Heat Stress Mitigation: Impact of Increased Cooling Sessions on Milk Yield and Welfare of Dairy Buffaloes in a Semiarid Summer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Animals, Housing, and Management
2.2. Experimental Design and Study Groups
2.3. Climate Measures
2.4. Production, Physiological, and Behavioral Measures
2.5. Blood Metabolites
2.6. Statistical Analysis
3. Results
3.1. Environmental Measures
3.2. Production, Physiological, and Behavioral Measures
3.3. Blood Metabolites
4. Discussion
4.1. Climate Measures
4.2. Milk Yield and Composition
4.3. Physiological Measures
4.4. Behavioral Measures
4.5. Blood Metabolites
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Debaky, H.A.; Kutchy, N.A.; Ul-Husna, A.; Indriastuti, R.; Akhter, S.; Purwantara, B.; Memili, E. Potential of water buffalo in world agriculture: Challenges and opportunities. Appl. Anim. Sci. 2019, 35, 255–268. [Google Scholar] [CrossRef]
- Minervino, A.H.; Zava, M.; Vecchio, D.; Borghese, A. Bubalus bubalis: A short story. Front. Vet. Sci. 2020, 7, 570413. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, G.; Grasso, F.; Braghieri, A.; Bilancione, A.; Di Francia, A.; Napolitano, F. Behavior and milk production of buffalo cows as affected by housing system. J. Dairy Sci. 2009, 92, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Bah, M.; Rashid, M.A.; Javed, K.; Pasha, T.N.; Shahid, M.Q. Effects of sprinkler flow rate on physiological, behavioral and production responses of Nili Ravi buffaloes during subtropical summer. Animals 2021, 11, 339. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Haeeb, A.A.M. Buffalo’s biological functions as affected by heat stress—A review. Livest. Sci. 2010, 127, 89–109. [Google Scholar] [CrossRef]
- Napolitano, F.; Pacelli, C.; Grasso, F.; Braghieri, A.; De Rosa, G. The behaviour and welfare of buffaloes (Bubalus bubalis) in modern dairy enterprises. Animals 2013, 7, 1704–1713. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Napolitano, F.; Braghieri, A.; Guerrero-Legarreta, I.; Bertoni, A.; Martínez-Burnes, J.; Cruz-Monterrosa, R.; Gómez, J.; Ramírez-Bribiesca, E.; Barrios-García, H.; et al. Thermal biology in river buffalo in the humid tropics: Neurophysiological and behavioral responses assessed by infrared thermography. J. Anim. Behav. Biometeorol. 2020, 9, 2103. [Google Scholar] [CrossRef]
- Aggarwal, A.; Upadhyay, R. Thermoregulation. In Heat Stress and Animal Productivity, 1st ed.; Aggarwal, A., Upadhyay, R., Eds.; Springer: New Delhi, India, 2013; pp. 1–25. [Google Scholar]
- De Rosa, G.; Grasso, F.; Pacelli, C.; Napolitano, F.; Winckler, C. The welfare of dairy buffalo. Ital. J. Anim. Sci. 2009, 8 (Suppl. S1), 103–116. [Google Scholar] [CrossRef]
- Farooq, M.H.; Shahid, M.Q. Quantification of on-farm groundwater use under different dairy production systems in Pakistan. PLoS Water 2023, 2, e0000078. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Bah, M.; Shahid, M.Q.; Pasha, T.N.; Javed, K. Performance and welfare of dairy buffaloes subjected to different cooling strategies during subtropical summer. Trop. Anim. Health Prod. 2022, 54, 51. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, K.G.; Wu, B. Simulation of Sensible and Latent Heat Losses from Wet-Skin Surface and Fur Layer. J. Therm. Biol. 2002, 27, 291–297. [Google Scholar] [CrossRef]
- Hussain, S.I.; Ahmed, N.; Ahmad, S.; Akhter, M.; Shahid, M.Q. Evaluating the impact of sprinkler cycle and flow rate on dairy buffalo performance during heat stress. J. Dairy Res. 2023; accepted. [Google Scholar]
- Polsky, L.; von Keyserlingk, M.A. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef]
- Choudhary, B.B.; Sirohi, S. Sensitivity of buffaloes (Bubalus bubalis) to heat stress. J. Dairy Res. 2019, 86, 399–405. [Google Scholar] [CrossRef]
- Honig, H.; Miron, J.; Lehrer, H.; Jackoby, S.; Zachut, M.; Zinou, A.; Portnick, Y.; Moallem, U. 2012. Performance and welfare of high-yielding dairy cows subjected to 5 or 8 cooling sessions daily under hot and humid climate. J. Dairy Sci. 2012, 95, 3736–3742. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Rivas, R.M.O.; Marins, T.N.; Chen, Y.C.; Gao, J.; Bernard, J.K. Impact of heat stress on lactational performance of dairy cows. Theriogenology 2020, 150, 437–444. [Google Scholar] [CrossRef]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Mishra, S.R. Thermoregulatory responses in riverine buffaloes against heat stress: An updated review. J. Therm. Biol. 2021, 96, 102844. [Google Scholar] [CrossRef]
- García, S.C.; Holmes, C.W. Lactation curves of autumn-and spring-calved cows in pasture-based dairy systems. Livest. Prod. Sci. 2001, 68, 189–203. [Google Scholar] [CrossRef]
- Craig, A.L.; Gordon, A.W.; Hamill, G.; Ferris, C.P. Milk composition and production efficiency within feed-to-yield systems on commercial dairy farms in Northern Ireland. Animals 2022, 12, 1771. [Google Scholar] [CrossRef]
- Gorniak, T.; Meyer, U.; Südekum, K.H.; Dänicke, S. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim. Nutr. 2014, 68, 358–369. [Google Scholar] [CrossRef]
- Hammami, H.; Vandenplas, J.; Vanrobays, M.L.; Rekik, B.; Bastin, C.; Gengler, N. Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J. Dairy Sci. 2015, 98, 4956–4968. [Google Scholar] [CrossRef]
- Liu, Z.; Ezernieks, V.; Wang, J.; Arachchillage, N.W.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World. 2016, 9, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Berman, A. Extending the Potential of Evaporative Cooling for Heat-Stress Relief. J. Dairy Sci. 2006, 89, 3817–3825. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Hall, L.W.; Collier, R.J.; Smith, J.F. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci. 2015, 98, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hassan, F.U.; Guo, Y.; Tang, Z.; Liang, X.; Xie, F.; Peng, L.; Yang, C. Seasonal Dynamics of Physiological, Oxidative and Metabolic Responses in Non-lactating Nili-Ravi Buffaloes under Hot and Humid Climate. Front. Vet. Sci. 2020, 8, 622. [Google Scholar] [CrossRef]
- Ambulkar, D.R.; Nikam, S.D.; Barmase, B.S.; Ali, S.Z.; Jirapure, S.G. Effect of a high-pressure fogger system on body comfort and milk yield in Murrah buffaloes during the summer. Buffalo Bull. 2011, 30, 130–138. [Google Scholar]
- Kumar, V.; Kumar, P. Impact of thermal stress on rectal, skin surface temperatures, respiration rate, heat load index and heat storage in lactating Murrah buffaloes (Bubalus bubalis). Buffalo Bull. 2013, 32, 1141–1144. [Google Scholar]
- Baumgard, L.H.; Rhoads, R.P., Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaisi, M.; Mayorga, E.J.; Horst, E.A.; Kvidera, S.K.; McCarthy, C.S.; Abeyta, M.A.; Goetz, B.M.; Ramirez-Ramirez, H.A.; Timms, L.L.; Baumgard, L.H. Validating a heat stress model: The effects of an electric heat blanket and nutritional plane on lactating dairy cows. J. Dairy Sci. 2020, 103, 5550–5560. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.T.; Guo, J.; Quan, S.Y.; Nan, X.M.; Fernandez, M.S.; Baumgard, L.H.; Bu, D.P. The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci. 2017, 100, 5040–5049. [Google Scholar] [CrossRef] [PubMed]
Items | 24 h | Daytime Period (07:00 to 17:00 h) | ||||
---|---|---|---|---|---|---|
Mean ± SD | Minimum | Maximum | Mean ± SD | Minimum | Maximum | |
Temperature (T, °C) | 36.0 ± 6.7 | 22.4 | 50.1 | 40.0 ± 6.6 | 22.4 | 50.1 |
Temperature–humidity index (THI) | 83.0 ± 5.0 | 71.5 | 92.7 | 86.5 ± 4.2 | 71.9 | 92.7 |
Heat load index (HLI) | 92.5 ± 11.7 | 68.2 | 117.9 | 102.6 ± 8.7 | 72.1 | 117.9 |
Black globe temperature (BGT, °C) | 38.7 ± 9.3 | 22.3 | 58.3 | 46.1 ± 8.3 | 22.5 | 58.3 |
Relative humidity (RH, %) | 41.1 ± 22 | 12 | 100 | 36.5 ± 25 | 12.2 | 100 |
Wind speed (WS, m/s) | 0.14 ± 0.34 | 0 | 2.5 | 0.18 ± 0.38 | 0 | 2.5 |
Items | Cooling Sessions 1, n/d | ||||
---|---|---|---|---|---|
CTL | 3CS | 5CS | SEM 2 | p Value | |
Milk yield, kg/d | 5.3 a | 6.9 b | 8.5 c | 0.2 | <0.001 |
Milk components, % | |||||
Fat | 5.1 a | 6.1 b | 8.1 c | 0.1 | <0.001 |
Protein | 3.4 a | 3.3 b | 2.9 c | 0.04 | <0.001 |
Lactose | 4.9 a | 4.6 b | 4.2 c | 0.1 | <0.001 |
Milk components, g/d | |||||
Fat | 273 a | 421 b | 678 c | 12 | <0.001 |
Protein | 183 a | 232 b | 243 c | 6 | <0.001 |
Lactose | 258 a | 314 b | 357 c | 10 | <0.001 |
Items | Cooling Session Treatments 1, n/d | ||||
---|---|---|---|---|---|
CTL | 3CS | 5CS | SEM 2 | p Value | |
Total feeding time, min/d | 113 a | 142 b | 224 c | 7.4 | <0.001 |
Total rumination time, h/d | 8.1 | 9.3 | 8.9 | 0.42 | 0.152 |
Total lying time, h/d | 7.9 | 7.9 | 7.6 | 0.2 | 0.701 |
Inactive standing, h/d | 11.3 | 9.8 | 9.8 | 0.52 | 0.105 |
Standing bouts, number/d | 8.7 | 8.2 | 8.2 | 0.29 | 0.352 |
Step count, ×1000 number/d | 6.1 | 5.7 | 6.0 | 0.37 | 0.531 |
Items | Cooling Sessions 1, n/d | ||||
---|---|---|---|---|---|
CTL | 3CS | 5CS | SEM 2 | p Value | |
Glucose, mg/dL | 71.8 b | 83.9 a | 89.4 a | 4.0 | 0.006 |
Blood UREA Nitrogen, mg/dL | 17.9 c | 14.2 b | 12.1 a | 0.45 | 0.001 |
Cortisol, µg/dL | 5.5 b | 4.7 b | 3.8 a | 0.37 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.I.; Ahmad, N.; Ahmed, S.; Akhter, M.; Shahid, M.Q. Heat Stress Mitigation: Impact of Increased Cooling Sessions on Milk Yield and Welfare of Dairy Buffaloes in a Semiarid Summer. Animals 2023, 13, 3315. https://doi.org/10.3390/ani13213315
Hussain SI, Ahmad N, Ahmed S, Akhter M, Shahid MQ. Heat Stress Mitigation: Impact of Increased Cooling Sessions on Milk Yield and Welfare of Dairy Buffaloes in a Semiarid Summer. Animals. 2023; 13(21):3315. https://doi.org/10.3390/ani13213315
Chicago/Turabian StyleHussain, Syed Israr, Nisar Ahmad, Saeed Ahmed, Maqsood Akhter, and Muhammad Qamer Shahid. 2023. "Heat Stress Mitigation: Impact of Increased Cooling Sessions on Milk Yield and Welfare of Dairy Buffaloes in a Semiarid Summer" Animals 13, no. 21: 3315. https://doi.org/10.3390/ani13213315
APA StyleHussain, S. I., Ahmad, N., Ahmed, S., Akhter, M., & Shahid, M. Q. (2023). Heat Stress Mitigation: Impact of Increased Cooling Sessions on Milk Yield and Welfare of Dairy Buffaloes in a Semiarid Summer. Animals, 13(21), 3315. https://doi.org/10.3390/ani13213315