The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. DNA Extraction and Sequencing
2.3. Quality Control, K-mer Analysis, and Assembly of Sequences
2.4. Annotation of Repetitive Sequences and Identification of Microsatellites
2.5. Mitochondrial Genome Assembly and SNP Screening
2.6. Phylogenetic and Selective Pressure Analyses of Mitochondrial Genes
3. Results and Discussion
3.1. Genome Sequencing, Size Estimation and Assembly
3.2. Repeated Elements in the Genome of P. glabra
3.3. Microsatellites in the Genome of P. glabra
3.4. Phylogeny Based on Mitochondrial Genomes and SNP Candidates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levin, L.A.; Baco, A.R.; Bowden, D.A.; Colaco, A.; Cordes, E.E.; Cunha, M.R.; Demopoulos, A.W.J.; Gobin, J.; Grupe, B.M.; Le, J.; et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Mar. Sci. 2016, 3, 72. [Google Scholar] [CrossRef]
- Brown, W.M.; George, M., Jr.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, M.N.; Little, C.T.S.; Maslennikov, V.V.; Glover, A.G.; Ayupova, N.R.; Herrington, R.J. The history of life at hydrothermal vents. Earth-Sci. Rev. 2021, 217, 103602. [Google Scholar] [CrossRef]
- German, C.R.; Livermore, R.A.; Baker, E.T.; Bruguier, N.I.; Connelly, D.P.; Cunningham, A.P.; Morris, P.; Rouse, I.P.; Statham, P.J.; Tyler, P.A. Hydrothermal plumes above the East Scotia Ridge: An isolated high-latitude back-arc spreading centre. Earth Planet. Sci. Lett. 2000, 184, 241–250. [Google Scholar] [CrossRef]
- German, C.R.; Ramirez-Llodra, E.; Baker, M.C.; Tyler, P.A.; ChEss Scientific Steering Committee. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: A proposed deep-ocean road map. PLoS ONE 2011, 6, e23259. [Google Scholar] [CrossRef] [PubMed]
- Dubilier, N.; Bergin, C.; Lott, C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nat. Rev. Microbiol. 2008, 6, 725–740. [Google Scholar] [CrossRef]
- Sogin, E.M.; Leisch, N.; Dubilier, N. Chemosynthetic symbioses. Curr. Biol. 2020, 30, R1137–R1142. [Google Scholar] [CrossRef]
- Sun, J.; Chen, C.; Miyamoto, N.; Li, R.; Sigwart, J.D.; Xu, T.; Sun, Y.; Wong, W.C.; Ip, J.C.H.; Zhang, W.; et al. The scaly-foot snail genome and implications for the origins of biomineralised armour. Nat. Commun. 2020, 11, 1657. [Google Scholar] [CrossRef]
- Ip, J.C.; Xu, T.; Sun, J.; Li, R.; Chen, C.; Lan, Y.; Han, Z.; Zhang, H.; Wei, J.; Wang, H.; et al. Host-Endosymbiont genome integration in a deep-sea chemosymbiotic clam. Mol. Biol. Evol. 2021, 38, 502–518. [Google Scholar] [CrossRef]
- Zhang, L.; He, J.; Tan, P.; Gong, Z.; Qian, S.; Miao, Y.; Zhang, H.Y.; Tu, G.; Chen, Q.; Zhong, Q.; et al. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Commun. Biol. 2022, 5, 224. [Google Scholar] [CrossRef]
- Wang, M.; Ruan, L.; Liu, M.; Liu, Z.; He, J.; Zhang, L.; Wang, Y.; Shi, H.; Chen, M.; Yang, F.; et al. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment. BMC Genom. 2023, 24, 72. [Google Scholar] [CrossRef]
- Sasaki, T.; Warén, A.; Kano, Y.; Okutani, T.; Fujikura, K. Gastropods from recent hot vents and cold seeps: Systematics, diversity and life strategies. In The Vent and Seep Biota: Aspects from Microbes to Ecosystems; Steffen, K., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 169–254. [Google Scholar]
- Bouchet, P.; Rocroi, J.P.; Hausdorf, B.; Kaim, A.; Kano, Y.; Nützel, A.; Parkhaev, P.; Schrödl, M.; Strong, E.E. Revised classification, nomenclator and typification of Gastropod and Monoplacophoran families. Malacologia 2017, 61, 1–526. [Google Scholar] [CrossRef]
- Colgan, D.J.; Ponder, W.F.; Beacham, E.; Macaranas, J. Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Mol. Phylogenet. Evol. 2007, 42, 717–737. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Sun, J.; Chen, C.; Qian, P.Y.; Qiu, J.W. The mitochondrial genome of the deep-sea snail Provanna sp. (Gastropoda: Provannidae). Mitochondrial DNA A 2016, 27, 4026–4027. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. (Eds.) Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2001. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Liu, B.; Shi, Y.; Yuan, J.; Hu, X.; Zhang, H.; Li, N.; Li, Z.; Chen, Y.; Mu, D.; Fan, W. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quant. Biol. 2013, 35, 62–67. [Google Scholar] [CrossRef]
- Luo, R.B.; Liu, B.H.; Xie, Y.L.; Li, Z.Y.; Huang, W.H.; Yuan, J.Y.; He, G.Z.; Chen, Y.X.; Pan, Q.; Liu, Y.J.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A "One for All, All for One" bioinformatics platform for biological big-data mining. Mol. Plant 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.L.; Chen, C.J.; Arab, D.A.; Du, Z.G.; He, Y.H.; Ho, S.Y.W. EasyCodeML: A visual tool for analysis of selection using CodeML. Ecol. Evol. 2019, 9, 3891–3898. [Google Scholar] [CrossRef]
- Bonnivard, E.; Catrice, O.; Ravaux, J.; Brown, S.C.; Higuet, D. Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome 2009, 52, 524–536. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Meng, L.; Fan, G.; Bai, J.; Chen, J.; Song, Y.; Seim, I.; Wang, C.; Shao, Z.; et al. Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. Gigascience 2020, 9, giaa139. [Google Scholar] [CrossRef]
- Biemont, C. Genome size evolution: Within-species variation in genome size. Heredity 2008, 101, 297–298. [Google Scholar] [CrossRef]
- Kazazian, H.H., Jr. Mobile elements: Drivers of genome evolution. Science 2004, 303, 1626–1632. [Google Scholar] [CrossRef]
- Hoen, D.R.; Bureau, T.E. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol. Biol. Evol. 2015, 32, 1487–1506. [Google Scholar] [CrossRef]
- Janousek, V.; Laukaitis, C.M.; Yanchukov, A.; Karn, R.C. The role of retrotransposons in gene family expansions in the human and mouse genomes. Genome Biol. Evol. 2016, 8, 2632–2650. [Google Scholar] [CrossRef]
- Liu, R.Y.; Wang, K.; Liu, J.; Xu, W.J.; Zhou, Y.; Zhu, C.L.; Wu, B.S.; Li, Y.X.; Wang, W.; He, S.P.; et al. De Novo Genome Assembly of Limpet (Gastropoda: Pectinodontidae): The First Reference Genome of a Deep-Sea Gastropod Endemic to Cold Seeps. Genome Biol. Evol. 2020, 12, 905–910. [Google Scholar] [CrossRef]
- Patra, A.K.; Ho, P.-T.; Jun, S.; Lee, S.J.; Kim, Y.; Won, Y.J. Genome assembly of the Korean intertidal mud-creeper Batillaria attramentaria. Sci. Data 2023, 10, 498. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Li, Q.; Fang, X.; Li, J.; Curtis, N.E.; Altenburger, A.; Shibata, T.; Feng, M.; Maeda, T.; Schwartz, J.A.; et al. A draft genome assembly of the solar-powered sea slug Elysia chlorotica. Sci. Data 2019, 6, 190022. [Google Scholar] [CrossRef]
- Peng, C.; Niu, L.; Deng, J.; Yu, J.; Zhang, X.; Zhou, C.; Xing, J.; Li, J. Can-SINE dynamics in the giant panda and three other Caniformia genomes. Mob. DNA 2018, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Casacuberta, E.; Gonzalez, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 2013, 22, 1503–1517. [Google Scholar] [CrossRef] [PubMed]
- Van’t Hof, A.E.; Campagne, P.; Rigden, D.J.; Yung, C.J.; Lingley, J.; Quail, M.A.; Hall, N.; Darby, A.C.; Saccheri, I.J. The industrial melanism mutation in British peppered moths is a transposable element. Nature 2016, 534, 102–105. [Google Scholar] [CrossRef]
- Todd, R.T.; Wikoff, T.D.; Forche, A.; Selmecki, A. Genome plasticity in Candida albicans is driven by long repeat sequences. eLife 2019, 8, e45954. [Google Scholar] [CrossRef]
- Malik, H.S.; González, J.; Karasov, T.L.; Messer, P.W.; Petrov, D.A. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet. 2010, 6, e1000905. [Google Scholar] [CrossRef]
- Magwire, M.M.; Bayer, F.; Webster, C.L.; Cao, C.; Jiggins, F.M. Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a duplication. PLoS Genet. 2011, 7, e1002337. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, J.; Sha, Z.; Hui, M. Population genetic structure and implication for adaptive differentiation of the snail (Gastropoda, Provannidae) in deep-sea chemosynthetic ecosystems. Zool. Scr. 2023, in press. [Google Scholar] [CrossRef]
- Ashley, M.V.; Dow, B.D. The use of microsatellite analysis in population biology: Background, methods and potential applications. Mol. Ecol. Evol. Approaches Appl. 1994, 69, 185–201. [Google Scholar] [CrossRef]
- Chakraborty, R.; Kimmel, M.; Stivers, D.N.; Davison, L.J.; Deka, R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl. Acad. Sci. USA 1997, 94, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Feng, D.; Tao, J.; Qiu, J.W. A new species of deep-sea mussel (Bivalvia: Mytilidae: Gigantidas) from the South China Sea: Morphology, phylogenetic position, and gill-associated microbes. Deep-Sea Res. PT. I 2019, 146, 79–90. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, J.; Xu, T.; Qiu, J.W.; Qian, P.Y. Phylogenetic relationships and adaptation in deep-sea mussels: Insights from mitochondrial genomes. Int. J. Mol. Sci. 2021, 22, 1900. [Google Scholar] [CrossRef] [PubMed]
- Tomasco, I.H.; Lessa, E.P. The evolution of mitochondrial genomes in subterranean caviomorph rodents: Adaptation against a background of purifying selection. Mol. Phylogenet. Evol. 2011, 61, 64–70. [Google Scholar] [CrossRef]
- da Fonseca, R.R.; Johnson, W.E.; O’Brien, S.J.; Ramos, M.J.; Antunes, A. The adaptive evolution of the mammalian mitochondrial genome. BMC Genom. 2008, 9, 119. [Google Scholar] [CrossRef]
- Yu, L.; Wang, X.; Ting, N.; Zhang, Y. Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion 2011, 11, 497–503. [Google Scholar] [CrossRef]
- Silva, G.; Lima, F.P.; Martel, P.; Castilho, R. Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proc. R. Soc. B 2014, 281, 20141093. [Google Scholar] [CrossRef]
- Yang, M.; Gong, L.; Sui, J.; Li, X. The complete mitochondrial genome of Calyptogena marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight into the deep-sea adaptive evolution of vesicomyids. PLoS ONE 2019, 14, e0217952. [Google Scholar] [CrossRef]
- Ning, T.; Xiao, H.; Li, J.; Hua, S.; Zhang, Y.P. Adaptive evolution of the mitochondrial ND6 gene in the domestic horse. Genet. Mol. Res. 2010, 9, 144–150. [Google Scholar] [CrossRef]
- Cheng, J.; Hui, M.; Li, Y.; Sha, Z. Genomic evidence of population genetic differentiation in deep-sea squat lobster Shinkaia crosnieri (crustacea: Decapoda: Anomura) from Northwestern Pacific hydrothermal vent and cold seep. Deep-Sea Res. PT. I 2020, 156, 103188. [Google Scholar] [CrossRef]
- Xu, T.; Sun, J.; Watanabe, H.K.; Chen, C.; Nakamura, M.; Ji, R.; Feng, D.; Lv, J.; Wang, S.; Bao, Z.; et al. Population genetic structure of the deep-sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) in the Northwest Pacific. Evol. Appl. 2018, 11, 1915–1930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wu, Y.; Wang, X.; Jiang, W.; Yin, J.; Lin, Q. Comparative analysis of mitochondrial genome of a deep-sea crab Chaceon granulates reveals positive selection and novel genetic features. J. Oceanol. Limnol. 2019, 38, 427–437. [Google Scholar] [CrossRef]
- Sun, S.; Hui, M.; Wang, M.; Sha, Z. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. Comp. Biochem. Phys. D 2018, 25, 42–52. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, W.; Gao, Y.; Tang, S.; Huang, Q.; Tan, X.; Chen, J.; Huang, T. Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion 2008, 8, 352–357. [Google Scholar] [CrossRef] [PubMed]
Sequencing Data | |
Raw bases (Gb) | 63.54 |
Q30 of raw data (%) | 88.50 |
GC content of raw data (%) | 45.13 |
Clean bases (Gb) | 55.70 |
Q30 of clean data (%) | 92.98 |
GC content of clean data (%) | 44.48 |
Genome Assembly | |
Number of contigs | 4,132,680 |
Contig N50 (bp) | 437 |
Number of scaffolds | 3,534,913 |
Scaffold N50 (bp) | 581 |
GC content of the assembly (%) | 45.52 |
RepBase | TE Proteins | De Novo | Combined TEs | |||||
---|---|---|---|---|---|---|---|---|
Length (bp) | Percentage in Genome | Length (bp) | Percentage in Genome | Length (bp) | Percentage in Genome | Length (bp) | Percentage in Genome | |
DNA | 91,183,057 | 6.88% | 4,798,383 | 0.36% | 35,706,323 | 2.70% | 124,415,616 | 9.39% |
LINE | 31,192,761 | 2.35% | 30,457,352 | 2.30% | 47,851,776 | 3.61% | 81,713,306 | 6.17% |
SINE | 7,573,630 | 0.57% | - | - | 57,325,068 | 4.33% | 59,987,677 | 4.53% |
LTR | 27,154,235 | 2.05% | 3,528,767 | 0.27% | 21,823,849 | 1.65% | 49,670,310 | 3.75% |
Other | 33,747 | - | 1401 | - | - | - | 35,148 | - |
Unknown | 3,016,383 | 0.23% | 15,420 | - | 243,550,406 | 18.38% | 246,409,803 | 18.60% |
Total | 139,568,993 | 10.53% | 38,782,100 | 2.93% | 401,595,868 | 30.31% | 532,071,289 | 40.17% |
Gene Name | Gene Length (bp) | Mutation Number (Percentage) | Amino Acid Change | Variation Site (DNA) | Mutation Type |
---|---|---|---|---|---|
cox1 | 1536 | 33 (2.15%) | - | - | - |
cox2 | 687 | 20 (2.91%) | - | - | - |
cox3 | 780 | 29 (3.72%) | A→G | 527 | Transversion |
T→A | 592 | Transition | |||
nad1 | 942 | 19 (2.02%) | - | - | - |
nad2 | 1062 | 32 (3.01%) | S→N | 242 | Transition |
243 | |||||
V→I | 502 | ||||
A→I | 886 | ||||
887 | |||||
M→V | 961 | ||||
nad3 | 354 | 13 (3.67%) | I→T | 263 | Transition |
S→F | 281 | ||||
T→M | 284 | ||||
nad4 | 1362 | 43 (3.16%) | D→N | 544 | Transition |
nad4l | 258 | 7 (2.71%) | S→T | 280 | Transversion |
nad5 | 1722 | 62 (3.60%) | I→T | 512 | Transition |
Y→C | 1196 | ||||
I→V | 1402 | ||||
D→N | 1432 | ||||
V→I | 1699 | ||||
nad6 | 501 | 16 (3.19%) | S→P | 244 | Transition |
cob | 1140 | 42 (3.68%) | V→A | 704 | Transition |
atp6 | 696 | 12 (1.72%) | - | - | - |
atp8 | 159 | 3 (1.89%) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, M.; Zhang, Y.; Wang, A.; Sha, Z. The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents. Animals 2023, 13, 3313. https://doi.org/10.3390/ani13213313
Hui M, Zhang Y, Wang A, Sha Z. The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents. Animals. 2023; 13(21):3313. https://doi.org/10.3390/ani13213313
Chicago/Turabian StyleHui, Min, Yu Zhang, Aiyang Wang, and Zhongli Sha. 2023. "The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents" Animals 13, no. 21: 3313. https://doi.org/10.3390/ani13213313
APA StyleHui, M., Zhang, Y., Wang, A., & Sha, Z. (2023). The First Genome Survey of the Snail Provanna glabra Inhabiting Deep-Sea Hydrothermal Vents. Animals, 13(21), 3313. https://doi.org/10.3390/ani13213313