The Performance and Metabolism of Dairy Cows Receiving an Ultra-Diluted Complex in the Diet during the Transition Period and Early Lactation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Treatments, and Diets
2.2. Dry Matter and Nutrient Intake
2.3. Milk Yield and Composition
2.4. Colostrum Yield and Quality
2.5. Blood Metabolites
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grummer, R.R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 1995, 73, 2820–2833. [Google Scholar] [CrossRef] [PubMed]
- Artunduaga, M.A.T.; Lima, J.A.M.; Azevedo, R.A.; Lana, Â.M.Q.; Fortes, R.V.S.; Faria, B.N.; Coelho, S.G. Diferentes fontes energéticas durante o período de transição de vacas primíparas e os seus efeitos sobre metabólitos sanguíneos e hormônios. Pesqui. Veterinária Bras. 2018, 38, 1691–1695. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited Review: The influence of immune activation on transition cow health and performance-a critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.E.P.; Santos, F.A.P. Novas Estratégias no Manejo e Alimentação de Vacas Pré-Parto. In Proceedings of the Simpósio Sobre Produção Animal, Piracicaba, Brasil; 1998; Volume 10, pp. 165–214. Available online: http://www.nupel.uem.br/pos-ppz/eduardo-preparto.pdf (accessed on 8 August 2023).
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 2008, 91, 3300–3310. [Google Scholar] [CrossRef]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef]
- Hammon, D.S.; Evjen, I.M.; Dhiman, T.R.; Goff, J.P.; Walters, J.L. Neutrophil function and energy status in holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 2006, 113, 21–29. [Google Scholar] [CrossRef]
- Caixeta, L.S.; Omontese, B.O. Monitoring and improving the metabolic health of dairy cows during the transition period. Animals 2021, 11, 352. [Google Scholar] [CrossRef]
- Sun, X.; Guo, C.; Zhang, Y.; Wang, Q.; Yang, Z.; Wang, Z.; Wang, W.; Cao, Z.; Niu, M.; Li, S. Effect of diets enriched in n-6 or n-3 fatty acids on dry matter intake, energy balance, oxidative stress, and milk fat profile of transition cows. J. Dairy Sci. 2023, 106, 5416–5432. [Google Scholar] [CrossRef]
- Fehlberg, L.K.; Guadagnin, A.R.; Thomas, B.L.; Ballou, M.; Loor, J.J.; Sugimoto, Y.; Shinzato, I.; Cardoso, F.C. Feeding rumen-protected lysine altered immune and metabolic biomarkers in dairy cows during the transition period. J. Dairy Sci. 2023, 106, 2989–3007. [Google Scholar] [CrossRef]
- Bosco Stivanin, S.C.; Vizzotto, E.F.; de Paris, M.; Zanela, M.B.; Passos, L.T.; Veber Angelo, I.D.; Fischer, V. Addition of oregano or green tea extracts into the diet for Jersey cows in transition period. feeding and social behavior, intake and health status. Plant extracts for cows in the transition period. Anim. Feed Sci. Technol. 2019, 257, 114265. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, C.; Sun, X.; Wang, J.; Zheng, N.; Zhang, X.; Qin, J.; Wang, X. Effects of Bupleurum extract on blood metabolism, antioxidant status and immune function in heat-stressed dairy cows. J. Integr. Agric. 2018, 17, 657–663. [Google Scholar] [CrossRef]
- Gessner, D.K.; Brock, C.; Hof, L.M.; Most, E.; Koch, C.; Eder, K. Effects of supplementation of green tea extract on the milk performance of peripartal dairy cows and the expression of stress response genes in the liver. J. Anim. Sci. Biotechnol. 2020, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Ballou, M.A.; Davis, E.M.; Kasl, B.A. Nutraceuticals: An alternative strategy for the use of antimicrobials. Vet. Clin. Food Anim. Pract. 2019, 35, 507–534. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.K.; Henriques, L.T.; Gonzaga Neto, S.; Signoretti, R.D.; Oliveira, J.S.D.; Pinheiro, J.K.; Alves Júnior, R.T. Uso da homeopatia no gado de leite como modulador da função hepática: Uma revisão. CES Med. Vet. Zootec. 2021, 16, 29–46. [Google Scholar] [CrossRef]
- Corrêa, A.D.; Siqueira-Batista, R.; Quintas, L.E.M.; Siqueira-Batista, R. Similia Similibus Curentur: Revisitando aspectos históricos da homeopatia nove anos depois. História Ciênc. Saúde-Manguinhos 2006, 13, 13–31. [Google Scholar] [CrossRef]
- Hahnemann, S. O Moderno Organon da Arte de Curar. Tradução Marcelo Pustiglione, 6th ed.; Typus: São Paulo, Brazil, 2001. [Google Scholar]
- Teixeira, M.Z. Homeopathy: A preventive approach to medicine? Int. J. High Dilution Res. 2009, 8, 155–172. [Google Scholar] [CrossRef]
- Mishra, N.; Muraleedharan, K.C.; Paranjpe, A.S.; Munta, D.K.; Singh, H.; Nayak, C. An exploratory study on scientific investigations in homeopathy using medical analyzer. J. Altern. Complement. Med. 2011, 17, 705–710. [Google Scholar] [CrossRef]
- Fortuoso, B.F.; Volpato, A.; Rampazzo, L.; Glombowsky, P.; Griss, L.G.; Galli, G.M.; Stefani, L.M.; Baldissera, M.D.; Ferreira, E.B.; Machado, G.; et al. Homeopathic treatment as an alternative prophylactic to minimize bacterial infection and prevent neonatal diarrhea in calves. Microb. Pathog. 2018, 114, 95–98. [Google Scholar] [CrossRef]
- da Silva, T.H.; Guimarães, I.C.S.B.; Martins, M.M.; Saran Netto, A. Prophylactic use of an ultra-diluted complex on health, metabolism, and performance of weaned Holstein calves and its carryover effect up to first lactation. J. Dairy Sci. 2021, 104, 12912–12924. [Google Scholar] [CrossRef]
- Ebert, F.; Staufenbiel, R.; Simons, J.; Pieper, L. Randomized, blinded, controlled clinical trial shows no benefit of homeopathic mastitis treatment in dairy cows. J. Dairy Sci. 2017, 100, 4857–4867. [Google Scholar] [CrossRef] [PubMed]
- Arlt, S.; Padberg, W.; Drillich, M.; Heuwieser, W. Efficacy of homeopathic remedies as prophylaxis of bovine endometritis. J. Dairy Sci. 2009, 92, 4945–4953. [Google Scholar] [CrossRef] [PubMed]
- Doehring, C.; Sundrum, A. Efficacy of homeopathy in livestock according to peer-reviewed publications from 1981 to 2014. Vet. Rec. 2016, 179, 628. [Google Scholar] [CrossRef] [PubMed]
- Boericke, W. Homeopathic Materia Medica. 1901. Available online: https://www.materiamedica.info/en/materia-medica/william-boericke/index#C (accessed on 5 July 2023).
- Zhou, Z.; Loor, J.J.; Piccioli-Cappelli, F.; Librandi, F.; Lobley, G.E.; Trevisi, E. Circulating amino acids in blood plasma during the peripartal period in dairy cows with different liver functionality index. J. Dairy Sci. 2016, 99, 2257–2267. [Google Scholar] [CrossRef] [PubMed]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies of Sciences: Washington, DC, USA, 2001.
- Hall, M. Calculation of Non-Structural Carbohydrate Content of Feeds That Contain Non-Protein Nitrogen; University of Florida: Gainesville, FL, USA, 2000; pp. A25–A32. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; AOAC: Arlington, VA, USA, 2000; Volume II. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hendrix, D.L. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Sci. 1993, 33, 1306–1311. [Google Scholar] [CrossRef]
- Sklan, D.; Ashkenazi, R.; Braun, A.; Devorin, A.; Tabori, K. Fatty acids, calcium soaps of fatty acids, and cottonseeds fed to high yielding cows. J. Dairy Sci. 1992, 75, 2463–2472. [Google Scholar] [CrossRef]
- Bielmann, V.; Gillan, J.; Perkins, N.R.; Skidmore, A.L.; Godden, S.; Leslie, K.E. An evaluation of brix refractometry instruments for measurement of colostrum quality in dairy cattle. J. Dairy Sci. 2010, 93, 3713–3721. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Kerwin, A.L.; McCarthy, M.M.; Burhans, W.S.; Nydam, D.V.; Wall, S.K.; Schoenberg, K.M.; Perfield, K.L.; Overton, T.R. Associations of a liver health index with health, milk yield, and reproductive performance in dairy herds in the Northeastern United States. JDS Commun. 2022, 3, 446–450. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Wilson, D.J.; Welcome, F.; Garrison-Tikofsky, L.; Gonzalez, R.N. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 2003, 34, 579–596. [Google Scholar] [CrossRef]
- Trevisi, E.; Amadori, M.; Cogrossi, S.; Razzuoli, E.; Bertoni, G. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res. Vet. Sci. 2012, 93, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; Carson, M.E.; LeBlanc, S.J.; Leslie, K.E.; Godden, S.; Capel, M.; Santos, J.E.P.; Overton, M.W.; Duffield, T.F. The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J. Dairy Sci. 2012, 95, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.L.; Duffield, T.F.; Herdt, T.H.; Kelton, D.F.; Neuder, L.; LeBlanc, S.J. Effects of a combination butaphosphan and cyanocobalamin product and insulin on ketosis resolution and milk production. J. Dairy Sci. 2017, 100, 2954–2966. [Google Scholar] [CrossRef]
- Santschi, D.E.; Lacroix, R.; Durocher, J.; Duplessis, M.; Moore, R.K.; Lefebvre, D.M. Prevalence of elevated milk β-Hydroxybutyrate concentrations in holstein cows measured by fourier-transform infrared analysis in dairy herd improvement milk samples and association with milk yield and components. J. Dairy Sci. 2016, 99, 9263–9270. [Google Scholar] [CrossRef]
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of subclinical ketosis and relationships with postpartum diseases in european dairy cows. J. Dairy Sci. 2013, 96, 2925–2938. [Google Scholar] [CrossRef]
- Fürll, M. Stoffwechselüberwachung Bei Rindern. In Klinische Labordiagnostik in der Tiermedizin; Moritz, Andreas by Schattauer: Stuttart, Germany, 2005; pp. 748–767. ISBN 978-3-7945-2737-3. [Google Scholar]
- Mahrt, A.; Burfeind, O.; Heuwieser, W. Evaluation of hyperketonemia risk period and screening protocols for early-lactation dairy cows. J. Dairy Sci. 2015, 98, 3110–3119. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Ingvartsen, K.L.; Larsen, T. Diurnal variation and the effect of feed restriction on plasma and milk metabolites in TMR-fed dairy cows. J. Vet. Med. Ser. A 2003, 50, 88–97. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhakat, C.; Mandal, D.K.; Mandal, A.; Rai, S.; Chatterjee, A.; Ghosh, M.K. Effect of reducing energy intake during the dry period on milk production, udder health, and body condition score of Jersey crossbred cows in the tropical lower Gangetic region. Trop. Anim. Health Prod. 2020, 52, 1759–1767. [Google Scholar] [CrossRef]
- van Hoeij, R.J.; Kok, A.; Bruckmaier, R.M.; Haskell, M.J.; Kemp, B.; van Knegsel, A.T.M. Relationship between metabolic status and behavior in dairy cows in week 4 of lactation. Animal 2019, 13, 640–648. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef]
- Martins, L.; Barcelos, M.M.; Cue, R.I.; Anderson, K.L.; Dos Santos, M.V.; Gonçalves, J.L. Chronic subclinical mastitis reduces milk and components yield at the cow level. J. Dairy Res. 2020, 87, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Televičius, M.; Juozaitiene, V.; Malašauskienė, D.; Antanaitis, R.; Rutkauskas, A.; Urbutis, M.; Baumgartner, W. Inline milk lactose concentration as biomarker of the health status and reproductive success in dairy cows. Agriculture 2021, 11, 38. [Google Scholar] [CrossRef]
- Vilas Boas, D.F.; Vercesi Filho, A.E.; Pereira, M.A.; Roma Junior, L.C.; El Faro, L. Association between electrical conductivity and milk production traits in dairy Gyr cows. J. Appl. Anim. Res. 2017, 45, 227–233. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, F.-Q.; Zhang, B.-X.; Liu, J.-X. An insufficient glucose supply causes reduced lactose synthesis in lactating dairy cows fed rice straw instead of alfalfa hay. J. Anim. Sci. 2016, 94, 4771–4780. [Google Scholar] [CrossRef]
- Zhao, F.-Q. Biology of glucose transport in the mammary gland. J. Mammary Gland. Biol. Neoplasia 2014, 19, 3–17. [Google Scholar] [CrossRef]
- de Haas, Y.; Bloemhof, S.; Ouweltjes, W.; ten Napel, J.; de Jong, G. Improving selection on udder health by using different trait definitions of somatic cell count. Interbull Bull. 2007, 37, 185. [Google Scholar]
- Reneau, J.K. Effective Use of dairy herd improvement somatic cell counts in mastitis control. J. Dairy Sci. 1986, 69, 1708–1720. [Google Scholar] [CrossRef]
- Spaniol, J.S.; Oltramari, C.E.; Locatelli, M.; Volpato, A.; Campigotto, G.; Stefani, L.M.; Da Silva, A.S. Influence of probiotic on somatic cell count in milk and immune system of dairy cows. Comp. Clin. Pathol. 2015, 24, 677–681. [Google Scholar] [CrossRef]
- Warken, A.C.; Lopes, L.S.; Bottari, N.B.; Glombowsky, P.; Galli, G.M.; Morsch, V.M.; Schetinger, M.R.C.; Silva, A.S.D. Mineral supplementation stimulates the immune system and antioxidant responses of dairy cows and reduces somatic cell counts in milk. An. Acad. Bras. Ciências 2018, 90, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
Experimental Diets | ||
---|---|---|
Ingredient (g/kg DM) | Prepartum | Postpartum |
Sorghum silage 1,2 | 716 | 600 |
Ground corn | 112 | 219 |
Soybean meal 48% CP | 112 | 156 |
Urea | 10.7 | 4.50 |
Bicalcium phosphate | - | 4.20 |
Limestone | - | 3.60 |
Mineral premix 3,4 | 45.1 | 8.20 |
Salt | - | 2.70 |
Ultra-diluted complex 5,6 | 4.20 | 1.80 |
Chemical composition 7,8 (g/kg DM) | ||
Dry matter, g/kg as fed | 333 | 403 |
Ash | 75.0 | 66.0 |
Organic matter | 925 | 934 |
Crude protein | 125 | 172 |
Ether extract | 24.7 | 26.1 |
Neutral detergent fiber | 528 | 413 |
Acid detergent fiber | 375 | 276 |
Starch | 166 | 238 |
Non-fiber carbohydrate 9 | 290 | 361 |
Total digestible nutrients 10 | 592 | 616 |
Lignin | 62.4 | 47.4 |
NEL, Mcal/kg 10 | 1.33 | 1.49 |
Variable | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
CON | UD | Treat | Time | Treat × Time | ||
Postpartum intake, kg/d | ||||||
Dry matter | ||||||
1–60 d | 18.2 | 19.9 | 0.79 | 0.186 | <0.0001 | 0.433 |
Week 1–4 | 16.3 | 16.7 | 0.86 | 0.755 | 0.001 | 0.454 |
Week 5–8 | 20.7 | 22.5 | 0.90 | 0.198 | 0.183 | 0.378 |
Dry matter, % BW 3 | ||||||
1–60 d | 3.53 | 3.94 | 0.13 | 0.034 | <0.0001 | 0.197 |
Week 1–4 | 2.94 | 3.40 | 0.15 | 0.049 | <0.0001 | 0.119 |
Week 5–8 | 4.13 | 4.46 | 0.17 | 0.149 | 0.082 | 0.320 |
Organic matter | ||||||
1–60 d | 17.0 | 18.6 | 0.74 | 0.194 | <0.0001 | 0.434 |
Week 1–4 | 15.2 | 15.6 | 0.80 | 0.761 | 0.001 | 0.454 |
Week 5–8 | 19.4 | 21.0 | 0.84 | 0.208 | 0.184 | 0.375 |
Crude protein | ||||||
1–60 d | 3.13 | 3.54 | 0.13 | 0.064 | <0.0001 | 0.400 |
Week 1–4 | 2.90 | 3.03 | 0.15 | 0.569 | 0.001 | 0.440 |
Week 5–8 | 3.48 | 3.91 | 0.14 | 0.053 | 0.282 | 0.302 |
Neutral detergent fiber | ||||||
1–60 d | 7.81 | 7.70 | 0.37 | 0.828 | <0.0001 | 0.393 |
Week 1–4 | 6.51 | 6.57 | 0.41 | 0.918 | <0.0001 | 0.249 |
Week 5–8 | 8.70 | 9.19 | 0.39 | 0.406 | 0.086 | 0.375 |
Ether extract | ||||||
1–60 d | 0.47 | 0.52 | 0.02 | 0.195 | <0.0001 | 0.345 |
Week 1–4 | 0.43 | 0.44 | 0.02 | 0.825 | 0.002 | 0.396 |
Week 5–8 | 0.54 | 0.58 | 0.02 | 0.182 | 0.172 | 0.472 |
BW 4 | 521.73 | 510.06 | 19.97 | 0.459 | <0.0001 | 0.792 |
Variable | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
CON | UD | Treat | Time | Treat × Time | ||
Milk, kg/d | ||||||
1–60 d | 28.4 | 29.2 | 1.39 | 0.428 | <0.0001 | 0.646 |
Week 1–4 | 27.9 | 29.0 | 1.42 | 0.309 | <0.0001 | 0.738 |
Week 5–8 | 28.9 | 29.8 | 1.38 | 0.410 | 0.119 | 0.204 |
3.5% FCM, kg/d 3 | ||||||
1–60 d | 30.3 | 29.4 | 1.37 | 0.592 | 0.008 | 0.874 |
Week 1–4 | 30.3 | 29.2 | 1.43 | 0.523 | 0.019 | 0.896 |
Week 5–8 | 30.2 | 29.6 | 1.43 | 0.714 | 0.733 | 0.693 |
Fat, kg/d | ||||||
1–60 d | 1.11 | 1.04 | 0.053 | 0.365 | 0.390 | 0.765 |
Week 1–4 | 1.13 | 1.03 | 0.062 | 0.289 | 0.256 | 0.740 |
Week 5–8 | 1.09 | 1.05 | 0.054 | 0.575 | 0.874 | 0.895 |
Protein, kg/d | ||||||
1–60 d | 0.88 | 0.88 | 0.040 | 0.934 | <0.0001 | 0.254 |
Week 1–4 | 0.92 | 0.92 | 0.041 | 0.832 | 0.0001 | 0.341 |
Week 5–8 | 0.85 | 0.84 | 0.044 | 0.700 | 0.955 | 0.537 |
Lactose, kg/d | ||||||
1–60 d | 1.24 | 1.30 | 0.064 | 0.238 | <0.0001 | 0.898 |
Week 1–4 | 1.21 | 1.28 | 0.070 | 0.187 | <0.0001 | 0.748 |
Week 5–8 | 1.28 | 1.32 | 0.069 | 0.428 | 0.233 | 0.541 |
Fat, % | ||||||
1–60 d | 3.90 | 3.63 | 0.146 | 0.119 | 0.800 | 0.719 |
Week 1–4 | 4.02 | 3.62 | 0.209 | 0.128 | 0.491 | 0.537 |
Week 5–8 | 3.80 | 3.64 | 0.145 | 0.382 | 0.966 | 0.968 |
Protein, % | ||||||
1–60 d | 3.14 | 3.03 | 0.070 | 0.313 | <0.0001 | 0.0001 |
Week 1–4 | 3.30 | 3.21 | 0.072 | 0.371 | <0.0001 | 0.002 |
Week 5–8 | 2.97 | 2.86 | 0.069 | 0.301 | 0.060 | 0.076 |
Lactose, % | ||||||
1–60 d | 4.40 | 4.51 | 0.039 | 0.055 | <0.0001 | 0.138 |
Week 1–4 | 4.36 | 4.45 | 0.044 | 0.183 | <0.0001 | 0.145 |
Week 5–8 | 4.42 | 4.57 | 0.041 | 0.024 | 0.755 | 0.311 |
Efficiency, Milk:DMI 4 | 1.63 | 1.60 | 0.065 | 0.749 | <0.0001 | 0.409 |
Efficiency, FCM:DMI 5 | 1.69 | 1.63 | 0.071 | 0.551 | <0.0001 | 0.458 |
Colostrum | ||||||
Yield, kg | 4.25 | 5.63 | 0.66 | 0.102 | - | - |
Quality, °brix | 25.6 | 27.7 | 1.20 | 0.232 | - | - |
Variable 1 | Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | UD | Treat | Time | Treat × Time | ||
AST (U/L) 4 | 75.45 | 73.72 | 2.345 | 0.590 | <0.0001 | 0.743 |
Bilirubin (µmol/L) | 2.389 | 2.295 | 0.227 | 0.394 | <0.0001 | 0.916 |
Calcium (mg/dL) | 9.304 | 9.563 | 0.159 | 0.257 | <0.0001 | 0.953 |
Cholesterol (mg/dL) | 72.79 | 79.71 | 4.085 | 0.247 | <0.0001 | 0.375 |
Phosphorus (mg/dL) | 5.396 | 5.582 | 0.148 | 0.382 | 0.0009 | 0.292 |
GGT (U/L) 5 | 22.63 | 23.44 | 0.572 | 0.334 | 0.050 | 0.536 |
Glucose (mg/dL) | 67.19 | 69.89 | 3.956 | 0.474 | <0.0001 | 0.700 |
Total protein (g/dL) | 6.692 | 6.815 | 0.098 | 0.388 | <0.0001 | 0.402 |
Urea (mg/dL) | 28.60 | 27.28 | 1.195 | 0.445 | <0.0001 | 0.674 |
Variable 1 | Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | UD | Treat | Time | Treat × Time | ||
Albumin (g/L) | 49.93 | 44.60 | 0.554 | 0.413 | <0.0001 | 0.673 |
Ceruloplasmin (mg/dL) | 50.13 | 54.81 | 4.748 | 0.358 | 0.036 | 0.808 |
Haptoglobin (mg/dL) | 48.09 | 51.11 | 4.179 | 0.618 | <0.0001 | 0.363 |
IgA (mg/dL) | 71.20 | 71.79 | 2.393 | 0.835 | <0.0001 | 0.213 |
Transferin (mg/dL) | 184.44 | 188.44 | 7.854 | 0.748 | 0.1186 | 0.901 |
IgG (mg/dL) | 1495.01 | 1575.73 | 63.19 | 0.377 | <0.0001 | 0.395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheller, L.S.; Martins, M.M.; Silva, T.H.; Freu, G.; Salles, M.S.V.; Júnior, L.C.R.; Soares, W.V.B.; Netto, A.S. The Performance and Metabolism of Dairy Cows Receiving an Ultra-Diluted Complex in the Diet during the Transition Period and Early Lactation. Animals 2023, 13, 3261. https://doi.org/10.3390/ani13203261
Gheller LS, Martins MM, Silva TH, Freu G, Salles MSV, Júnior LCR, Soares WVB, Netto AS. The Performance and Metabolism of Dairy Cows Receiving an Ultra-Diluted Complex in the Diet during the Transition Period and Early Lactation. Animals. 2023; 13(20):3261. https://doi.org/10.3390/ani13203261
Chicago/Turabian StyleGheller, Larissa S., Mellory M. Martins, Thiago H. Silva, Gustavo Freu, Márcia S. V. Salles, Luiz C. R. Júnior, Weber V. B. Soares, and Arlindo S. Netto. 2023. "The Performance and Metabolism of Dairy Cows Receiving an Ultra-Diluted Complex in the Diet during the Transition Period and Early Lactation" Animals 13, no. 20: 3261. https://doi.org/10.3390/ani13203261
APA StyleGheller, L. S., Martins, M. M., Silva, T. H., Freu, G., Salles, M. S. V., Júnior, L. C. R., Soares, W. V. B., & Netto, A. S. (2023). The Performance and Metabolism of Dairy Cows Receiving an Ultra-Diluted Complex in the Diet during the Transition Period and Early Lactation. Animals, 13(20), 3261. https://doi.org/10.3390/ani13203261