. Anim. Nutr. 2020, 6, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Redweik, G.A.J.; Mellata, M. Immunological Mechanisms of Probiotics in Chickens. In Gut Microbiota, Immunity, and Health in Production Animals; Springer: Cham, Switzerland, 2022; pp. 263–276. [Google Scholar]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant Capacity of Phytochemicals and Their Potential Effects on Oxidative Status in Animals—A Review. Asian Australas. J. Anim. Sci. 2017, 30, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhang, L.; Chen, X.; Zhang, H.; Xue, H.; Lu, Y.; Tang, J.; Lu, Y. Orthosiphon Stamineus and Rosmarinic Acid Reduce Heat Stress in Laying Hens. Livest. Sci. 2020, 240, 104124. [Google Scholar] [CrossRef]
- Köhle, C.; Bock, K.W. Activation of Coupled Ah Receptor and Nrf2 Gene Batteries by Dietary Phytochemicals in Relation to Chemoprevention. Biochem. Pharmacol. 2006, 72, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Larigot, L.; Juricek, L.; Dairou, J.; Coumoul, X. AhR Signaling Pathways and Regulatory Functions. Biochim. Open 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Paraskeuas, V.; Griela, E.; Bouziotis, D.; Fegeros, K.; Antonissen, G.; Mountzouris, K.C. Effects of Deoxynivalenol and Fumonisins on Broiler Gut Cyto-2 Protective Capacity. Toxins 2021, 13, 729. [Google Scholar] [CrossRef]
- Vomund, S.; Schäfer, A.; Parnham, M.J.; Brüne, B.; von Knethen, A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int. J. Mol. Sci. 2017, 18, 2772. [Google Scholar] [CrossRef] [Green Version]
- Griela, E.; Paraskeuas, V.; Mountzouris, K.C. Effects of Diet and Phytogenic Inclusion on the Antioxidant Capacity of the Broiler Chicken Gut. Animals 2021, 11, 739. [Google Scholar] [CrossRef]
- Ding, X.; Yang, C.; Yang, Z.; Ren, X.; Wang, P. Effects of Star Anise (Illicium verum Hook.f) Oil on the Nuclear Factor E2–Related Factor 2 Signaling Pathway of Chickens during Subclinical Escherichia Coli Challenge. Poult. Sci. 2020, 99, 3092–3101. [Google Scholar] [CrossRef]
- Paraskeuas, V.; Fegeros, K.; Hunger, C.; Theodorou, G.; Mountzouris, K.C. Dietary Inclusion Level Effects of a Phytogenic Characterised by Menthol and Anethole on Broiler Growth Performance, Biochemical Parameters Including Total Antioxidant Capacity and Gene Expression of Immune-Related Biomarkers. Anim. Prod. Sci. 2017, 57, 33–41. [Google Scholar] [CrossRef]
- Paraskeuas, V.; Fegeros, K.; Palamidi, I.; Theodoropoulos, G.; Mountzouris, K.C. Phytogenic Administration and Reduction of Dietary Energy and Protein Levels Affects Growth Performance, Nutrient Digestibility and Antioxidant Status of Broilers. J. Poult. Sci. 2016, 53, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Bortoli, S.; Boutet-Robinet, E.; Lagadic-Gossmann, D.; Huc, L. Nrf2 and AhR in Metabolic Reprogramming after Contaminant Exposure. Curr. Opin. Toxicol. 2018, 8, 34–41. [Google Scholar] [CrossRef]
- Guo, K.; Ge, J.; Zhang, C.; Lv, M.W.; Zhang, Q.; Talukder, M.; Li, J.L. Cadmium Induced Cardiac Inflammation in Chicken (Gallus Gallus) via Modulating Cytochrome P450 Systems and Nrf2 Mediated Antioxidant Defense. Chemosphere 2020, 249, 125858. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.; Lin, W.C.; Lee, T.T. Potential Crosstalk of Oxidative Stress and Immune Response in Poultry through Phytochemicals—A Review. Asian Australas. J. Anim. Sci. 2019, 32, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, J.; Zhang, L.; Bao, J.; Shi, W.; Li, Q.; Wang, X. Shudi Erzi San Relieves Ovary Aging in Laying Hens. Poult. Sci. 2022, 101, 102033. [Google Scholar] [CrossRef] [PubMed]
- Abo Ghanima, M.M.; Alagawany, M.; Abd El-Hack, M.E.; Taha, A.; Elnesr, S.S.; Ajarem, J.; Allam, A.A.; Mahmoud, A.M. Consequences of Various Housing Systems and Dietary Supplementation of Thymol, Carvacrol, and Euganol on Performance, Egg Quality, Blood Chemistry, and Antioxidant Parameters. Poult. Sci. 2020, 99, 4384–4397. [Google Scholar] [CrossRef]
- Marume, U.; Mokagane, J.M.; Shole, C.O.; Hugo, A. Citrullus Lanatus Essential Oils Inclusion in Diets Elicit Nutraceutical Effects on Egg Production, Egg Quality, and Physiological Characteristics in Layer Hens. Poult. Sci. 2020, 99, 3038–3046. [Google Scholar] [CrossRef]
- He, X.; Hao, D.; Liu, C.; Zhang, X.; Xu, D.; Xu, X.; Wang, J.; Wu, R. Effect of Supplemental Oregano Essential Oils in Diets on Production Performance and Relatively Intestinal Parameters of Laying Hens. Am. J. Mol. Biol. 2017, 07, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Wareth, A.A.A.; Lohakare, J.D. Productive Performance, Egg Quality, Nutrients Digestibility, and Physiological Response of Bovans Brown Hens Fed Various Dietary Inclusion Levels of Peppermint Oil. Anim. Feed. Sci. Technol. 2020, 267, 114554. [Google Scholar] [CrossRef]
- Bozkurt, M.; Hippenstiel, F.; Abdel-Wareth, A.A.A.; Kehraus, S.; Küçükyilmaz, K.; Südekum, K.H. Einfluss Ausgewählter Kräuter und Ätherischer Öle auf Leistung, Eiqualität und Ausgewählte Stoffwechselkenngrößen Bei Legehennen—Eine Übersicht. Eur. Poult. Sci. 2014, 78, 1–15. [Google Scholar] [CrossRef]
- Dalal, R.; Kosti, D. Turmeric Powder as Feed Additive in Laying Hen—A Review. J. Pharmacogn. Phytochem. 2018, 7, 2686–2689. [Google Scholar]
- Liu, X.; Lin, X.; Mi, Y.; Li, J.; Zhang, C. Grape Seed Proanthocyanidin Extract Prevents Ovarian Aging by Inhibiting Oxidative Stress in the Hens. Oxidative Med. Cell. Longev. 2018, 2018, 9390810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, I.; Sun, X.; Wang, H.; Li, W.; Wang, X.; Cheng, P.; Li, S.; Zhang, X.; Hamid, S. Curcumin Successfully Inhibited the Computationally Identified CYP2A6 Enzyme-Mediated Bioactivation of Aflatoxin B1 in Arbor Acres Broiler. Front. Pharmacol. 2017, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ibtisham, F.; Niu, Y.F.; Wang, Z.; Li, G.H.; Zhao, Y.; Nawab, A.; Xiao, M.; An, L. Curcumin Inhibits Heat-Induced Oxidative Stress by Activating the MAPK-Nrf2 / ARE Signaling Pathway in Chicken Fibroblasts Cells. J. Therm. Biol. 2019, 79, 112–119. [Google Scholar] [CrossRef]
- Tong, C.; Li, P.; Yu, L.H.; Li, L.; Li, K.; Chen, Y.; Yang, S.H.; Long, M. Selenium-Rich Yeast Attenuates Ochratoxin A-Induced Small Intestinal Injury in Broiler Chickens by Activating the Nrf2 Pathway and Inhibiting NF-KB Activation. J. Funct. Foods 2020, 66, 103784. [Google Scholar] [CrossRef]
- Ding, X.; Cai, C.; Jia, R.; Bai, S.; Zeng, Q.; Mao, X.; Xu, S.; Zhang, K.; Wang, J. Dietary Resveratrol Improved Production Performance, Egg Quality, and Intestinal Health of Laying Hens under Oxidative Stress. Poult. Sci. 2022, 101, 101886. [Google Scholar] [CrossRef]
- Song, Z.H.; Cheng, K.; Zheng, X.C.; Ahmad, H.; Zhang, L.L.; Wang, T. Effects of Dietary Supplementation with Enzymatically Treated Artemisia Annua on Growth Performance, Intestinal Morphology, Digestive Enzyme Activities, Immunity, and Antioxidant Capacity of Heat-Stressed Broilers. Poult. Sci. 2018, 97, 430–437. [Google Scholar] [CrossRef]
- Mishra, B.; Jha, R. Oxidative Stress in the Poultry Gut: Potential Challenges and Interventions. Front. Vet. Sci. 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Jodynis-liebert, J.; Kujawska, M. Biphasic Dose-Response Induced by Phytochemicals: Experimental Evidence. J. Clin. Med. 2020, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Mattson, M.P.; Cheng, A. Neurohormetic Phytochemicals: Low-Dose Toxins That Induce Adaptive Neuronal Stress Responses. Trends Neurosci. 2006, 29, 632–639. [Google Scholar] [CrossRef]
Target 1 | Primer Sequence (5′-3′) 2 | Annealing Temperature (°C) | PCR Product Size (bp) | GenBank (NCBI Reference Sequence) |
---|---|---|---|---|
GAPDH | F: ACTTTGGCATTGTGGAGGGT R: GGACGCTGGGATGATGTTCT | 59.5 | 131 | NM_204305.1 |
ACTB | F: CACAGATCATGTTTGAGACCTT R: CATCACAATACCAGTGGTACG | 60 | 101 | NM_205518.1 |
AhR pathway | ||||
AhR1 | F: TTTAGTGTGGCAGGTGGATT R: CCTTGTGCCAATGATGCTATTTG | 60 | 200 | NM_204118.2 |
ARNT | F: GAGACCAAGGCCCCAACTAC R: TCGGGTGCCTCTTTCTTTCC | 62 | 140 | NM_204200.1 |
CYP1A1 | F: GTGATGGAGGTGACCATCGG R: ACATTCGTAGCTGAACGCCA | 62 | 165 | NM_205147.1 |
CYP1A2 | F: CTGACCGTACACCACGCTT R: CTCGCCTGCACCATCACTTC | 62 | 75 | NM_205146.2 |
CYP1B1 | F: CAGTGACTCCGCATCCCAAA R: CCATACGCTTACGGCAGGTT | 62 | 132 | XM_015283751.2 |
GSTA2 | F: GCCTGACTTCAGTCCTTGGT R: CCACCGAATTGACTCCATCT | 60 | 138 | NM_001001776.1 |
NQO1 | F: GAGCGAAGTTCAGCCCAGT R: ATGGCGTGGTTGAAAGAGGT | 60.5 | 150 | NM_001277619.1 |
Nrf2 pathway | ||||
Nrf2 | F: AGACGCTTTCTTCAGGGGTAG R: AAAAACTTCACGCCTTGCCC | 60 | 285 | NM_205117.1 |
Keap1 | F: GGTTACGATGGGACGGATCA R: CACGTAGATCTTGCCCTGGT | 62 | 135 | XM_025145847.1 |
CAT | F: ACCAAGTACTGCAAGGCGAA R: TGAGGGTTCCTCTTCTGGCT | 60 | 245 | NM_001031215 |
SOD1 | F: AGGGGGTCATCCACTTCC R: CCCATTTGTGTTGTCTCCAA | 60 | 122 | NM_205064.1 |
GPX2 | F: GAGCCCAACTTCACCCTGTT R: CTTCAGGTAGGCGAAGACGG | 62 | 75 | NM_001277854.1 |
GPX7 | F: GGCTCGGTGTCGTTAGTTGT R: GCCCAAACTGATTGCATGGG | 60 | 139 | NM_001163245.1 |
GSR | F: GTGGATCCCCACAACCATGT R: CAGACATCACCGATGGCGTA | 62 | 80 | XM_015276627.1 |
HMOX1 | F: ACACCCGCTATTTGGGAGAC R: GAACTTGGTGGCGTTGGAGA | 62 | 134 | NM_205344.1 |
PRDX1 | F: CTGCTGGAGTGCGGATTGT R: GCTGTGGCAGTAAAATCAGGG | 61 | 105 | NM_001271932.1 |
Heat Shock Proteins | ||||
HSP70 | F: ATGCTAATGGTATCCTGAACG R: TCCTCTGCTTTGTATTTCTCTG | 60 | 145 | NM_001006685.1 |
HSP90 | F: CACGATCGCACTCTGACCAT R: CTGTCACCTTCTCCGCAACA | 60 | 196 | NM_001109785.1 |
Data | Laying % | Egg Mass (g/hen/day) | Feed Intake (g/hen/day) | FCR |
---|---|---|---|---|
Treatments 1 | ||||
CON | 95.40 | 54.68 | 106.1 | 1.94 |
P500 | 96.25 | 55.90 | 109.0 | 1.95 |
P750 | 97.03 | 55.29 | 107.7 | 1.95 |
P1000 | 97.34 | 56.22 | 108.7 | 1.94 |
P1500 | 95.46 | 54.61 | 107.7 | 1.97 |
Statistics 2 | ||||
SEM 3 | 0.790 | 0.762 | 1.50 | 0.027 |
Panova | 0.062 | 0.162 | 0.369 | 0.492 |
Plinear | 0.499 | 0.919 | 0.402 | 0.433 |
Pquadratic | 0.008 | 0.051 | 0.182 | 0.507 |
Data | Laying % | Egg Mass (g/hen/day) | Feed Intake (g/hen/day) | FCR |
---|---|---|---|---|
Treatments 1 | ||||
CON | 95.44 a | 55.98 a | 107.9 | 1.94 |
P500 | 96.81 abc | 57.54 ab | 110.5 | 1.93 |
P750 | 97.70 bc | 57.05 ab | 109.6 | 1.93 |
P1000 | 98.27 c | 58.22 b | 110.3 | 1.91 |
P1500 | 96.16 ab | 56.63 ab | 110.0 | 1.96 |
Statistics 2 | ||||
SEM 3 | 0.557 | 0.585 | 1.28 | 0.027 |
Panova | <0.001 | 0.008 | 0.321 | 0.066 |
Plinear | 0.028 | 0.142 | 0.222 | 0.871 |
Pquadratic | <0.001 | 0.005 | 0.211 | 0.254 |
Genes | Treatments 1 | Statistics 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Duodenum | CON | P500 | P750 | P1000 | P1500 | SEM 3 | Panova | Plinear | Pquadratic |
AhR pathway | |||||||||
AhR1 | 0.94 | 1.17 | 1.33 | 1.28 | 0.77 | 0.292 | 0.282 | 0.732 | 0.036 |
ARNT | 1.76 | 1.25 | 0.90 | 1.65 | 1.87 | 0.526 | 0.346 | 0.601 | 0.077 |
CYP1A1 | 4.38 C | 2.33 B | 1.26 A | 0.42 A | 0.41 A | 0.372 | <0.001 | <0.001 | <0.001 |
CYP1A24 | 3.51 C | 1.90 BC | 0.40 A | 1.03 AB | 0.47 A | 0.396 | <0.001 | <0.001 | 0.011 |
CYP1B14 | 3.42 C | 2.39 BC | 0.62 AB | 0.56 AB | 0.44 A | 0.467 | <0.001 | <0.001 | 0.037 |
GSTA2 | 0.46 A | 1.06 B | 1.25 B | 1.52 B | 2.10 B | 0.269 | <0.001 | <0.001 | 0.978 |
NQO1 | 1.25 | 1.35 | 1.31 | 0.93 | 0.91 | 0.270 | 0.317 | 0.079 | 0.419 |
Genes | Treatments 1 | Statistics 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Duodenum | CON | P500 | P750 | P1000 | P1500 | SEM 3 | Panova | Plinear | Pquadratic |
AhR pathway | |||||||||
AhR1 | 1.16 B | 1.01 AB | 0.79 A | 1.09 AB | 1.03 AB | 0.137 | 0.002 | 0.519 | 0.058 |
ARNT4 | 2.56 B | 0.99 A | 0.99 A | 0.60 A | 0.92 A | 0.422 | 0.004 | <0.001 | 0.005 |
CYP1A1 | 2.88 D | 1.55 C | 1.03 BC | 0.65 AB | 0.41 A | 0.196 | <0.001 | <0.001 | <0.001 |
CYP1A2 | 1.78 B | 0.73 A | 0.98 A | 0.95 A | 0.87 A | 0.231 | 0.001 | 0.004 | 0.011 |
CYP1B14 | 2.44 B | 0.68 A | 0.79 A | 0.91 A | 0.91 A | 0.372 | 0.012 | 0.004 | <0.001 |
GSTA2 | 0.67 A | 1.53 AB | 0.96 AB | 1.39 AB | 1.68 B | 0.327 | 0.002 | 0.016 | 0.861 |
NQO1 | 0.94 A | 1.18 AB | 1.24 AB | 1.35 B | 0.90 A | 0.163 | 0.039 | 0.809 | 0.004 |
Genes | Treatments 1 | Statistics 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Duodenum | CON | P500 | P750 | P1000 | P1500 | SEM 3 | Panova | Plinear | Pquadratic |
Nrf2 pathway | |||||||||
Nrf2 | 0.60 A | 1.23 AB | 2.20 B | 1.56 AB | 1.90 AB | 0.540 | 0.007 | 0.022 | 0.134 |
KEAP1 | 0.93 | 0.94 | 1.25 | 1.03 | 0.93 | 0.229 | 0.590 | 0.859 | 0.226 |
CAT | 1.19 | 1.92 | 2.12 | 1.78 | 0.57 | 0.597 | 0.087 | 0.309 | 0.009 |
SOD | 1.48 B | 1.36 AB | 1.14 AB | 1.27 AB | 0.73 A | 0.250 | 0.049 | 0.008 | 0.466 |
GPX2 | 0.80 | 0.90 | 1.01 | 1.93 | 1.50 | 0.446 | 0.257 | 0.021 | 0.845 |
GPX7 | 0.65 A | 1.06 AB | 1.59 B | 1.40 B | 1.13 AB | 0.235 | 0.005 | 0.019 | 0.002 |
GSR | 1.17 A | 1.06 A | 1.53 AB | 1.91 B | 1.20 AB | 0.319 | 0.012 | 0.209 | 0.135 |
PRDX1 | 1.42 AΒ | 1.57 Β | 1.23 AΒ | 1.27 AΒ | 0.63 A | 0.296 | 0.008 | 0.008 | 0.135 |
HMOX14 | 0.73 A | 2.63 B | 1.15 A | 1.16 A | 0.77 A | 0.288 | <0.001 | 0.110 | <0.001 |
Heat Shock Response | |||||||||
HSP70 | 0.91 | 0.80 | 1.48 | 1.44 | 1.12 | 0.303 | 0.115 | 0.131 | 0.160 |
HSP90 | 1.10 AB | 1.10 AB | 1.31 AB | 1.41 B | 0.85 A | 0.251 | 0.011 | 0.743 | 0.070 |
Genes | Treatments 1 | Statistics 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Duodenum | CON | P500 | P750 | P1000 | P1500 | SEM 3 | Panova | Plinear | Pquadratic |
Nrf2 pathway | |||||||||
Nrf2 | 0.63 A | 1.18 AB | 1.60 B | 1.26 AB | 1.21 AB | 0.220 | 0.004 | 0.019 | 0.002 |
KEAP1 | 1.74 B | 0.98 A | 1.12 AB | 0.66 A | 0.78 A | 0.219 | <0.001 | <0.001 | 0.052 |
CAT | 0.60 A | 1.27 BC | 1.22 BC | 1.42 C | 0.85 AB | 0.154 | <0.001 | 0.071 | <0.001 |
SOD | 0.73 A | 0.97 AB | 1.55 AB | 1.88 B | 1.20 AB | 0.351 | 0.021 | 0.025 | 0.032 |
GPX2 | 0.96 A | 0.95 A | 1.31 AB | 1.39 B | 1.10 AB | 0.167 | 0.039 | 0.064 | 0.066 |
GPX7 | 0.99 | 1.12 | 0.99 | 1.21 | 1.11 | 0.147 | 0.531 | 0.341 | 0.765 |
GSR | 0.54 A | 1.12 AB | 1.14 AB | 1.59 B | 1.46 B | 0.213 | <0.001 | <0.001 | 0.092 |
PRDX1 | 0.76 A | 1.19 AB | 1.29 AB | 1.55 B | 1.38 B | 0.205 | 0.008 | 0.001 | 0.066 |
HMOX14 | 0.70 A | 1.41 B | 1.35 B | 1.31 B | 1.14 AB | 0.246 | 0.050 | 0.167 | 0.013 |
Heat Shock Response | |||||||||
HSP70 | 1.15 | 0.96 | 1.24 | 1.50 | 0.97 | 0.216 | 0.103 | 0.727 | 0.223 |
HSP90 | 1.12 | 1.01 | 0.92 | 1.03 | 1.16 | 0.180 | 0.708 | 0.830 | 0.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostopoulos, E.C.; Brouklogiannis, I.P.; Griela, E.; Paraskeuas, V.V.; Mountzouris, K.C. Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum. Animals 2023, 13, 294. https://doi.org/10.3390/ani13020294
Anagnostopoulos EC, Brouklogiannis IP, Griela E, Paraskeuas VV, Mountzouris KC. Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum. Animals. 2023; 13(2):294. https://doi.org/10.3390/ani13020294
Chicago/Turabian StyleAnagnostopoulos, Evangelos C., Ioannis P. Brouklogiannis, Eirini Griela, Vasileios V. Paraskeuas, and Konstantinos C. Mountzouris. 2023. "Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum" Animals 13, no. 2: 294. https://doi.org/10.3390/ani13020294
APA StyleAnagnostopoulos, E. C., Brouklogiannis, I. P., Griela, E., Paraskeuas, V. V., & Mountzouris, K. C. (2023). Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum. Animals, 13(2), 294. https://doi.org/10.3390/ani13020294