Vibrational Molecular Spectroscopy as a Tool to Study Molecular Structure Features of Cool-Season Chickpeas Impacted by Varieties and Thermal Processing in Relation to Nutrient Availability in Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Thermal Processing
2.2. Univariate Molecular Spectral Analysis of Functional Groups Related to Carbohydrates and Proteins
2.3. Association between Molecular Structure Spectral Profiles and Nutrient Metabolic Characteristics of Protein and Carbohydrates
2.4. Statistical Analyses
3. Results
3.1. Univariate Analysis of Molecular Structure Spectral Profiles in Different Varieties of CDC Chickpeas Grown in Western Canada
3.2. Univariate Analysis of Protein and Carbohydrate Related Molecular Structure Spectral Profiles Using Different Processing Methods
3.3. Relationship between Protein and Carbohydrates Related Molecular Structure Features and Nutritional and Metabolic Characteristics of Protein and Carbohydrates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.; Mantsch, H.H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Theodoridou, K.; Yu, P. Application Potential of ATR-FT/IR molecular spectroscopy in animal nutrition: Revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle. J. Agric. Food Chem. 2013, 61, 5449–5458. [Google Scholar] [CrossRef] [PubMed]
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Rahman, M.M.; Yu, P. Molecular basis of structural make-up of feeds in relation to nutrient absorption in ruminants, revealed with advanced molecular spectroscopy: A review on techniques and models. Appl. Spectrosc. Rev. 2017, 52, 653–673. [Google Scholar] [CrossRef]
- Wetzel, D.L.; Eilert, A.J.; Pietrzak, L.N.; Miller, S.S.; Sweat, J.A. Ultraspatially resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell. Mol. Biol. 1998, 44, 145–167. [Google Scholar]
- Himmelsbach, D.S.; Khalili, S.; Akin, D.E. FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. Cell. Mol. Biol. 1998, 44, 99–108. [Google Scholar]
- Akande, K.E.; Fabiyi, E.F. Effect of processing methods on some antinutritional factors in legume seeds for poultry feeding. Int. J. Poult. Sci. 2010, 9, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- CCAC. Guide to the Care and Use of Experimental Animals, 2nd ed.; Canadian Council on Animal Care: Ottawa, ON, Canada, 1993.
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirement of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council: Washington, DC, USA; National Academy of Science: Washington, DC, USA, 2001. [Google Scholar]
- Van Amburgh, M.E.; Collao-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to the rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, S.; van Straalen, W.M.; Subnel, A.P.; Meijer, R.G.; Steg, A.; Wever, C.J.; Block, M.C. The Dutch protein evaluation system: The DVE/OEB-system. Livest. Prod. Sci. 1994, 40, 139–155. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Stern, M.D. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. J. Anim. Sci. 1995, 73, 1459–1465. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, S.; Brandsma, G.G.; van Duinkerken, G.; van Vuuren, A.M.; Blok, M.C. Protein Evaluation for Ruminants: The DVE/OEB 2007-System; CVB Documentation Report nr. 53.; CVB: Lelystad, The Netherlands, 2007. [Google Scholar]
- Van Duinkerken, G.; Blok, M.; Bannink, A.; Cone, J.; Dijkstra, J.; Van Vuuren, A.; Tamminga, S. Update of the Dutch protein evaluation system for ruminants: The DVE/OEB2010 system. J. Agric. Sci. 2011, 149, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Parand, E.; Vakili, A.R.; Danesh, M. Rumen degradability and model prediction of nutrient supply to ruminants from different processed soybean meals. Iran. J. Appl. Anim. Sci. 2016, 6, 277–284. [Google Scholar]
- Theodoridou, K.; Yu, P. Metabolic characteristics of the proteins in yellow-seeded and brown-seeded canola meal and presscake in dairy cattle: Comparison of three systems (PDI, DVE, NRC) in nutrient supply and feed milk value (FMV). J. Agric. Food Chem. 2013, 61, 2820–2830. [Google Scholar] [CrossRef]
- Cerna, L.; Rodríguez Espinosa, M.E.; Yu, P. Effect of cool-season adapted chickpea varieties on physicochemical and nutritional characteristics in ruminant systems. Anim. Feed. Sci. Technol. 2022, 292, 115404. [Google Scholar] [CrossRef]
- Sun, B.; Khan, N.A.; Yu, P. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2018, 196, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Marinkovic, N.S.; Chance, M.R. Synchrotron Infrared Microspectroscopy. In Encyclopedia of Molecular Cell Biology and Molecular Medicine; Meyers, R., Ed.; Wiley-VCH Inc.: Weinheim, Germany, 2006; pp. 671–708. [Google Scholar]
- Miller, L.M.; Dumas, P. Chemical imaging of biological tissue with synchrotron infrared light. Biochim. Biophys. Acta. 2006, 1758, 846–857. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, D.L.; Srivarin, P.; Finney, J.R. Revealing protein infrared spectral detail in a heterogeneous matrix dominated by starch. Vib. Spectrosc. 2003, 31, 109–114. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, M.E.; Guevara-Oquendo, V.H.; Sun, B.; Zhang, H.; Yu, P. Recent Progress in Structural and Nutritional Characterization of Faba Legume and Use as an Environment Probe with Vibrational Spectroscopy Sourced by Globar and Synchrotron. Appl. Spectrosc. Rev. 2019, 55, 288–306. [Google Scholar] [CrossRef]
- Xin, H.; Zhang, Y.; Wang, M.; Li, Z.; Wang, Z.; Yu, P. Characterization of Protein and Carbohydrate Mid-IR Spectral Features in Crop Residues. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Yu, P. Detect Changes in Lipid-Related Structure of Brown- and Yellow-Seeded Brassica Carinata Seed during Rumen Fermentation in Relation to Basic Chemical Profile Using ATR-FT/IR Molecular Spectroscopy with Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Yu, P. Using ATR–FT/IR to Detect Carbohydrate-Related Molecular Structure Features of Carinata Meal and Their in Situ Residues of Ruminal Fermentation in Comparison with Canola Meal. Spectrochim. Acta Part A Mol Biomol. Spectrosc. 2013, 114, 599–606. [Google Scholar] [CrossRef]
- Xin, H.; Yu, P. Detect Changes in Protein Structure of Carinata Meal during Rumen Fermentation in Relation to Basic Chemical Profile and Comparison with Canola Meal Using ATR–FT/IR Molecular Spectroscopy with Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 112, 318–325. [Google Scholar] [CrossRef] [PubMed]
Chickpea Variety | |||||
---|---|---|---|---|---|
Items | CDC Alma | CDC Cory | CDC Frontier | SEM a | p-Value |
Protein-Related Spectral Profiles b | |||||
Total amide | 49.92 ab | 39.86 b | 50.79 a | 3.505 | 0.021 |
Amide I area | 30.45 ab | 24.64 b | 30.85 a | 2.196 | 0.038 |
Amide II area | 19.46 a | 15.21 b | 19.94 a | 1.348 | <0.001 |
Amide I peak height | 0.45 a | 0.36 b | 0.45 a | 0.030 | 0.028 |
Amide II peak height | 0.33 a | 0.26 b | 0.33 a | 0.021 | 0.015 |
Structural Carbohydrate (STCHO)-Related Spectral Profile | |||||
1st peak height | 0.12 | 0.10 | 0.12 | 0.008 | 0.128 |
2nd peak height | 0.16 | 0.14 | 0.16 | 0.009 | 0.119 |
3rd peak height | 0.10 a | 0.08 b | 0.10 a | 0.006 | 0.039 |
STCHO area | 23.74 | 20.23 | 23.27 | 1.295 | 0.064 |
Cellulosic Compound (CEC)-Related Spectral Profile | |||||
CEC peak height | 0.07 | 0.06 | 0.07 | 0.004 | 0.141 |
CEC area | 3.48 | 2.88 | 3.44 | 0.222 | 0.057 |
Total Carbohydrate (TCHO)-Related Spectral Profile | |||||
1st peak height | 0.20 | 0.19 | 0.18 | 0.011 | 0.612 |
2nd peak height | 0.44 | 0.40 | 0.41 | 0.024 | 0.424 |
3rd peak height | 0.57 | 0.56 | 0.54 | 0.028 | 0.597 |
TCHO area | 72.44 | 69.11 | 67.15 | 3.697 | 0.545 |
Spectral Peak Ratios | |||||
Amide I: II area | 1.56 | 1.62 | 1.53 | 0.036 | 0.106 |
Amide I: II height | 1.36 | 1.39 | 1.36 | 0.026 | 0.640 |
STCHO: TCHO area | 0.32 a | 0.29 b | 0.34 a | 0.006 | <0.001 |
CEC: TCHO area | 0.04 b | 0.04 b | 0.05 a | 0.001 | <0.001 |
CEC: STCHO area | 0.14 | 0.14 | 0.14 | 0.006 | 0.776 |
Processing Methods | |||||
---|---|---|---|---|---|
Items | Dry Heat | Autoclave | Microwave | SEM a | p-Value |
Protein Related Spectral Profile b | |||||
Total amide | 33.06 b | 47.38 a | 45.19 a | 4.491 | 0.013 |
Amide I area | 19.71 b | 29.88 a | 28.19 a | 2.952 | 0.007 |
Amide II area | 13.35 b | 17.50 a | 13.35 b | 1.598 | 0.043 |
Amide I peak height | 0.30 b | 0.43 a | 0.41 a | 0.042 | 0.015 |
Amide II peak height | 0.25 | 0.31 | 0.29 | 0.025 | 0.128 |
Structural carbohydrate (STCHO)-Related Spectral Profile | |||||
1st peak height | 0.07 b | 0.10 ab | 0.11 a | 0.011 | 0.011 |
2nd peak height | 0.14 | 0.14 | 0.15 | 0.008 | 0.424 |
3rd peak height | 0.06 b | 0.10 a | 0.10 a | 0.010 | 0.003 |
STCHO area | 23.07 a | 21.10 ab | 23.07 a | 2.352 | 0.014 |
Cellulosic compound (CEC)-Related Spectral Profile | |||||
CEC peak height | 0.05 b | 0.07 a | 0.07 a | 0.006 | 0.005 |
CEC area | 2.20 b | 3.74 a | 3.61 a | 0.348 | <0.001 |
Total carbohydrate (TCHO)-Related Spectral Profile | |||||
1st peak height | 0.14 b | 0.18 a | 0.21 a | 0.016 | <0.001 |
2nd peak height | 0.30 b | 0.40 ab | 0.45 a | 0.044 | <0.001 |
3rd peak height | 0.35 b | 0.58 a | 0.62 a | 0.083 | <0.001 |
TCHO area | 42.06 b | 69.14 a | 76.27 a | 10.525 | <0.001 |
Peak Ratios | |||||
Amide I: II area | 1.36 | 1.71 | 1.36 | 0.133 | 0.152 |
Amide I: II height | 1.16 b | 1.37 ab | 1.44 a | 0.071 | 0.022 |
STCHO: TCHO area | 0.30 | 0.30 | 0.25 | 0.065 | 0.805 |
CEC: TCHO area | 0.07 | 0.05 | 0.04 | 0.029 | 0.802 |
CEC: STCHO area | 0.19 | 0.17 | 0.15 | 0.035 | 0.801 |
Variable (y) | Variable Selection (p < 0.05) | R2 | RSD | p Value | |
---|---|---|---|---|---|
Protein profiles | |||||
CP (%DM) | HAII | CP (%DM) = 29.63 HAII + 12.66 | 0.44 | 1.63 | 0.004 |
ADICP (%CP) | HAII | ADICP (%CP) = 1.033 HAII − 0.198 | 0.21 | 0.09 | 0.050 |
PC (%CP) | HAII | PC (%CP) = 1.03 HAII − 0.20 | 0.22 | 0.09 | 0.059 |
ADICP (%DM) | HAI, HAII | ADICP (%DM) = 0.22 HAII − 0.04 | 0.39 | 0.02 | 0.030 |
Protein sub-fractions | |||||
TP (%CP) | HAII | TP (%CP) = −1.03 HAII + 100.20 | 0.22 | 0.09 | 0.055 |
TotRDP (%CP) | HAII | TotRDP (CP%) = 29.36 HAII + 12.72 | 0.44 | 1.64 | 0.004 |
RUPC (%CP) | HAII | RUPC (CP%) = 0.28 HAII − 0.06 | 0.32 | 0.02 | 0.018 |
TotRUP (%CP) | HAII | TotRUP (CP%) = 29.63 HAII + 12.67 | 0.44 | 1.63 | 0.003 |
tdCP (%CP) | HAII | TdCP (%CP) = 30.00 HAII + 12.54 | 0.45 | 1.62 | 0.003 |
CP (%CP) | AII | CPg (%CP) = 2.30 AII + 160.63 | 0.22 | 17.59 | 0.057 |
CP Degradation | |||||
BCP (g/kg DM) | HAII | BCP(g/kg DM) = 585.74 HAII − 105.41 | 0.18 | 61.93 | 0.093 |
D (%) | HAI_AII | D(%) = 47.09 HAI_AII − 4.53 | 0.29 | 10.64 | 0.026 |
U (%) | AAI_AII | U(%) = −36.52 AAI_AII + 70.17 | 0.23 | 10.95 | 0.052 |
EDCP (%) | STC1, STC3 | EDCP (%) = −289.54 STC1 + 215.88 STC3 + 21.97 | 0.68 | 6.62 | 0.001 |
Variable (y) | Variable Selection (p < 0.05) | R2 | RSD | p Value | |
---|---|---|---|---|---|
DVE-OEB model | |||||
DVE (g/kg DM) | HAII | DVE (g/kg DM) = 342.61 HAII + 26.46 | 0.20 | 33.23 | 0.070 |
MREE (g/kg DM) | HAII | MREE (% CP) = −81.22 HAII + 154.49 | 0.17 | 8.74 | 0.098 |
DVME (g/kg DM) | HAII | DVME (% CP) = −51.74 HAII + 99.75 | 0.17 | 5.57 | 0.098 |
DVBE (g/kg DM) | HAII | DVBE (g/kg DM) = −72.58 HAII + 393.88 | 0.20 | 38.75 | 0.073 |
FMVDVE (% CP) | HAII | FMVDVE (% CP) = 7.04 HAII + 0.16 | 0.20 | 0.70 | 0.077 |
NRC Model | |||||
MP (g/kg DM) | HAII | MP = 347.340 HAII + 7.80 | 0.20 | 34.65 | 0.078 |
FMV (g/kg DM) | HAII | FMVNRC = 7.05 HAII + 0.16 | 0.19 | 0.70 | 0.077 |
Truly digestible nutrient supply to dairy cows | |||||
ARUP (g/kg DM) | HAII | ARUP(%CP) = 354.80 HAII − 65.37 | 0.20 | 37.91 | 0.073 |
Variable (y) | Variable Selection (p < 0.05) | R2 | RSD | p Value | |
---|---|---|---|---|---|
Energy Values | |||||
DEp3X | TC1, TC3 | DEp3x = −7.52 TC1 + 4.31 TC3 + 2.83 | 0.44 | 0.18 | 0.022 |
MEBeef | TC3, TC1 | MEbeef = 4.312 TC3 − 7.92 TC1 + 2.49 | 0.43 | 0.19 | 0.244 |
Degradation Kinetics | |||||
U | STC2 | U = 137.86 STC2 − 12.98 | 0.44 | 2.81 | 0.005 |
%BDM | STC2, CEC_H | %BDM =512.02 STC2 − 897.69 CEC_H + 73.03 | 0.68 | 7.12 | 0.002 |
Rumen CHO Degradation | |||||
EDCP | STC_TC | EDCP = −50.86 stc_tc − 50.86 | 0.51 | 13.45 | 0.001 |
Truly Digestible Nutrients | |||||
tdNFC | CEC_H, TC1 | tdNFC = −447.16 cec_H + 145.331 tc1 + 64.80 | 0.67 | 2.88 | 0.008 |
tdNDF | CEC_STC | tdNFC = 52.22 cec_stc + 0.43 | 0.23 | 2.47 | 0.059 |
Variable (y) | Variable Selection (p < 0.05) | R2 | RSD | p Value | |
---|---|---|---|---|---|
Basic Nutrient Profiles (%DM) | |||||
CHO | STC3 | CHO = −102.22 stc3 − 83.75 | 0.40 | 1.75 | 0.008 |
NFCCHO | CEC_STC | NFCcho = −16.73 cec_stc + 109.62 | 0.31 | 4.56 | 0.026 |
NDF | CEC_STC | NDF = 113.0 cec_stc − 2.87 | 0.25 | 5.13 | 0.049 |
iNDF | CEC_TC | iNDF = 79.31 cec_tc − 3.04 | 0.30 | 0.67 | 0.029 |
ADF | STC1 | ADF = 130.64 stc1 − 9.98 | 0.31 | 2.76 | 0.026 |
ADFNDF | STC1, CEC_STC | ADFNDF = 923.25 stc1 − 420.40 − 4.25 | 0.66 | 11.95 | 0.009 |
ADLNDF | TC3 | ADLNDF = −20.14 tc3 + 1235 | 0.19 | 0.95 | 0.881 |
Hemicellulose | TC1, CEC_STC | Hemicellulose = 160.56 cec_stc − 153.79 tc1 + 13.95 | 0.63 | 3.50 | 0.002 |
Cellulose | STC1 | Cellulose = 13.23 stc1 − 8.76 | 0.33 | 2.27 | 0.020 |
Starch | TC1, TC3, CEC_STC | Starch = 118.31 tc1 − 77.31 tc3 − 101.88 cec_stc | 0.66 | 344 | 0.004 |
Sugar | CEC_TC, | Sugar = −161.63 cec_tc + 21.15 | 0.30 | 1.36 | 0.028 |
SugarNFC | TC3 | SugarNFC = 24.47 tc3 + 5.93 | 2.02 | 0.25 | 0.049 |
Carbohydrate Subfractions (%DM) | |||||
CA4CHO | CEC_TC | CA4CHO = −161.63 cec_tc + 21.14 | 0.30 | 1.36 | 0.028 |
CB1CHO | CEC_STC, TC1, TC3 | CB1CHO = −101.88 cec_stc + 118.31 tc1 − 77.31 tc3 + 84.28 | 0.66 | 3.44 | 0.004 |
CB3CHO | CEC_STC | CB3CHO = 113.74 cec_stc − 1.01 | 0.36 | 4.93 | 0.042 |
RDCA4 | CEC_TC | RDCA4 = −161.63 cec_tc + 21.15 | 0.30 | 1.36 | 0.280 |
RDCB1 | TC1, TC3, CEC_STC | RDCB1 = 118.31 tc1 − 77.31 tc3 − 101.88 cec_stc + 84.29 | 0.66 | 3.44 | 0.006 |
RDCB3 | STC3, TC1 | RDCB3 = −153.89 stc3 + 49.14 tc1 + 57.94 | 0.69 | 1.17 | 0.000 |
RUCA4 | CEC_TC | RUCA4 = −31.94 cec_tc + 3.80 | 0.33 | 0.25 | 0.020 |
RUCB1 | TC3, CEC_STC | RUCB1 = −9.84 tc3 − 17.58 cec_stc + 16.41 | 0.56 | 0.72 | 0.005 |
RUCB3 | CEC_STC | 38.96 cec_stc + 0.052 | 0.23 | 1.84 | 0.059 |
Variable (y) | Variable Selection (p < 0.05) | R2 | RSD | p Value | |
---|---|---|---|---|---|
Truly Digestible Nutrient Supply to Dairy Cows | |||||
MREE | STC1, STC_A, CEC_A | MREE = −338.54 stc1 − 2.11 stc_A + 12.77 cec_A + 171.86 | 0.70 | 5.72 | 0.001 |
DVME | STC1, STC_A, CEC_A | DVME = −215.70 stc1 − 1.35 stc_A + 8.15 cec_A + 109.56 | 0.70 | 3.65 | 0.001 |
DVBE | STC1, STC_A, CEC_A | DVBE = 1563.44 stc1 + 9.85 stc_A − 54.42 cec_A − 155.75 | 0.72 | 25.01 | 0.001 |
MREN | STC1, CEC_STC | MREN = −1776.54 stc1 + 1953.25 cec_stc + 31.49 | 0.65 | 40.94 | 0.001 |
FMVDVE | STC1, STC_A, CEC_A | FMVDVE = 28.59 stc1 + 0.18 stc_A − 1.011 cec_A − 1.33 | 0.85 | 0.44 | 0.009 |
FMVNRC | STC1, STC_A, CEC_A | FMVNRC = 28.59 stc1 + 0.18 stc_A − 1.01 cec_A − 1.33 | 0.73 | 0.44 | 0.009 |
ARUP | STC1, STC_A, CEC_A | ARUP = 1408.57 stc1 + 8.88 stc_A − 49.03 cec_A − 140.30 | 0.72 | 22.53 | 0.001 |
AECP | CEC_H, TC_A | AECP = −2.66 cec_H + 0.01 tc_A + 3.99 | 0.36 | 0.04 | 0.050 |
MCPRDP | STC_TC | MCPRDP = 323.93 stc_tc − 43.24 | 0.51 | 11.43 | 0.001 |
Degraded protein balance (OEB) and Total true protein supply (DVE) to dairy cows | |||||
DVE | STC1, STC_A, CEC_A | DVE = 1346.82 stc1 + 8.51 stc_A − 46.22 cec_A − 47.02 | 0.72 | 21.45 | 0.001 |
OEB | STC1, CEC_STC | OEB = −1416.15 stc1 + 1690.59 cec_stc − 99.12 | 0.64 | 36.28 | 0.001 |
Degraded protein balance (DPB) and Total metabolizable protein supply (MP) to dairy cows | |||||
MP | STC1, STC_A, CEC_A | MP = 1407.09 sct1 + 8.82 stc_A − 49.70 cec_A − 65.68 | 0.73 | 21.64 | 0.009 |
DPB | STC_TC | DPB = 395.34 stc_tc − 178.24 | 0.55 | 12.93 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerna, L.; Espinosa, M.E.R.; Zhang, W.; Yu, P. Vibrational Molecular Spectroscopy as a Tool to Study Molecular Structure Features of Cool-Season Chickpeas Impacted by Varieties and Thermal Processing in Relation to Nutrient Availability in Ruminants. Animals 2023, 13, 304. https://doi.org/10.3390/ani13020304
Cerna L, Espinosa MER, Zhang W, Yu P. Vibrational Molecular Spectroscopy as a Tool to Study Molecular Structure Features of Cool-Season Chickpeas Impacted by Varieties and Thermal Processing in Relation to Nutrient Availability in Ruminants. Animals. 2023; 13(2):304. https://doi.org/10.3390/ani13020304
Chicago/Turabian StyleCerna, Linda, María E. Rodríguez Espinosa, Weixian Zhang, and Peiqiang Yu. 2023. "Vibrational Molecular Spectroscopy as a Tool to Study Molecular Structure Features of Cool-Season Chickpeas Impacted by Varieties and Thermal Processing in Relation to Nutrient Availability in Ruminants" Animals 13, no. 2: 304. https://doi.org/10.3390/ani13020304
APA StyleCerna, L., Espinosa, M. E. R., Zhang, W., & Yu, P. (2023). Vibrational Molecular Spectroscopy as a Tool to Study Molecular Structure Features of Cool-Season Chickpeas Impacted by Varieties and Thermal Processing in Relation to Nutrient Availability in Ruminants. Animals, 13(2), 304. https://doi.org/10.3390/ani13020304